
Mahmoud Qarmout

Tunnel face stability using Kinematical Element Method (KEM)

Bochum 2019                                                               Heft 70

RUHR-UNIVERSITÄT BOCHUM

Schriftenreihe des Lehrstuhls für
Bodenmechanik, Grundbau und Umweltgeotechnik

Herausgeber: Torsten Wichtmann

ISSN 2699-1020ISSN 2699-1020

70

M
a

h
m

o
u

d
 Q

a
rm

o
u

t
T

u
n

n
e

l 
fa

c
e

 s
ta

b
ili

ty
 u

s
in

g
 K

in
e

m
a

ti
c
a

l 
E

le
m

e
n

t 
 M

e
th

o
d



Ruhr-Universität Bochum

Schriftenreihe Bodenmechanik, Grundbau und Umweltgeotechnik

Heft 70

Herausgeber:

Prof. Dr. -Ing. habil. Torsten Wichtmann

Ruhr-Universität Bochum

Fakultät für Bau- und Umweltingenieurwissenschaften

Lehrstuhl für Bodenmechanik, Grundbau und Umweltgeotechnik

44801 Bochum

Telefon: 0234/ 3226135

Telefax: 0234/ 3214236

Internet: www.bgu.ruhr-uni-bochum.de

ISSN 2699-1020

© 2019 der Herausgeber



Tunnel face stability using Kinematical Element Method (KEM)

Dissertation

as a requirement of the degree of

Doktor-Ingenieur (Dr.-Ing.)

at the Faculty of

Civil and Environmental Engineering

Ruhr-Universität Bochum

submitted by

Mahmoud Qarmout

Reviewers

Prof. Dr.-Ing. habil. Torsten Wichtmann

Prof. Dr.-Ing. Markus Thewes

Dr.-Ing. Peter Gussmann

Bochum, 2019





Vorwort des Herausgebers

Herr Qarmout hat sich in seiner Dissertation mit der Stabilität der Ortsbrust beim

maschinellen Tunnelvortrieb auseinandergesetzt. Für den minimal erforderlichen Stütz-

druck, der vom Schild einer Tunnelbohrmaschine auf die Ortsbrust wirken muss, existiert

eine Reihe analytischer und numerisch basierter Ansätze, die aufgrund unterschiedlicher

Annahmen bezüglich der Kinematik oder Statik des Bruchmechanismus zum Teil je-

doch deutlichvoneinander abweichende Ergebnisse liefern. Herr Qarmout hat erstmals

die Kinematische Elemente Methode (KEM) zur Lösung des Problems der Ortsbrust-

stabilität eingesetzt. Während die Anwendung der KEM bisher im Wesentlichen auf

ebene Probleme (2D) begrenzt war, handelt es sich bei der Untersuchung von Herrn

Qarmout um eine Erweiterung auf den 3D-Fall. Ziel der Arbeit ist es, kinematisch

mögliche 3D-Bruchmechanismen für das Problem der Ortsbruststabilität mit Hilfe der

KEM zu untersuchen, die Ergebnisse mit anderen Lösungen aus der Literatur zu ver-

gleichen und â für ausgewählte Randbedingungen â die KEM-Modelle durch den Ab-

gleich mit Messungen in Modellversuchen zu validieren. Herr Qarmout hat drei kine-

matisch mögliche Bruchmechanismen, jeweils bestehend aus mehreren Starrkörpern, mit

Hilfe der KEM untersucht. Hierfür hat er die Gleichungen der KEM zur Lösung der

Kinematik, Statik und Optimierung der Geometrie der Bruchkörper in ein Matlab-Skript

mit graphischer Benutzeroberfläche implementiert. Die Visualisierung der Kinematik ist

dabei besonders hilfreich, um eine Vorstellung von den Verschiebungsvorgängen in den

komplexen 3D-Mehrkörpermodellen zu bekommen. Die Ergebnisse der eigenen KEM-

Simulationen für den erforderlichen Stützdruck vergleicht Herr Qarmout mit den Prog-

nosen anderer Ansätze aus der Literatur. Hierfür gibt er zunächst einen ausführlichen

Überblick über die verschiedenen existierenden Ansätze, bevor er die Unterschiede der

mit seinen und mit den verschiedenen vorhandenen Ansätzen berechneten Stützdrücke

in Abhängigkeit der Bodenparameter und der Geometrie herausarbeitet. Für ausge-

suchte Randbedingungen validiert er die KEM-Modelle anhand der Nachrechnung von

1g- bzw. ng-Modellversuchen. Auf Basis von Parameterstudien unter Einsatz der KEM-

Modelle leitet Herr Qarmout einfache Bemessungsansätze für die praktische Anwendung

ab. Beim maschinellen Tunnelvortrieb mit Flüssigkeitsstützung unterhalb des Grund-

wasserspiegels treten in Abhängigkeit der verwendeten Stützsuspension und der Boden-

verhältnisse Porenwasserüberdrücke vor der Ortsbrust auf. Herr Qarmout hat seine KEM-

Modelle dahingehend erweitert, dass er solche Porenwasserüberdrücke berücksichtigen
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kann und zeigt deren Einfluss auf die Ortsbruststabilität auf. Für einfache Randbedin-

gungen, z.B. einen in Höhe der Geländeoberkante stehenden Grundwasserspiegel, leitet

er auch hier Bemessungsansätze für die praktische Anwendung ab. Herr Qarmout hat

mit dieser Arbeit einen sehr kompletten Satz anBemessungshilfen für das Problem der

Ortsbruststabilität geschaffen.

Bochum, November 2019

Prof. Dr.-Ing. habil. Torsten Wichtmann
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Abstract

The determination of adequate tunnel face support pressure is one of the fundamental

issues in tunnel excavation using a tunnel boring machine, which ensures the safety of

the excavation and prevents the collapse of the tunnel face. In this research, using KEM

(Kinematical Element Method), a new calculation procedure is introduced to investigate

the stability of a circular tunnel face. Three KEM models (M), (M1) and (M2) have

been developed with different 3D failure mechanisms. KEM models (M1) and (M2) are

developed based on KEM model M. In KEM models (M) and (M1), the cross section of

the tunnel face is assumed to be a triangle, whereas, it is assumed to be a square in KEM

model (M2). In order to incorporate the contribution of the 3D arching in predicting the

minimum support pressure, a 3D active earth pressure acting on the vertical slip surfaces

from the adjoining soil is presumed for the three KEM models.

To evaluate the validity of the KEM models, a comparison between the results of KEM

models M and M2 with the results of analytical models, based either on the limit equilib-

rium method or the limit analysis method (upper bound solution), and numerical models

using the finite element method has been undertaken. Also, a parametric analysis has

been carried out on KEM models (M) and (M2) to study the influence of cover depth to

tunnel diameter ratio (C/D), internal friction angle of the soil (ϕ) and soil cohesion (c)

on the normalized support pressure (pu/(γD)). The results of the parametric study are

provided in form of design equations and stability charts for convenient use in practice.

In case of open face tunneling, KEM models (M) and (M2) have been applied to estimate

the factor of safety of the tunnel face using the Strength Reduction Method (SRM). The

computed factors of safety have been compared to the results of other existing approaches.

In addition, using KEM model (M2), the influence of hydrostatic and excess pore pressure

on the stability of the tunnel face during tunnel excavation has been investigated.

Finally, general conclusions regarding the results of KEM models (M), (M1) and (M2)

are drawn and further suggestions for future studies are presented.
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Zusammenfassung

Das Festlegen des geeigneten Stützdrucks an der Ortsbrust ist eine wichtige Aufgabe beim

maschinellen Tunnelvortrieb, um ein Versagen der Ortsbrust zu vermeiden und die Sicher-

heit des Vortriebs zu gewährleisten. In dieser Arbeit werden auf Basis der Kinematischen

Element Methode (KEM) drei neue Ansätze zur Berechnung der Stabilität der Ortsbrust

eines Tunnels mit Kreisquerschnitt entwickelt (M, M1 und M2). Ausgangspunkt der En-

twicklung ist das Modell M, in dem ebenso wie bei Model M1 die kreisförmige Ortsbrust

durch eine Dreiecksfläche ersetzt wird. Im Modell M2 wird die kreisförmige Ortsbrust

durch ein Quadrat abgebildet. In allen drei Modellen wird die Gewölbebildung im Bo-

den oberhalb des Tunnels berücksichtigt. Hierzu wird angenommen, dass ein räumlicher

aktiver Erddruck auf die vertikalen Seitenflächen des Bruchmechanismus wirkt.

Die Ergebnisse der Modelle M und M2 werden mit den Ergebnissen existierender ana-

lytischer Ansätze, welche entweder auf der Limit Equilibrium Method oder auf der Limit

Analyses Method (obere Schranke) beruhen, und mit Ergebnissen von numerischen Sim-

ulationen verglichen. Parameterstudien zeigen den Einfluss der Überdeckungshöhe, des

Reibungswinkels und der Kohäsion des Bodens auf den erforderlichen Stützdruck. Die

Ergebnisse der Parameterstudien werden in Form praktisch anwendbarer Bestimmungs-

gleichungen und Bemessungsdiagrammen aufbereitet.

Für den Fall des Tunnelvortriebs mit nicht gestützter Ortsbrust wird mit den Modellen M

und M2 die Standsicherheit der Ortsbrust mit der Methode der ϕ - c Reduktion ermittelt.

Die Ergebnisse werden mit denen vorhandener Methoden verglichen. Zusätzlich wird mit

dem Model M2 der Einfluss des Grundwassers und von Porenwasserüberdrücken auf die

Ortsbruststabilität untersucht.
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Cn Cohesion force

cu Undrained shear strength

D Tunnel diameter

Fi Known resultant force

Fs Factor of safety

Gs Weight of the silo

Gw Weight of the wedge

hw Water table elevation

K0 Coefficient of lateral earth pressure at rest

L Height of the silo

Nγ Non-dimensional coefficient representing the contribution of soil weight

Nc Non-dimensional coefficient representing the contribution of cohesion

Nn Total normal force

N ′n Total normal effective force

Nq Non-dimensional coefficient representing the contribution of surcharge

P Mnimum support force

Pe Support force due to the earth pressure

pu Minimum support pressure

Pw Support force due to the pore pressure
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pmax Maximum support pressure

Q Discharge of the point source

q Surcharge pressure

R Radius of the tunnel

Rn Shear force

Si Resultant force

Tn Total shear force

u Pore water pressure

Un Pore water pressure force

v Virtual displacement

V ol Volume of the block

vp Penetration velocity

W Width of the silo

σh Horizontal stress above the tunnel crown

σvsilo Vertical stress acting on the base of the silo

σv Vertical stress above the tunnel crown

ϕ′ Effective friction angle

Kwedge Wedge lateral earth pressure coefficient

Ka Active earth pressure coefficient

Ksilo Silo lateral earth pressure coefficient





1 Introduction

1.1 Motivation and objectives

1.1.1 Motivation

In recent years, the expansion of cities and urban areas has resulted in a rising demand

for underground transportation systems. The construction of the transportation tunnels

represents a viable solution to minimize the volume of traffic on the ground surface.

The excavation of tunnels is frequently done with a mechanized Tunnel Boring Machine

(TBM). The stability problem of the tunnel face refers to the support pressure which is

applied at the face of the TBM as it moves forward. This support pressure must be large

enough to prevent the soil from failing into the tunnel (active collapse failure), but small

enough in order not to cause the soil to be pushed up from the excavated tunnel face,

which would lead to a heave of the soil at the ground surface (passive failure).

The adequate tunnel face pressure to avoid face instability depends on various factors

such as soil properties (e.g., shear strength, permeability, unit weight), tunnel geometry

(e.g., diameter, cover depth) and location of the ground water table.

As the tunnel excavation advances, the soil above the excavation face tends to move

downward. Meanwhile, the moving soil is resisted by stationary soil leading to the de-

velopment arching in the soil (vertical arching), see Fig. 1.1 (a). Furthermore, the soil

at the front of the tunnel face tends to yield towards the excavation face. However, this

tendency is resisted at the boundaries of the tunnel face. As a result, horizontal arching

is developed around the tunnel face, see Fig. 1.1 (b). This vertical and horizontal arching

has significant influence on the tunnel face support pressure.

Another important aspect requires more attention when evaluating a safe support pressure

in case that a slurry TBM is used to excavate the tunnel in a water-saturated soil. In

that case the support medium will flow out from the tunnel face into the surrounding soil

and will lead to an increase of pore water pressure at the front of the tunnel face.

1
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(b)

Figure 1.1: Vertical and horizontal arching during excavation of the tunnel: (a) vertical

arching above the tunnel face; (b) horizontal arching at the front of the tunnel face
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The increase of the pore water pressure at the front of the tunnel face is associated with

a hydraulic gradient between the mixing chamber of the TBM and the surrounding soil.

The hydraulic gradient results in seepage forces in the soil near the tunnel face leading

to a local reduction of effective stress and thus shear strength of the soil. The reduction

of shear strength is a consequence of the reduction of effective normal stress acting on

potential sliding planes. Nevertheless, only limited attention has been given to the effect

of the excess pore pressure distribution on the required support pressure in previous

investigations (e.g., Broere, 2001; Dias & Bezuijen, 2016).

Analytical approaches such as the Limit Equilibrium Method (LEM) (e.g., Horn, 1961;

Jancsecz & Steiner, 1994; Anagnostou & Kovari, 1994; Broere, 2001; Kirsch & Kolymbas,

2005) or the Limit Analysis Method (LAM) (e.g., Leca & Dormieux, 1990; Mollon et al.,

2010; Tang et al., 2014; Ibrahim et al., 2015) are used to assess the stability of the tunnel

face assuming various failure mechanisms. However, the results are quite different. The

Finite Element Method (FEM) (e.g., Peila, 1994; Ng & Lee, 2002; Mayer et al., 2003;

Sterpi & Cividini, 2004; Kim & Tonon, 2010), the Discrete Element Method (DEM) (e.g.,

Maynar & Rodriguez, 2005; Funatsu et al., 2008; Zhang et al., 2011) and the Finite

Difference Method (FDM) (e.g., Li et al., 2009; Dias, 2011; Senent & Jimenez, 2015)

may be effective tools for analyzing the stability of the tunnel face too, considering the

stress-strain relationship of the soil and thus incorporating soil behavior more realistically.

However, the simulation of the tunnel face failure using three dimensional DEM, FEM or

FDM model is very time consuming.

Inspite of the importance of a stable tunnel face, specific recommendations or technical

standard for calculating the support pressure are limited (e.g., DAUB, 2016). In practice,

the estimation of the support pressure to be applied at the tunnel face is based on the

experience acquired in the field. This support pressure is chosen in dependence of the soil

conditions and the working parameters of the tunnel boring machine.

On the other hand, on real projects the tunnel engineer needs to find a simple calculation

model in the literature, which can be transformed into a spread sheet or simple design

charts that can be used to quickly estimate the support pressure (for preliminary design

studies).

To enhance the state of the art of this topic, within this dissertation a new 3D approach is

developed to investigate the stability of the tunnel face. Using KEM (Kinematical Element

Method), different 3D failure mechanisms are studied. The proposed 3D KEM models are

initially developed for homogeneous soil and consider the effect of hydrostatic and excess

pore pressures. Consideration is given for different soil strength parameters (e.g. cohesion
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and friction angle) and the geometry of the tunnel that influence the stability of the tunnel

face. The investigation of the 3D failure mechanisms delivers minimum support pressure

(in case of closed face tunneling) or the factor of safety (in case of open face tunneling).

For quantifying the effect of 3D silo arching on the support pressure, a feasible approach

in calculating the three-dimensional lateral earth pressure coefficient (K3D) is proposed.

Within this approach, a 3D active earth pressure acting on the vertical silo slip surfaces

is assumed.

Based on the KEM models, design charts and equations are proposed to be used by

practical engineers in the preliminary stages of tunnel design. They deliver a safe operating

support pressure that should be applied to the excavation face by a tunnel boring machine.

1.1.2 Objectives

The overall aim of this research is to develop a new 3D model to investigate the stability of

the tunnel face which initially developed for deal with homogenous and incorporates the

effect of hydrostatic and excess pore water pressure on the minimum support pressures

to be applied at the tunnel face by a TBM. In particular, the following objectives are

addressed:

• Objective 1: To use the principle of KEM to investigate the stability of the tunnel

face in dry or water-saturated for homogeneous soil.

• Objective 2: To perform a systematic comparison between the results of the KEM

models and those of existing approaches in the literature, which have been developed

to investigate the stability of the tunnel face.

• Objective 3: To evaluate the safety factor for the tunnel face stability in open-face

tunneling.

• Objective 4: To investigate the influence of hydrostatic and excess water pore pres-

sures on the stability of the tunnel face during tunnel construction

• Objective 5: To develop design equations and stability charts, which can be used in

practice (for preliminary design studies) and enable a quick calculation for tunnel

engineers.

To achieve the previous objectives, the guiding methodology of the proposed research

is presented within Fig. 1.2 and Fig. 1.3. In Fig. 1.3, it should be clearly noted that

the minimum support pressure in dry soil condition has been obtained as described by
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original authors. Within this thesis some of these existing approaches have been extended

to investigate the stability of the tunnel face in two-layered soils and to evaluate the

factor of safety in open-face tunneling. Furthermore, the existing approaches have been

extended, to study the effect of hydrostatic and excess pore water pressure on the stability

of the tunnel face.

1.2 Contents of the thesis

This thesis consists of seven chapters, the content of each chapter can be briefly summa-

rized as:

• Chapter 1: Introduction

This chapter introduces the motivation, objectives and the organization of this the-

sis.

• Chapter 2: State of the art

In this chapter, an overview on various tunneling excavation methods is presented,

particularly on mechanized methods. Furthermore, this chapter contains a review

of the literature regarding previous investigations on the tunnel face stability.

• Chapter 3: Kinematical Element Method (KEM)

Within this chapter, the Kinematical Element Method (KEM), its main assumptions

and the necessary optimization method are described.

• Chapter 4: KEM model M for tunnel face stability stability

In this chapter, the fundamental assumptions of KEM model (M) and the fail-

ure mechanism for the stability analysis of the tunnel face are introduced. Also,

the calculation procedure for estimating the 3D lateral earth pressure coefficient is

explained. The results of KEM calculations are presented and discussed. A compar-

ison between the results of KEM model (M), existing approaches in the literature

and finite element limit analysis solutions is undertaken.

• Chapter 5: Modified KEM models (M1 and M2)

In this chapter, two modified failure mechanisms are studied using KEM to estimate

the minimum support pressure of the tunnel face. The results obtained with KEM

model (M2) are compared to other solutions available from the literature. For an
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open-face tunneling, the safety factor are calculated using the strength reduction

technique.

• Chapter 6: Effect of excess pore pressure on the stability of the tunnel face

In this chapter, the influence of the excess pore pressure, generated in the soil

by a slurry shield TBM, on the effective and total support pressure during tunnel

excavation is discussed. As a result of the analysis, a number of design graphs that

can be used to evaluate the operational face support pressure is proposed.

• Chapter 7: Conclusions and future work

This chapter provides a summary of the research, done within this thesis. The most

important findings of this study are addressed. Furthermore, an outlook on possible

future work is given.



2 State of the art

2.1 Introduction

The main key to a successful tunnel construction is the appropriate selection of the tunnel

excavation technique. The choice is based on the known or expected ground conditions as

well as the adaptability of the excavation technique to variability of the ground conditions.

There are many different tunnel excavation methods (e.g., cut and cover, conventional

and mechanized tunneling) to suit a range of different project conditions. In case of

mechanized tunneling, adequate support pressure (e.g., compressed air, slurry or earth

pressure support) at the tunnel face is required to counterbalance the pressure generated

by the soil, water and overlying infrastructures and thus stabilize the tunnel face.

Several analytical methods are used in evaluating the required support pressure which dif-

fer in their calculation assumptions, required computing time and calculation efficiency.

The analytical approaches can basically be divided into two groups, namely, Limit Equi-

librium Method (LEM) and Limit Analysis Method (LAM). The limit equilibrium method

has been widely used for analyzing the stability of the tunnel face (e.g., Horn, 1961; Janc-

secz & Steiner, 1994; Anagnostou & Kovari, 1994; Broere, 2001). In the limit equilibrium

method the static equilibrium between the forces acting on the soil masses involved in the

collapse mechanism is considered.

The second group of analytical methods is based on the so-called the upper bound theory

(e.g., Leca & Dormieux, 1990; Mollon et al., 2010; Tang et al., 2014; Ibrahim et al., 2015),

which states that the work done by external loads in an increment of displacements for a

kinematically admissible mechanism equals the energy dissipated by internal stresses.

The application of numerical methods with advanced constitutive models improved sub-

stantially the analysis of the tunnel face stability, considering the various 3D aspects.

The Finite Element Method (FEM), the Discrete Element Method (DEM) and the Finite

Difference Method (FDM) are useful tools in simulating the stability of the tunnel face

were performed (e.g., Peila, 1994; Ohta & Kiya, 2001; Vermeer et al., 2002; Kirsch, 2009).

9
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However, the simulation of the tunnel face failure using three dimensional DEM, FEM or

FDM models is very time consuming.

For investigating the soil deformations caused by tunneling, various physical model tests

were conducted. Either centrifuge (ng) model tests or small scale (1g) model tests were

performed (e.g., Chambon & Corte, 1994; Takano et al., 2006; Kirsch, 2009; Idinger

et al., 2011). The physical models provide a beneficial information about ground surface

settlement, the required face support and insight into the 3D arching at the front of the

tunnel face. Moreover, the results of the physical model tests can be used to validate the

numerical and the analytical models.

2.2 Overview on various tunnel excavation methods

A tunnel construction consists of three main processes, namely excavation, mucking and

primary support. Tunnel excavation is the procedure of removing soil from the tunnel

face. Mucking is the process of removing the spoil from the tunnel. Throughout the

years, many different techniques for tunnel face excavation have been developed. The

appropriate method of tunnel excavation depends on many factors such as geological

soil conditions, the impact of the excavation on the surrounding environment, time/cost

considerations, the ground water conditions, the length and diameter of the tunnel, the

depth of the tunnel and the final use of the tunnel (Chapman et al., 2017).

Basically, two types of tunnel excavation methods are used:

• Conventional method

• Mechanized method

2.2.1 The conventional method

Conventional tunneling is a method for excavating a tunnel using conventional machin-

ery (e.g., tracked loaders, excavators, locomotives, dump trucks) without removing the

buildings or interrupting the possible activities (e.g., transportation) at the ground sur-

face. The excavation is preliminarily supported by ground improvement (e.g., grouting,

jet grouting, soil freezing) or permanent support system (e.g., reinforcement, steel pipes,

forepole). The conventional method is basically composed of three main construction

(ITA, 2009) steps, that are continuously repeated 1) excavation, 2) mucking, 3) instal-

lation of temporary and permanent support systems. The conventional tunneling is a
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Figure 2.1: Tunnel San Fedele, Switzerland (tunnelingonline, 2019)

flexible excavation process in which many changes can be easily applied during tunnel

construction (e.g., change the diameter of the tunnel, ground improvement).

As an example of the application of the conventional excavation method, the tunnel San

Fedele (Roveredo Bypass Project) in Switzerland with a maximum of 25 m overburden is

shown in Fig. 2.1.

2.2.2 Mechanized method

Mechanized tunneling summarizes all techniques where excavation is performed mechan-

ically by means of teeths, picks or disks (ITA, 2009). The first attempt to utilize the

mechanized tunneling was made by an American engineer Charles Wilson in 1851, which

is considered as a successful continuous borer for the rock. Wilson’s machine was trialled

on the East portal of the Hoosac tunnel in Massachusetts. The general idea was that

the machine would cut into the rock and then that cut rock could be blasted out. Since

then, the technological development for mechanized tunneling has made a great progress.

Mechanized tunneling is performed by Tunnel Boring Machines (TBM). These machines

do not only carry out the excavation of the ground, but they also provide a support

against the surrounding soils. Fig. 2.2 shows a typical Earth Pressure Balance TBM.

The mechanized tunneling is mainly divided into two types, namely open face tunneling

and closed face tunneling. In open face tunneling, the tunnels are constructed without

applying permanent support to the tunnel face. Whereas, in closed face tunneling, the
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face support is continuously applied e.g. by a pressurized slurry, earth pressure balance

or compressed air.

2.2.2.1 Open face tunneling

In open face tunneling, there is no permanent support pressure applied at the tunnel face

during the excavation process. The stability of the tunnel face must be guaranteed by

the shear strength of the soil or by a temporary support e.g. by means of shortcrete and

anchors. The open face tunneling is widely used for tunnel construction in soils with high

shear strength (Moller, 2006).

Regarding the process of excavation in case of open face tunneling two techniques can be

distinguished: conventional open face tunneling, and open face shield tunneling. In con-

ventional open face tunneling, the tunnel is excavated using the typical digging machines

and the excavation is preliminarily supported by ground improvement or reinforcement.

The conventional open face tunneling allows either full-face or partial excavation of the

tunnel cross section, while in open face shield tunneling, fully mechanized heading ma-

chines are used to create a cavity and then segmental lining is inserted to secure the

cavity. The choice of one of these techniques depends on several factors including tunnel

sizes, structural analysis and geotechnical aspects (Moller, 2006).

2.2.2.2 Closed face tunneling

The principle of closed face tunneling is that an active pressure is continuously applied

at the tunnel face in order to reduce the ground deformation and control the tunnel face

stability. This method is used when the geological conditions are so unfavorable that the

tunnel face becomes unstable without instant application of support pressure.

The concept of using a closed face shield was introduced by Marc Brunel in 1825 during

construction of the underpass river Thames in London (Beaver, 1972). Also, at that

time Lord Cochrane suggested to use compressed air to stabilize soft or loose soil for the

tunneling excavation. In 1874, James Greathead designed a compressed air shield that

was intended for the construction of the Woolwich Tunnel in Great Britain (Hemphill,

2012).

There are four typical shield tunnel machines with different types of support that are

widely used; mechanical support, compressed air, earth pressure balance and slurry sup-

port. In the following each type of shield tunnel machine will be described briefly:
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(a)

(b)

Figure 2.2: Earth Pressure Balance TBM, Chapman et al. (2017): (a) 3D schematic

representation of EPB; (b) longitudinal section through an EPB
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1. Mechanical support TBM

Mechanical support TBM has a full face cutterhead which provides face support

by constantly pushing the excavated material ahead of the cutterhead against the

surrounding ground.

2. Compressed air TBM

Compressed air TBM is a tunnel boring machine where compressed air is used to

counteract the hydrostatic and pressure exerted on the tunnel face. The compressed

air pressure is practically uniform over the full height of the tunnel face. However,

the distribution of pressure due to water and earth pressure along depth of the

excavated tunnel face is trapezoidal, which means there are differences in the bal-

ancing of pressure at the tunnel face. This problem is solved by compressing the

air to balance the water and earth pressures at the lowest point of the tunnel face.

A compressed air TBM is specially suited for an excavation in stable soils of low

permeability with the presence of water (AFTES, 2000).

3. Slurry shield TBM

A slurry shield TBM has a full face cutterhead. The cutterhead acts as the means of

excavation, whereas face support is provided by slurry counter pressure. The slurry

is a suspension composed of bentonite clay and water. The bentonite suspension

penetrates into the soil, forming a thin impermeable film (filter cake) which guar-

antees the transfer of counter pressure to the excavation face. This type of TBM

is particularly suitable for use in soils with low permeability (e.g., clayey soil, silt)

and heterogeneous soft ground (AFTES, 2000).

4. Earth Pressure Balance shield (EPB)

The Earth Pressure Balance shield (EPB) has a full face cutterhead. The confine-

ment is achieved by pressurizing the excavated material in the cutterhead chamber.

Muck is extracted from the chamber continuously by a pressure discharge system.

The excavated soil is removed from the cutterhead chamber with its increased pres-

sure towards the tunnel where the ambient pressure is acting. The face support

counterbalances the ground water and the earth pressure is obtained by means of

the material excavated by the cutting wheel, which serves as support medium itself.

EPB is particularly suitable for soils which are capable to transmit the pressure

in the cutterhead chamber (e.g., silt, fine clayey sand, soft chalk, marl) (AFTES,

2000).
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(a) (b)

Figure 2.3: 3D Horn’s model, Horn (1961): (a) Horn’s failure mechanism; (b) forces acting

on the wedge

2.3 Overview on tunnel face stability analysis models

As mentioned before, a variety of modeling strategies have been introduced by researchers

for simulating the stability of the tunnel face. Analytical approaches, numerical methods

and experimental model tests have been applied for that purpose. The research activities

for each method are briefly summarized in the following subsections.

2.3.1 Tunnel face stability analysis in case of frictional or

frictional-cohesive soil

2.3.1.1 Limit Equilibrium Method (LEM)

The limit equilibrium method is widely used as analysis technique for the stability of

geotechnical problems. It applies the static equilibrium between the acting forces on the

soil mass for the assumed collapse mechanism.

Based on the limit equilibrium method, various tunnel face stability models have been

established. The most popular one is the wedge-silo model.

The first systematic study for the 3D stability of the tunnel face was performed by Horn

in 1961. Horn (1961) presented a 3D failure mechanism replacing the circular shape of
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the tunnel face with a square shape as shown in Fig. 2.3. Horn’s failure mechanism

consists of a triangular prism wedge and a vertical rectangular prism above the wedge.

The triangular prismatic wedge is loaded by a vertical force resulting from the full weight

of the rectangular prism, i.e. no arching effect at the rectangular prism is taken into

account when calculating the vertical stress (σv(C) = C · γ) acting on the top of the

wedge. In Horn’s failure mechanism no shear forces are taken into account between the

surfaces of the rectangular prism and the adjoining soil, as well as no shear force on the

horizontal plane between the rectangular prism and the wedge.

Horn (1961) presumed a linear distribution of vertical stress along the sides of the wedge,

see Fig. 2.5. Furthermore, the horizontal stress σh is assumed to be linearly dependent

on the vertical stress σv by the coefficient of lateral earth pressure for the wedge Kwedge.

Horn (1961) used Kwedge = K0 with K0 = 1 − sinϕ, according to Jaky (1944). The

vertical stress along the sides of the wedge is calculated as follows:

σvwedge(v) = (D − z) · γ + C · γ (0 ≤ z ≤ D) (2.1)

where z is the distance from the bottom of the tunnel, see Fig. 2.5. The shear stress

(τwedge) acting on the sides of the wedge is obtained as follows:

τwedge(z) = c+ σh(z) · tanϕ (2.2)

The shear forces (Ts) acting on the sides of the wedge (Fig. 2.6) can be determined as

follows:

Ts = 2 ·
∫ D

0

τwedge(z) · b(z) dz (2.3)

where b(z)dz denotes the width of the wedge at elevation z. Eq. (2.3) leads to

Ts = D2 · tan θ ·
[
c+K0 · tanϕ ·

(
1

3
· γ ·D +

2

3
· C · γ

)]
(2.4)

According to the Mohr-Coulomb criterion, the shear force acting on the inclined sliding

surface is obtained as follows:

T = N · tanϕ+
c ·D2

sin θ
(2.5)

By equilibrating the static forces on the wedge, the equations of equilibrium can be written

as: ∑
Fx = 0, P + T · cos θ + Ts · cos θ −N · sin θ = 0 (2.6)∑

Fz = 0, Gs +Gw − T · sin θ − Ts · sin θ −N · cos θ = 0 (2.7)
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(a) (b)

Figure 2.4: 3D limit equilibrium model: (a) failure mechanism of wedge-silo model; (b) a

strip of soil in arching silo

(a) (b)

Figure 2.5: Vertical and shear stress distribution on the wedge: (a) vertical stress; (b)

shear stress
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(c)

Figure 2.6: (a) Circular tunnel face approximated by a square and the force equilibrium

on wedge; (b) forces acting on the wedge; (c) force polygon

where the weight of the wedge is

Gw = 0.5 · γ ·D3 · cos θ (2.8)

and the vertical force on the top of the wedge is

Gs = C · γ ·D2 · cot θ (2.9)

By combining Eq. (2.6) and Eq. (2.7) and eliminating the forces N and T , the required

support force P can be calculated from the following equation:

P =
Gs +Gw

cot(θ + ϕ)
− Ts + c · ( D2

sin θ
)

sin θ · (cot θ + tanϕ)
(2.10)

The critical inclination angle θ is determined by maximizing the support force P :

dP

dθ
= 0 (2.11)

where 0o < θ < 90o

The minimum support pressure is assumed to be uniformly distributed across the tunnel

face and thus given by

p =
P

D2
(2.12)

Latterly, Horn’s failure mechanism is called wedge-silo model. Using Horn’s failure mech-

anism, different approaches for the distribution of vertical stress with depth have been

proposed. The wedge-silo model has been used by several researchers as a basis for further

development.
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Based on Limit Equilibrium Method, Anagnostou & Kovari (1994), Jancsecz & Steiner

(1994), Broere (2001) and Anagnostou (2012) proposed 3D tunnel face stability models

based on Horn’s failure mechanism including the effect of soil arching in the silo by using

Janssen’s silo theory (1895), see Fig. 2.4.

The silo theory leads to the following equation for the vertical stress acting on the base

of the silo:

σvsilo(z) =
a · γ − c

Ksilo · tanϕ
(1− e− za ·Ksilo·tanϕ) (2.13)

where γ is the unit weight of the soil, ϕ is the friction angle, c is cohesion of the soil,

a is the ratio of the area over circumference of horizontal plane of the silo, Ksilo is the

coefficient of lateral pressure and z is the soil depth measured from the ground surface.

Two assumptions are adopted in the wedge-silo model based on Janssen’s analysis of soil

arching. The first assumption is that the lateral earth pressure coefficient of the soil in

the silo is assumed in advance, and that it is constant over the tunnel depth. The second

assumption is that the vertical stresses are uniformly distributed across any horizontal

section of the silo as well at the base of the silo. In addition to the previous assumptions,

the shear force on the horizontal plane between the silo and the wedge is omitted in the

equilibrium of forces.

Different assumptions have been made by various researchers for Ksilo. Anagnostou &

Kovari (1994) assumed Ksilo = 0.8. Jancsecz & Steiner (1994) used a 2D active earth

pressure coefficient for the silo, Ksilo = Ka with Ka = tan2(45−ϕ/2), Broere (2001) used

the lateral earth pressure coefficient at rest (K0) proposed by Jaky (1944). Anagnostou

(2012) suggested Ksilo = 1.0.

Fig. 2.7 shows the values of Ksilo and Kwedge proposed by different researchers as functions

of different friction angles. Kwedge is further discussed below. According to Jancsecz &

Steiner (1994) and Broere (2001) models, the Ksilo and Kwedge values decrease with an

increase in friction angle. In contrast, in the models of Anagnostou & Kovari (1994) and

Anagnostou (2012), Ksilo and Kwedge are assumed to be constant, that means independent

of friction angle. As evident in Fig. 2.7 (a), the value of Ksilo obtained from Anagnostou

(2012) model is larger than the other models for the same friction angle. Whereas, the

value of Ksilo obtained from Jancsecz & Steiner (1994) model is lower than the other

models.

Once the vertical stress on the top of the wedge is calculated using the silo theory, the next

step is to assume the distribution of vertical stresses and the accompanying horizontal
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Figure 2.7: Ksilo and Kwedge assumed by various approaches: (a) variation of Ksilo with

friction angle; (b) variation of Kwedge with friction angle

stresses acting on the wedge. Two possible options for estimating the distribution of

vertical stresses along the sides of the wedge are as follows:

1. Assuming a linear vertical stress distribution along the depth of the tunnel, where

σvwedge = D · γ

2. Using the infinitesimal slices method in the wedge which is consistent with silo

theory.

Following the first option for estimating the distribution of vertical stress, Anagnostou

& Kovari (1994) and Jancsecz & Steiner (1994) assumed linear proportionality between

the horizontal stress σh(z) and the vertical stress σv(z) along the sides of the wedge, see

Fig. 2.5. The vertical stress along the sides of the wedge is calculated as follows:

σvwedge(z) = (D − z) · γ + σvsilo(C) (0 ≤ z ≤ D) (2.14)

where σvsilo(C) is calculated based on the silo theory (Eq. (2.13)).

The shear force (Ts) acting on both sides of the wedge is determined as follows:

Ts = D2 · tan θ ·
[
c+K0 · tanϕ ·

(
1

3
· γ ·D +

2

3
· C · γ

)]
(2.15)

where the weight of the wedge is

Gw = 0.5 · γ ·D3 · cos θ (2.16)
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and the vertical force on the top of the wedge is

Gs = σvsilo(C) ·D2 · cot θ (2.17)

The required support force P is calculated from the following equation:

P =
Gs +Gw

cot(θ + ϕ)
− Ts + c · ( D2

sin θ
)

sin θ · (cot θ + tanϕ)
(2.18)

The critical inclination angle θ is determined by maximizing the support force P :

dP

dθ
= 0 (2.19)

where 0o < θ < 90o

The minimum support pressure is assumed to be uniformly distributed along the tunnel

face and thus given by

p =
P

D2
(2.20)

A number of authors have suggested different values for Kwedge based on practical expe-

rience. Anagnostou & Kovari (1994) assumed Kwedge = 0.4. Jancsecz & Steiner (1994)

suggested the lateral earth pressure coefficient for the wedge as the average of Ka and K0

with K0 = 1 − sinϕ according to Jaky (1944), Kwedge = (Ka+ K0)/2, see Fig. 2.7 (b)).

Jancsecz & Steiner (1994) described the relation between horizontal and vertical stress at

the tunnel axis by a 3D earth pressure coefficient. The minimum support pressure (p) at

the tunnel axis is calculated as:

p = K3D · σv(D) (2.21)

The 3D earth pressure coefficient K3D is expressed by Eq. (2.22).

K3D =
sin θ · cos θ − cos2 θ · tanϕ− K·α

1.5
· cos θ · tanϕ

sin θ · cos θ + sin2 θ · tanϕ
(2.22)

where

K =
1− sinϕ+ tan2(45− ϕ

2
)

2
(2.23)

and

α =
1 + 3 · C

D

1 + 2 · C
D

(2.24)

Broere (2001) and Anagnostou (2012) used the infinitesimally small slices method in

the wedge, described by Walz & Prager (1978) for slurry-filled trenches. The wedge is

subdivided into small horizontal slices i (i is the number of each slice), possibly enabling
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Figure 2.8: Forces acting on infinitesimally small slices on the wedge

the consideration of different soil conditions, see Fig. 2.8. The force equilibrium on each

horizontal slice is formulated. The minimum support pressure is calculated based on

integrating the horizontal and vertical forces over the whole wedge for each horizontal

slice. The method of slices assumes a linearly proportional relationship between the

horizontal stress σh
(i) and the vertical stress σh

(i).

σh
(i)(z) = K

(i)
wedge · σv(i)(z) (2.25)

Broere (2001) proposed K
(i)
wedge =K0. Anagnostou (2012) assumed K

(i)
wedge = 0.5. The

vertical stress distribution and the failure mechanism for different arching implementations

are shown in Fig. 2.9, the results in Fig. 2.9 are obtained for the maximum value of the

minimum support pressure.

Chen et al. (2015) improved the 3D wedge-silo model by considering the height of the

silo on the basis of physical model test results (Fig. 2.10). The effective height (Hv) is

calculated as:

Hv = min

{
C,

2D

tan θ

}
(2.26)

They proposed a new analytical method for calculating the lateral earth pressure coeffi-

cient in silo by considering the rotation of the maximum principle stress which occurs in

the arching zone above the wedge:

Ksilo =
cos2 θ0 +Ka · sin2 θ0

1
3
· (1−Ka) · sin2 θ0 +Ka

(2.27)

where θ0 = π
4

+ ϕ
2

and Ka = tan2(45− ϕ/2).

Liu et al. (2019) proposed a new 3D model for face stability analysis with a dual failure

mechanism, see Fig. 2.11. The failure mechanism consists of two parts: a rotational failure
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Figure 2.9: Vertical stress distribution for different approaches, either considering arching

or not: (a) vertical stress distribution; (b) top view of failure mechanism; (c) side view of

failure mechanism
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Figure 2.10: Improved wedge-silo model, Chen et al. (2015)

zone (lower zone) and a gravitational failure zone (upper zone). The rotational failure

zone is bounded by a log spiral shaped slip surface and tends to rotate to the tunnel face.

The vertical distributed force loads acting on the top (wedge) of the rotational failure

zone is obtained from an analysis of the gravitational failure zone using the silo theory

with Ksilo = K0.

The wedge-silo model has been investigated by several researchers considering the excess

pore pressure at the tunnel face (Broere, 2001; Bezuijen, 2002) and the influence of slurry

infiltration process (Broere & van Tol, 2000; Bezuijen, 2002). The effect of excess pore

pressure and slurry infiltration on the minimum support pressure will be discussed in

more detail in Chapter 6.

Unlike the wedge-silo models, Krause (1987) established three models considering the

internal stability of the soil at the front of the tunnel face. The 3D failure mechanisms

are respectively a half cylinder, a quarter of a circle and a half sphere, see Fig. 2.12. The

shear and cohesion forces along the sliding surface set up the resistance against a collapse.

Based on the equilibrium of forces of the 3D failure mechanisms, Krause (1987) derived

the following expressions for the minimum support pressure p.

1. Half cylinder

p =
1

tanϕ
·
(

1

6
·D · γ − 0.5 · π · c

)
(2.28)



2.3 Overview on tunnel face stability analysis models 25

With additional geometric relationships, the following is obtained:

+ = +r φ l r θ φ·sin ·sin( )d c c0 (4)

= =θ θ r r,c c (5)

The expression for r0 can be obtained as follows:

=
+ −

r l
θ φ θ φ φsin( )·exp( ·tan ) sin

d

c c
0

(6)

The theory of earth pressure arching (Marston and Anderson, 1913;
Terzaghi, 1943) is employed for the gravitational failure zone. How-
ever, the gravitational failure zone has a semi-cylindrical shape, and is
placed on the rotational failure zone as shown in Fig. 7. Thus, the
bottom of the gravitational failure zone is a semicircle, as is the top of
the rotational failure zone. The shearing stress, τ, around the semi-cy-
linder is considered along with soil gravity to produce the invisible
earth pressure arching, along with the failure surface of the gravita-
tional failure zone.

3.2. Limit support pressure

The limit equilibrium method was used for face stability analysis.
The moment of the support pressure, Ml; the moment of the soil gravity
in the rotational failure zone, Mw; the moment of the slip resistance in
the rotational failure zone, Mc; and the moment of the pressure in the
gravitational failure zone, Mq, are all considered in this analysis. A
system of coordinates is set, with the x-axis parallel to the tunnel and
the y-axis orthogonal to it. The origin of the system is located at the
rotation center of plane BDD' (Fig. 7). To maintain face stability, the
moments must be balanced as follows:

=M 0x (7)

=M 0y (8)

=M 0z (9)

Because the placement of the points in the failure zone are assumed
to be in the vertical plane, there is no moment rotating on the z-axis.
The moments rotating in the x direction are offset for symmetry of the
rotational failure zone with respect to plane BDD'. Thus, the moments

can be expressed as:

+ − − =M M M M 0wy qy cy ly (10)

The four moments can be solved as described below.

(1) Moment of soil gravity in the rotational failure zone, Mwy

A unit from the rotational failure zone has been identified to analyze
the moment of soil gravity, as shown in Fig. 8. It is bounded by two
vertical planes through line DD' and two horizontal planes. Its bottom
plane and top plane are sectors, formed by the log-spiral line rotating
with the z-coordinate. Their area can be calculated as

=S ρ dω·2 (11-1)

+ = +S dS ρ dρ dω( ) ·2 (11-2)

Thus, the volume of this unit can be calculated as

= + +dV ρ dω ρ dρ dω dz[ · ( ) · ]/2·2 2 (11-3)

where ρ is the rotation radius of the log-spiral line, and z is the thickness
of the unit. With the more detailed geometric relationships shown in
Fig. 9, these can be expressed as

= + −ρ r θ φ l·cos( ) a (12)

= + + + − +dz r dr θ φ dθ r θ φ( )·sin( ) ·sin( ) (13)

The moment of the unit with respect to the y-axis can then be de-
scribed as

= +dM γ dV ρ l ω· ·(2 /3 )·sinwy a (14)

The moment of the soil gravity with respect to the y-axis can be
calculated as

=M r γ J2· · ·wy ν0
4 (15)

where

∫=
⎧

⎨
⎩

+ −
+ +

+ + +

⎫

⎬
⎭

−
J

φ θ θ φ l
φ θ θ φ l

φ θ θ φ φ θ φ
dθ

[exp(tan · )·cos( ) ] ·
[2·exp(tan · )·cos( ) ]·

exp(tan · )·[sin( )·tan cos( )]/3
·v

π ϕ r

r0
4 2

2

(16)

Fig. 7. Three-dimensional model of the upper zone for face stability analysis.
Fig. 8. Solution of the soil gravity moment in the rotational failure zone.
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(a)
and

= = +l l r φ θ θ φ/ exp(tan · )·cos( )r a c c0 (17)

(2) Moment of slip resistance in the rotational failure zone, Mcy

The slip resistance, T; normal force, N; and soil gravity, W, are
considered in the rotational failure zone. The soil in the failure zone
satisfies the Mohr–Coulomb criterion. The following relationships can
be obtained from Fig. 10, which is a vertical slice unit obtained from
Fig. 9:

+ − − =−T α F F N αcos sin 0i i i i1 (18)

+ = +σ l α T α N α·cos W sin cosv i i i i (19)

= +T cl N ϕtani i i (20)

where

=l r dθi i (21-1)

= −α π θ/2 i (21-2)

= −γl α r θ l αW cos ·( sin 1/2· ·sin )i i i i i (21-3)

and

=r r φ θexp(tan · )i i0 (21-4)

The unit slip resistance, Ti, and unit normal force, Ni, can be solved
using the following expressions:

= + −
+

N σ l α w cl α
α φ α

·cos sin
cos tan sini

v i i i

(22)

= + + −
+

T cl σ l α w cl α
α φ α

φ·cos sin
cos tan sin

tani i
v i i i

(23)

The two unit moments of slip resistance can then be described as

=dM T r φcoscT i i (24)

=dM N r φsincN i i (25)

The moment of slip resistance in the vertical plane, Mc, can be
calculated as:

∫ ∫= − = − = −M M M dM dM T r φ N r φ( ) ( cos sin )c cN cT

θ

cN cT

θ

i i i i
0 0

c c

(26)

The following expression can then be obtained:

= − = −M M M
r c φ

φ
θ φ

·cos
2 tan

[exp(2· ·tan ) 1]c cN cT c
0
2

(27)

Eq. (27) implies that the moment of slip resistance in the rotational
failure zone is affected only by soil cohesion. Therefore, a unit moment
of the slip resistance with respect to the y-axis in the rotational failure
zone, dMcy, can be described as

=dM c dS r φ θ φ ω· · ·exp(tan · )·cos ·sincy 0 (28)

where

= + −dS r dr r ρ dω( )· · (29)

and

=dr r φ φ θ dθ·tan ·exp(tan · )0 (30)

= + −ρ r φ θ θ φ l·exp(tan · )·cos( ) a0 (31)

The moment of slip resistance with respect to the y-axis in the ro-
tational failure zone, Mcy, can then be calculated as:

=M c r J2 · ·cy s0
3 (32)

where

∫= + −
−

J φ θ θ φ l φ θ φ dθ[exp(tan · )·cos( ) ]·exp(2 tan · )·sin ·s

π φ

r0
4 2

(33)

(3) Moment of pressure in the gravitational failure zone, Mqy

A unit obtained from Fig. 7 is used to calculate the moment of
pressure in the gravitational failure zone, Mqy, as shown in Fig. 11.
Using the depth of earth cover, lh, and pressure on the ground, q, the
earth pressure arching theory (Marston and Anderson, 1913; Terzaghi,
1943) has been employed to obtain the following expressions:

+ = + − +σ dσ l π σ l π γ l π dz π l τ dz( )· · /2 · · /2 · · /2· (2 )· · ·v v b v b b b
2 2 2 (34)

= =z σ q0, v (34-1)

= =z l σ p,h v 0 (34-2)

and

=σ γ z·v (34-3)

= +τ c γ z K φ· · ·tan0 (34-4)

where z is the distance from the top of the unit to the ground, K0 is the
coefficient of lateral pressure, and p0 is the vertical earth pressure on

Fig. 9. M-M profile of the rotational failure zone.

Fig. 10. Mechanical analysis of soil slices.
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(b)

the bottom of the gravitational failure zone.
Then, p0 can be obtained by integrating Eq. (34) with boundary

conditions (34-1) and (34-2), to obtain the following:

=
−

− − + −p
γl c

K φ
l K φ

l
q

l K φ
l

( )
·tan

[1 exp(
· ·tan

)] exp(
· ·tan

)i h

i

h

i
0

0

0 0

(35)

where

=
+

+ −l π l
π

π φ·
2(2 )

[1 tan(
4 2

)]i
b

(36)

Therefore, the y-direction moment of vertical pressure in the grav-
itational failure zone, Mqy, can be obtained as follows:

= +M p
πl

l l
π

·
2

·( 4
3

)qy
b

a
b

0

2

(37)

(4) Moment of support pressure, Mly

The support pressure is assumed to be uniformly distributed on the
tunnel face. However, only the support pressure acting on the blue area
in Fig. 12a affects the face stability. If area surrounded by the blue line
(Fig. 12a) is known, the moment of support pressure with respect to the
y-axis, Mly, can be obtained easily by setting the support pressure. The

blue area can be calculated with identification of the intersection point,
E. From the geometric relationships shown in Fig. 12a and b, the
lengths, leg, lef, and lfg, can be described as follows:

= +l l leg ef fg
2 2 2 (38)

where

= + −l r φ θ l·cos( )ef a1 1 (38-1)

=l l /2eg d (38-2)

= + − +l r φ l r φ θ·sin /2 ·sin( )fg d0 1 1 (38-3)

and

=r r φ θ·exp(tan · )1 0 1 (38-4)

θ1 can be calculated with Eqs. (38), (38-1), (38-2), (38-3), and (38-
4), and is affected only by the soil friction, φ. The relationship between
θ1 and φ can be described by Eq. (39) with a correlation of 0.99932.
Thus, if the soil friction, φ, is constant, θ1 can be identified along with
the intersection point, E.

= − ⩽ ⩽
−

θ e φ0.18109· 0.03455, (0.05 1.0 rad)
φ

1
( 0.6825 ) (39)

The area of the support pressure affecting face stability can then be
calculated. Only half the area is calculated for symmetry, and this was
divided into two areas: S1 and S2, as shown in Fig. 12a'. The unit mo-
ment of the support pressure acting on area S1 can be calculated as
follows:

=dM σ ρ dz l· · ·s T T1 (40)

where

= +l r φ θ φ θ·exp(tan · )·sin( )T 0 (41)

Integrating Eq. (40) with Eqs. (12), (13), and (55), the moment of
the support pressure acting on area S1 can be calculated as follows:

=M σ r J· ·s T s1 0
3

1 (42)

where

∫= ⎧
⎨⎩

+ −
+ + + +

⎫
⎬⎭

J
φ θ φ θ θ φ l

θ φ φ θ φ φ θ
dθ

exp(2 tan · )·[exp(tan · )·cos( ) ]
· [sin( )·tan cos( )]·sin( )s θ

θ r
1

c

1 (43)

The moment of the support pressure acting on area S2 can be cal-
culated as follows:

= −M M Ms GEF2 GCE Δ (44)

where

Fig. 11. Calculation model for vertical pressure in the gravitational failure
zone.

Fig. 12. Geometric relationships between the slip surface and tunnel face.
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(c)

Figure 2.11: 3D model for tunnel face stability, Liu et al. (2019): (a) 3D failure mechanism;

(b) Rotational failure zone; (c) geometric relationships between the slip surface and tunnel

face
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ure 2.9) have been calculated by Krause [98] in 1987 in a limit-equilibrium analysis using
the shear stresses on the sliding planes. Of the three mechanisms proposed, the quarter circle
(Figure 2.9b) will always yield the highest minimal supportpressure
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As Krause already indicates this may not always be a realistic representation of the actual failure
body. In many cases the half-spherical body (Figure 2.9c) will be a better representation. In that
case the minimal support pressure can be found from
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An often encountered limit equilibrium model is the wedge model, which assumes a sliding
wedge loaded by a soil silo. As it is central to the new stability model developed in this thesis,
the theoretical background of the wedge model will be covered in more detail in section 2.2. A
number of slightly different implementations has been described in literature.

Murayama [92, 98] calculated the minimal support pressure using a two-dimensional log-
spiral shaped sliding plane in 1966 (Figure 2.11). Five years before, a three-dimensional model
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Figure 2.12: Failure mechanisms at the front of tunnel face, Krause (1987): (a) half

cylinder; (b) quarter circle; (c) half sphere
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p =
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·
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3. Half sphere
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1
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·
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1
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)
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2.3.1.2 Limit Analysis Method (LAM)

The limit analysis theorem is applied to materials which can be idealized as perfectly

plastic with associated plastic flow rule. The concept of limit analysis is based on the

theorems of plasticity developed by Drucker et al. (1951), namely the lower and upper

bound theorem. By using the lower and upper bound theorems, the range in which true

collapse load is expected, can be found.

The upper bound theorem states that the work done by external load in an increment of

displacement for a kinematically admissible mechanism equals the energy dissipated by

internal stresses. These external loads are not lower than the true collapse loads. For

that reason these loads represent an upper bound on the actual solution. The lowest pos-

sible upper bound solution is determined with an optimization scheme by trying various

possible kinematically admissible failure mechanisms.

The lower bound theorem states that if an internal stress field is in equilibrium with

external loads without overcoming the yield criterion in the soil mass. These external

loads are not higher than the true collapse loads. The highest possible lower bound

solution can be determined by trying different possible statically admissible stress fields.
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(a) (b)

(c)

Figure 2.13: Upper bound failure mechanisms, Leca & Dormieux (1990): (a) one conical

failure mechanism; (b) two conical failure mechanisms; (c) cross section of the tunnel face
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Many researchers have also used the upper bound method to examine the stability of the

tunnel face. A number of authors has assumed different shapes of the failure mechanism

to obtain the upper bound solution for calculating the minimum support pressure.

Leca & Dormieux (1990) proposed two mechanisms for the failure zone at the front of

the tunnel face; one consists of a single conical block and the other is composed of two

solid conical wedges with elliptic cross sections at the intersection with the tunnel face,

see Fig. 2.13. Both failure mechanisms are characterized by only one parameter, namely,

the angle α between the axis of the cone and the horizontal tunnel axis.

Leca & Dormieux (1990) assumed the velocity of each rigid block to be collinear with

the axis of each linked cone. This implies that the plastic energy dissipation along the

discontinuities obeys the associated flow rule. Also, the two-blocks mechanism given by

Leca & Dormieux (1990) is constrained by the normality condition required by plasticity

theory. However, this condition does not allow the three-dimensional slip surfaces to

develop more freely.

The minimum support pressure at the tunnel axis is expressed by the following equation:

p = Ns · qs +Nγ · γ ·D (2.31)

where Ns and Nγ are the non-dimensional coefficients and qs is the surcharge pressure.

Leca & Dormieux (1990) present two sets of graphs for the coefficients Ns and Nγ with

respect to friction angle.

An improved failure mechanism composed of several rigid conical blocks was proposed by

Mollon et al. (2010). This failure mechanism is an extension of the 3D failure mechanism

developed by Leca & Dormieux (1990), see Fig. 2.14. Mollon et al. (2010) found that the

total number of five block is sufficient to calculate the minimum support pressure. The

improvement of the solution by Mollon et al. (2010) is due to the increase in the degree of

freedom of the failure mechanism. Moreover, the failure mechanism proposed by Mollon

et al. (2010) is able to account the whole circular tunnel face.

The results obtained by Leca & Dormieux (1990) and Mollon et al. (2010) indicated that

for a cohesionless or a frictional-cohesive soil with a friction angle greater than or equal

to 20◦, the minimum support pressure is independent of the tunnel cover depth.

More recently, the upper bound model used by Leca & Dormieux (1990) was evolved

for investigating the effect of layered soil on the minimum support pressure. Tang et al.

(2014) amended the solution of Leca & Dormieux (1990) to be applicable in a layered

soil. Tang et al. (2014) studied the influence of soil properties of the crossed layered soil
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axis for the upper block is not adequate and leads to nonoptimal
collapse pressures.

The failure mechanism presented by Mollon et al. �2009� and
described in more detail in Oberlé �1996� is an improvement of
the two-block collapse mechanism presented by Leca and
Dormieux �1990�. This mechanism is a multiblock �cf., Fig. 2�.
It is composed of n truncated rigid cones with circular cross sec-
tions and with opening angles equal to 2�. A mechanism with
n=5 is presented in Fig. 2. The geometrical construction of this
mechanism is similar to that of Leca and Dormieux �1990�, i.e.,
each cone is the mirror image of the adjacent cone with respect to
the plane that is normal to the contact surface separating these
cones. This is a necessary condition to ensure the same elliptical
contact area between adjacent cones. In order to make clearer the
geometrical construction of the 3D failure mechanism, Fig. 3
shows how the first two truncated conical blocks adjacent to
the tunnel face are constructed. The geometrical construction of
the remaining truncated conical blocks is straightforward. As for
the mechanism by Leca and Dormieux �1990�, Block 1 is a trun-
cated circular cone adjacent to the tunnel face. The intersection of
this truncated cone with the tunnel face is an elliptical surface that
does not cover the entire circular face of the tunnel. This is a
shortcoming not only of the multiblock mechanism by Mollon
et al. �2009� but also of the two-block mechanism by Leca and
Dormieux �1990�. On the other hand, Block 1 is truncated with
Plane 1 which is inclined at an angle �1 with the vertical direction
�cf., Fig. 3�. In order to obtain the same contact area with the
adjacent truncated conical block, Block 2 is constructed in such a
manner to be the mirror image of Block 1 with respect to the
plane that is normal to the surface separating the two blocks �i.e.,
Plane 2 as shown in Fig. 3�. The mechanism by Mollon et al.

�2009� is completely defined by n angular parameters � and �i

�i=1, . . . ,n−1� where n is the number of the truncated conical
blocks �cf., Fig. 2�.

Notice finally that the upper rigid cone in the mechanisms by
Leca and Dormieux �1990� and Mollon et al. �2009� will or will
not intersect the ground surface depending on the � and C /D
values. This phenomenon of no outcropping at the ground surface
was also pointed out by Chambon and Corté �1994� and Takano et
al. �2006� while they performed experimental tests: As mentioned
before, a failure soil mass which has the shape of a chimney that
does not necessarily outcrop at the ground surface was observed
by these writers.

Both mechanisms by Leca and Dormieux �1990� and Mollon
et al. �2009� are translational kinematically admissible failure
mechanisms. The different truncated conical blocks of these
mechanisms move as rigid bodies. These truncated rigid cones
translate with velocities of different directions, which are collin-
ear with the cones axes and make an angle � with the conical
discontinuity surfaces in order to respect the normality condition
required by the limit analysis theory. The velocity of each cone is
determined by the condition that the relative velocity between the
cones in contact has the direction that makes an angle � with the
contact surface.

The numerical results obtained by Mollon et al. �2009� have
shown that a five-block �i.e., n=5� mechanism was found suffi-
cient since the increase in the number of blocks above five blocks
increases �i.e., improves� the solutions by less than 1%. The im-
provement of the solution by Mollon et al. �2009� with respect to
the one by Leca and Dormieux �1990� is due to the increase in the
degree of freedom of the failure mechanism by Mollon et al.
�2009�. Notice however that the solutions by Mollon et al. �2009�
and those by Leca and Dormieux �1990� suffer from the fact that
only an inscribed elliptical area to the entire circular tunnel face is
involved by failure due to the conical shape of the rigid blocks;
the remaining area of the tunnel face being at rest. This is striking
and is contrary to what was observed in numerical simulations.
This shortcoming will be removed in the following failure mecha-
nisms developed in this paper.

Kinematical Approach for the Computation
of the Tunnel Face Collapse Pressure

The aim of this paper is to compute the tunnel face collapse
pressure of a shallow circular tunnel driven by a pressurized
shield in a frictional and/or cohesive soil. The theoretical model is
based on a three-dimensional multiblock failure mechanism in the
framework of the kinematical approach of the limit analysis
theory. In order to render clearer the theoretical formulation of the
multiblock mechanism, the geometrical construction of a mecha-
nism composed of a single rigid block is first presented. It is then
followed by the presentation of the multiblock mechanism. The
one- and multiblock mechanisms developed in this paper will be
referred to as improved mechanisms since they allow �1� to con-
sider the entire circular area of the tunnel face and not only an
inscribed ellipse inside this area; �2� to improve the solutions
presented by Leca and Dormieux �1990� and Mollon et al. �2009�
in the framework of the kinematical approach of limit analysis.

Improved One-Block Mechanism M1

M1 is a rigid translational one-block mechanism. It is defined by
a single angular parameter 	 �cf., Fig. 4�. This angle corresponds

Fig. 2. Multiblock failure mechanism by Mollon et al. �2009� �after
Mollon et al. 2009�

Fig. 3. Detail of the construction of the multiblock failure mecha-
nism by Mollon et al. �2009� �after Mollon et al. 2009�
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Figure 2.14: Conical multiblocks failure mechanism, Mollon et al. (2010)

v i;iþ1 ¼ v i
sin 2Wi;iþ1
� �

cosðWi;iþ1 �u00Þ
ð for i P 1Þ ð2Þ

where

W0;1 ¼ a
Wi;iþ1 ¼ bi �Wi�1;i; ði P 1Þ

�
ð for i P 1Þ

The intersections of adjacent blocks are ellipses and are called
R1, Ri,i+1[1 6 i 6 4] and R5. The semi-axis lengths of the ellipses
are a1(b1), ai,i+1(bi,i+1)[1 6 i 6 4] and a5(b5).

The intersection of the first truncated cone (adjacent to the tun-
nel face) with the circular tunnel face is an ellipse, with semi-axis
lengths of a1 and b1 that are calculated as (cf. Fig. 1)

a1 ¼ D
2

ð3Þ

b1 ¼ D
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosða�u00Þ cosðaþu00Þ

p
cosu00

ð4Þ

where u00 defines the opening angles of the five truncated rigid
cones that are equal to 2u00, and a is the angle between the axis
of the first truncated rigid cone and the horizontal.

Therefore, the area A1 of the first truncated cone base is

A1 ¼ pD2

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosða�u00Þ cosðaþu00Þ

p
cosu00

ð5Þ

The areas of the contact elliptical surfaces between two succes-
sive truncated cones i and i + 1 are ellipses with semi-axis lengths
of ai,i+1 and bi,i+1(for 1 6 i 6 4) that are described as follows:

ai;iþ1 ¼ D
2

Yi
k¼1

cosðWk�1;k þu00Þ
cos Wk;kþ1 �u00

� � ð6Þ

Fig. 1. Improved failure mechanism.

K. Han et al. / Computers and Geotechnics 79 (2016) 1–9 3

Figure 2.15: Combined multiblocks failure mechanism, Han et al. (2016)
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and the cover layered soil on the minimum support pressure. Their results indicated that

the minimum support pressure is highly influenced by the shear strength of crossed soil,

while the shear strength of the cover soil is less important.

Ibrahim et al. (2015) improved the 3D failure mechanism of Mollon et al. (2010) to

compute the minimum support pressure in dry multilayered purely frictional soil. The

improved 3D failure mechanism can consider two or three soil layers.

Senent & Jimenez (2015) extended the solution of Mollon et al. (2010) to study the

possibility of partial collapse in layered soils. The proposed model by Senent & Jimenez

(2015) examined the influence of soil properties of the crossed soil and the cover soil on

the minimum support pressure.

Khezri et al. (2015) investigated the effect of linear variation of cohesion with depth from

the ground surface to the base of the tunnel face (C + D) on the minimum support

pressure. Their results show that adopting the mean value of soil cohesion as a cohesion

that does not vary with depth, would lead to conservative predictions for the tunnel face

support pressure. However, adopting the cohesion determined for the centreline of the

tunnel underestimate the tunnel face support pressure and leads to an unsafe design.

Han et al. (2016) proposed a 3D multiblocks failure mechanism for multilayered cohesive-

frictional soils, see Fig. 2.15. Their failure mechanism combines the silo theory (upper

part) with the upper bound solution (lower part). The failure mechanism is composed of

five truncated cones in the wedge. The distributed load acting on top of the truncated

cone is calculated using silo theory with Ksilo = K0. The minimum support pressure is

obtained as an upper bound solution in failure of the wedge.

Lee & Nam, 2004 included the effect of seepage forces emerging from the groundwater

flow in the upper bound solution. They found that the minimum support pressure for

the face stability is equal to the sum of the effective support pressure obtained from the

upper bound solution and the seepage pressure acting on the tunnel face.

2.3.1.3 Finite Element Limit Analysis (FELA)

The Finite Element Limit Analysis (FELA) was developed at the university of Newcastle

and was first established by Sloan (1988). FELA couples the lower and upper bound

theorems of plasticity theory (Drucker et al., 1951) with the concept of finite element

method to provide rigorous bounds on collapse load. FELA utilizes the capabilities of the

finite element method to discretize the soil mass and the boundary conditions in combi-

nation with the plastic bound theorem to limit the true load by upper bound and lower
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is shown by the grey shading. Lower- and upper-bound estimates
of the dimensionless load parameter, rs/c0, obtained from finite ele-
ment limit analysis and rigid-block analysis, are included in each
figure. In this paper, Eq. (9) is used to measure the gap between
the bounds, and is thus a direct estimate of the error in the
solutions.

Error ð%Þ ¼ �100� ðUB� LBÞ=ðUBþ LBÞ ð9Þ

Generally, the distributions of the power dissipation from the
upper-bound analyses agree fairly well with the plastic multiplier
field obtained from the lower-bound analyses. Fig. 4b and d shows
that, for small friction angles, the failure surface originates around

Table 1
Comparison of the upper-bound solutions from various rigid-block mechanisms.

H/D /0 (�) Mechanism 1 Mechanism 2 Mechanism 3

cD/c0 = 0 cD/c0 = l cD/c0 = 2 cD/c0 = 3 cD/c0 = 0 cD/c0 = l cD/c0 = 2 cD/c0 = 3 cD/c0 = 0 cD/c0 = l cD/c0 = 2 cD/c0 = 3

1 0 2.83 1.74 0.64 �0.45 2.56 1.40 0.22 �1.00 2.54 1.36 0.13 �1.15
5 3.76 2.53 1.30 0.07 3.15 1.89 0.62 �0.67 3.10 1.81 0.50 �0.84

10 5.64 4.13 2.62 1.11 4.04 2.64 1.23 �0.19 3.92 2.49 1.04 �0.43
15 11.68 9.26 6.84 4.42 5.52 3.89 2.25 0.60 5.23 3.58 1.91 0.23
20 – – – – 8.39 6.36 4.31 2.24 7.57 5.55 3.52 1.46

2 0 4.90 2.80 0.70 �1.41 3.78 1.56 �0.70 �2.99 3.68 1.40 �0.93 �3.29
5 8.57 5.80 0.24 0.24 5.10 2.59 0.07 �2.47 4.85 2.30 �0.27 �2.85

10 35.98 28.16 6.18 12.50 7.53 4.54 1.52 �1.55 6.87 3.89 0.87 �2.18
15 – – – – 13.14 9.20 5.16 0.93 10.99 7.23 3.37 �0.64
20 – – – – 33.61 26.95 20.06 12.78 22.07 16.65 11.00 4.92

3 0 6.93 3.82 0.72 �2.38 4.71 1.45 �1.85 �5.17 4.50 1.17 �2.21 �5.62
5 17.59 12.35 7.10 1.85 6.85 3.06 �0.75 �4.60 6.31 2.50 �1.33 �5.18

10 – – – – 11.58 6.77 1.83 �3.36 9.88 5.23 0.48 �4.49
15 – – – – 27.35 19.88 12.05 3.36 19.08 12.70 5.96 �1.68
20 – – – – 229.19 201.39 172.78 142.98 58.97 47.62 35.57 22.22

H/D /0 (�) Mechanism 4 Mechanism 5 Mechanism 6

cD/c0 = 0 cD/c0 = l cD/c0 = 2 cD/c0 = 3 cD/c0 = 0 cD/c0 = l cD/c0 = 2 cD/c0 = 3 cD/c0 = 0 cD/c0 = l cD/c0 = 2 cD/c0 = 3

1 0 2.62 1.49 0.34 �0.82 2.65 1.51 0.35 �0.82 2.55 1.39 0.19 �1.05
5 3.22 1.99 0.75 �0.50 3.26 2.01 0.77 �0.49 3.22 1.95 0.67 �0.64

10 4.13 2.75 1.36 �0.02 4.18 2.78 1.39 0.00 4.24 2.80 1.36 �0.09
15 5.64 4.03 2.41 0.79 5.69 4.08 2.45 0.82 5.89 4.19 2.48 0.77
20 8.55 6.53 4.50 2.45 8.69 6.71 4.72 2.74 8.95 6.79 4.62 2.42

2 0 3.84 1.65 �0.56 �2.78 3.87 1.67 �0.55 �2.78 3.69 1.43 �0.87 �3.21
5 5.18 2.70 0.21 �2.28 5.21 2.72 0.22 �2.27 4.98 2.45 �0.09 �2.65

10 7.63 4.66 1.67 �1.35 7.68 4.71 1.71 �1.32 7.29 4.28 1.24 �1.82
15 13.28 9.35 5.33 1.15 13.63 9.87 6.11 2.35 12.09 8.19 4.21 0.09
20 33.86 27.17 20.26 12.98 – – – – 25.41 19.59 13.53 7.04

3 0 4.77 1.54 �1.71 �4.97 4.80 1.55 �1.71 �4.97 4.51 1.20 �2.16 �5.55
5 6.92 3.16 �0.62 �4.41 6.96 3.18 �0.60 �4.40 6.52 2.69 �1.14 �4.99

10 11.68 6.88 1.98 �3.13 11.73 6.94 2.03 �3.01 10.50 5.77 0.95 �4.05
15 27.51 20.03 12.20 3.57 50.39 43.39 36.40 29.40 20.98 14.36 7.38 �0.43
20 229.73 201.72 172.93 143.03 – – – – 68.25 56.35 43.62 29.51

81.1'/ =csσ

(a) Rigid-block mechanism (b) Power dissipation (c) Deformed mesh (d) Plastic multiplier field 

68.1'/ =csσ 67.1'/ =csσ

Fig. 4. Comparison of rigid-block mechanism with finite element limit analysis (H/D = 1, /0 = 5�, cD/c0 = 1, smooth interface).
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Figure 2.16: Comparison of rigid block mechanism with finite element limit analysis,

Yamamoto et al. (2011): (a) rigid block mechanism; (b) power dissipation; (c) deformed

mesh

bound solutions. The computational efficiency is achieved by an optimization technique

in mathematical programming (e.g., linear programming).

To date, no intensive studies have been published for the 3D tunnel face stability problem

have used FELA. Most recent researches are developed on two-dimensional FELA, leading

to a number of research papers have been subsequently published.

Lyamin & Sloan (2000) investigated the stability of a plane strain circular model of a

tunnel in frictional-cohesive soil using FELA with the nonlinear programming technique.

The results are presented in the form of dimensionless stability charts.

Yamamoto et al. (2011) investigated the stability of a single shallow tunnel in frictional-

cohesive soils subjected to surcharge loading. Rigorous lower and upper bound solutions

for the ultimate surcharge loading are obtained from the simulations. The upper and

lower bound results obtained through the finite element limit analysis were compared to

results obtained by upper bound rigid block mechanisms, see Fig. 2.16. It was found that

the upper and lower bound results from the finite element limit analysis were in very good

agreement with the upper bound solution results.

Yamamoto et al. (2013) studied the stability of dual circular tunnel in frictional-cohesive

soils subjected to surcharge loading. For a series of tunnel cover to diameter ratios and

material properties (ϕ, c and γ) lower and upper bound solutions for the ultimate sur-
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The stability of circular tunnels has been extensively studied at
Cambridge since the 1970s; see, for example, the work reported by
Cairncross [4], Atkinson and Cairncross [5], Mair [6], Seneviratne
[7] and Davis et al. [8]. Before the 1990s, most published research
on tunnel stability focused on the undrained stability of circular
tunnels in clay. Later, theoretical solutions for circular tunnel prob-
lems under drained conditions were determined by Muhlhaus [9]
and by Leca and Dormieux [10]. All of the theoretical studies men-
tioned so far have investigated the stability of single tunnels only.
It would appear that there is very little information available on
the interaction effects between dual tunnels. With respect to the
research on dual tunnels, a series of centrifuge model tests and
numerical simulations of unlined single and parallel tunnels was
conducted under plane strain conditions to investigate tunnel sta-
bility, arching effects on the soil mass surrounding tunnels, ground
movements and collapse mechanisms induced by tunnelling in
clayey soil [11,12]. Chehade and Shahrour [13] presented an anal-
ysis of the interaction between twin tunnels with a particular
emphasis on the optimisation of both the relative positions of
the twin tunnels and the construction procedure, using the finite
element program PLAXIS. Osman [14] investigated the stability
number of twin tunnels in an undrained clay layer using upper-
bound calculations. He presented a new methodology for calculat-
ing an upper bound for twin tunnels based on the superposition of
the plastic deformation mechanisms of each individual tunnel. Re-
cently, Mirhabibi and Soroush [15] investigated the effect of sur-
face buildings on the ground settlement of twin tunnels, using
field data from the Shiraz metro line 1 and the ABAQUS finite ele-
ment code. The interaction between buildings and the construction
of twin tunnels has been studied less. The studies that have been
performed on this subject have focused on developing a feasible
methodology for estimating, during preliminary design phases,
the settlement of surface buildings due to tunnelling.

The application of finite element limit analysis to the undrained
stability of shallow tunnels was first considered by Sloan and Ass-
adi [16], who investigated the case of a plane-strain circular tunnel
in a cohesive soil whose shear strength varied linearly with depth
using linear programming techniques. Later, Lyamin and Sloan [17]
considered the stability of a plane-strain circular tunnel in a cohe-
sive-frictional soil using a more efficient nonlinear programming
technique. This method can accommodate large numbers of finite
elements, resulting in very accurate solutions. To clarify the effects
of interaction between tunnels, Wilson et al. [18] investigated the
undrained stability of dual square tunnels using finite element lim-
it analysis and upper-bound rigid-block methods. Stability charts
were generated for a variety of tunnel depths, material properties
and inter-shaft distances. Recently, Yamamoto et al. [19] studied
the stability of dual circular tunnels in cohesive-frictional soils
subjected to surcharge loading. Upper-bound rigid-block mecha-
nisms were also developed, and the computed surcharge loads
were compared with the results of finite element limit analysis.
This paper presents the extension of this research in detail.

2. Problem description

The problem description is given in Fig. 1. The ground is mod-
elled as a uniform Mohr–Coulomb material with cohesion c, fric-
tion angle and unit weight c, assuming drained loading
conditions. The dual circular tunnels are of diameter D, depth H,
and centre-to-centre distance S, and deformation takes place under
plane strain. The stability of the dual circular tunnels shown in
Fig. 1 is described conveniently by the dimensionless load param-
eter rs/c0, which is a function of /0, cD/c0, H/D and S/D, as shown in
the following equation:

rs=c0 ¼ f ð/0; cD=c0;H=D; S=DÞ ð1Þ

Formulating the problem in this manner permits a compact set
of stability charts to be constructed, which are useful for design
purposes. The problem parameters considered in this paper are
H/D = 1–5, /0 = 0�–20�, cD/c0 = 0–3 and tunnel spacing S/D = 1.25–
12.5. Continuous (flexible) loading is applied to the ground surface
and the interface condition between the loading and the soil is
modelled by setting the shear stress fixed to zero (s = 0) along
the ground surface in the lower-bound analyses, with no velocity
constraints being imposed in the upper-bound analyses.

3. Finite element limit analysis

Finite element limit analysis utilises the power of the lower-
and upper-bound theorems of plasticity theory, coupled with finite
elements, to provide rigorous bounds on collapse loads from both
below and above. The underlying limit theorems assume small
deformations and a perfectly plastic material with an associated
flow rule. The use of a finite element discretisation of the soil, com-
bined with mathematical optimisation to maximise the lower
bound and minimise the upper bound, makes it possible to handle
problems with layered soils, complex geometries and complicated
loading conditions. The formulations of the finite element limit
analysis used in this paper originate from those given by Sloan
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Cohesion = 'c

Friction angle = 'φ
Unit weight = γ

Fig. 1. Plane-strain dual circular tunnels in cohesive-frictional soil.

Fig. 2. Finite element mesh for H/D = 1 and S/D = 2 showing boundary conditions
for numerical limit analysis.
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(b)

Figure 2.17: Finite Element Limit Analysis for the stability of dual circular tunnel, Ya-

mamoto et al. (2013): (a) plane-strain dual circular tunnels in cohesive-frictional soil;

(b) finite element mesh for C/D = 1, showing boundary conditions for numerical limit

analysis
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Bereich der Ortsbrust

für einen Tunnel mit
H/D = 5.

sures are applied on the inside of the entire
tunnel. To get a full equivalence between the
initial supporting pressure and the initial geostat-
ic stress field, the pressure distribution is not
constant but increases with depth. This is obvi-
ously significant for very shallow tunnels, but a
nearly constant pressure occurs for deep tunnels.
The minimum amount of pressure needed to
support the tunnel is then determined by a step-
wise reduction of the supporting pressure.

A typical pressure-displacement curve is
shown in Figure 1a, where p is the supporting
pressure at the level of the tunnel axis and u the
displacement of the corresponding control point
at the tunnel face. The control point has to be
chosen within the collapsing body; otherwise the
load-displacement curve in Figure 1a will come
to an almost sudden end and the curve then
cannot be used to conclude that failure has been
reached. Rather than selecting a single control
point, it is appropriate to select a few of such
points. With the reduction in supporting pres-
sure, there is increasing displacement. When
failure occurs the curve has become horizontal.
For shallow tunnels, a chimney-like collapse
mechanism is obtained as indicated in Figure 1b,
where incremental displacements at failure are
shown as graded shades from blue to red.

Upon extending finite element procedures to
limit load computations, it appears that the entire
numerical procedure should be well designed in
order that an accurate assessment of the failure
load can be made. For each decrement of sup-
porting pressure, equilibrium iterations are per-
formed and plastic stress redistribution is accom-
plished by using a radial-return algorithm. A
general validation of the computer code is given
in the manual of the 3D-Plaxis program by Brink-
greve and Vermeer (4) and the method of collapse
load computations is fully described by Vermeer
and Van Langen (22). In more recent papers the

authors have shown that such finite element
analyses can also yield highly accurate data on
failure pressure of tunnel headings.

Arching at the face of
fully lined tunnels

Besides failure pressures, the finite element-meth-
od produces insight into the stress distribution
around a tunnel face and the role of friction. This
can be seen from Figure 2 for a tunnel with a
relative ground cover of H/D = 5. In this figure
principal stresses are plotted in lengthwise sec-
tions through circular tunnels; firstly for a tunnel in
non-frictional soil, secondly for a friction angle of
only 20° and finally for a highly frictional material
with a friction angle of 35°. In all these different
cases the ground is non-cohesive and the support-
ing pressure has been reduced down to the failure
pressure by performing three-dimensional finite-
element analyses. Moreover, fully lined tunnels are
considered with a lining up to the very tunnel face.

Figure 2a shows a stress distribution with
stress crosses that rotate around the tunnel face.
All these crosses have about the same size, which
indicates a high supporting pressure. On the
other hand, small stress crosses are seen around
the tunnel face of Figure 2b. Hence in frictional
material the failure pressure is relatively low. For
the highly frictional material of Figure 2c, the
arching is extremely clear. Here the supporting
pressure is nearly equal to zero and a strong
stress arch is observed directly between the top
and the bottom of the tunnel.

The influence of the angle of friction can also be
recognised by the failure patterns in Figures 2d to
2f. Here increasing displacements at failure are
shown in graded shades from blue to red. One
observes in Figure 2d the extreme of a non-fric-
tional material that flows more or less like a liquid
into the tunnel. For a moderate friction angle of

Figure 2.18: Principal stresses (a-c) and incremental displacements (d-f) at failure, C/D

= 5 (The graded shades from blue to red describe the increase amount of displacement

finite element simulations of Vermeer et al. (2002) )

charge loading are obtained, see Fig. 2.17. Their results indicated that the center to center

distance between the dual circular tunnel appears as a new problem parameter and plays

a key role in tunnel face stability.

2.3.1.4 Numerical methods

Using numerical analysis and computer modeling, many studies have been made to es-

timate the necessary support pressure and evaluate the tunnel face stability. Numerical

modeling can be used to study complex scenarios such as unsaturated soil conditions,

layered soil and seepage flow. For numerical modeling, a suitable constitutive model for

the soil must be chosen (e.g. elastoplasticity with Mohr-Coulomb yield condition, hy-

poplasticity or hardening soil model). However, a verification of the numerical models

with physical model tests or simulation results of other authors is always necessary.

Based on 3D calculations with the finite element method (FEM), Vermeer et al. (2002)

investigated the effect of friction angle and cohesion on the minimum support pressure

(Fig. 2.18). The soil was modeled with elastic-perfectly plastic Mohr-Coulomb constitutive

model. The FEM models were established for homogeneous dry/drained soil conditions.

The results of FEM calculations indicated that for c = 0 kPa, ϕ ≥ 20o and C/D ≥ 1,
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only have a marginal influence on the resultingND

(Tab. 2).
Plots of incremental displacement for an advance

step from 0.25 to 0.50 mm (Fig. 8) reveal a small
difference between the Mohr-Coulomb and the hy-
poplastic model: although both models predict soil
movements up to the ground surface, the magnitude
of incremental displacements in the failure zone is
smaller for the Mohr-Coulomb calculation.

(a) Mohr-Coulomb (b) Hypoplasticity
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Figure 8: Plots of incremental displacements for a pis-
ton advance from 0.25 to 0.50 mm forC/D = 1.0

5.2 Interpretation
The obtained load-displacement curves for the Mohr-
Coulomb calculations are in good qualitative agree-
ment with results published by Ruse [20]. In both in-
vestigations, no influence ofC/D on the necessary
support pressure was observed.

The absolute value forND is slightly smaller than
predicted by Ruse’s empirical formula: forϕ = 34◦,
ND = 0.1147. Reason for this might be that Ruse trig-
gered the face-collapse load-controlled. This is prob-

ably due to the fact that the kinematics of the problem
are slightly different, if the soil is allowed to bulge
into the tunnel. There is also a good agreement with
the theoretical model by Léca and Dormieux [18],
which predicts a value ofND = 0.0903.

Sterpi and Cividini [23] modelled the problem with
a strain softening material model. They found that ne-
glecting strain softening, as with the Mohr-Coulomb
model, led to an underestimation of displacements.
This statement is in agreement with the obtained pat-
terns of incremental displacements for the two applied
models (Fig. 8).

For the simulations with hypoplasticity there are
no published references. But the coincidence between
predictions forND with both material models is re-
markable.

The results of both the Mohr-Coulomb and the hy-
poplastic model are in good quantitative agreement
with the measured support pressures (shaded in grey
in Fig. 7).

The numerically obtainedND ≈ 0.10 value is
roughly 10% smaller than the meanND ≈ 0.11 from
the laboratory experiments. A reason for this might be
that the applied mesh (Fig. 6) is still not fine enough.
Still it allowed to perform the parametric study in
practicable computation times.

6 CONCLUSION

The numerical study has shown that both models are
capable of predicting the necessary support pressure
sufficiently well. Also the resulting displacement pat-
tern match the experimental observations well, with
some advantages for the hypoplastic model.

The Mohr-Coulomb model might seem easier to
grasp, but the calibration procedure is error-prone: the
expected loading history of the soil, its density and the
stress level need to be considered correctly. The hy-
poplastic model, in contrast, has the advantage that a
single set of input parameters is sufficient for one type
of soil. The effects of density and stress level on the
strength of the material are incorporated in the model
by means of the state parametere. But, there is a price
for this capacity: the finite element calculations with
hypoplasticity lasted about 25 times longer than the
Mohr-Coulomb calculations.
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Figure 2.19: Numerical results of incremental displacements for C/D = 1, Kirsch (2010b):

(a) Mohr-Coulomb model; (b) hypoplastic model

the minimum support pressure only depends on the friction angle and not on the cover

depth of the tunnel. Besides, for frictional-cohesive soil and C/D ≥ 2, the cover depth

has no influence of the minimum support pressure. The results of Vermeer et al. (2002)

are expressed by the following formula for the minimum support pressure:

pu = γ ·D ·Nγ − c ·Nc (2.32)

where the non-dimensional coefficients Nγ and Nc are formulated as function of friction

angle of the soil

Nγ =
1

9 · tanϕ
− 0.05 (ϕ ≥ 20o, C/D ≥ 1) (2.33)

Nc =
1

tanϕ
(ϕ ≥ 20o, C/D ≥ 2) (2.34)

A numerical study with FEM was performed by Kirsch (2010b), who studied the sta-

bility of the tunnel face in sand. He compared the numerical results with the results

of physical model tests. In his simulations Kirsch (2010b) two different material mod-

els is used: elastoplasticity with Mohr-Coulomb failure criterion and the hypoplastic

model (Fig. 2.19). The results of both the simulations with the Mohr-Coulomb and the

hypoplastic model showed good agreement with the support pressures measured in the

tests. Kirsch (2010b) also found that the cover to diameter ratio has a marginal influence

on the minimum support pressure.



2.3 Overview on tunnel face stability analysis models 35

Figure 2.20: Approximated extension of soil arching zone around a tunnel, Lin et al. (2018)

Ohta & Kiya (2001) used the Finite Difference Method (FDM) to examine the influence

of the soil properties and groundwater level on the stability of the tunnel face. Ohta

& Kiya (2001) established a relationship between the minimum support pressure at the

tunnel face and the ground water level for different values of Young’s modulus of the soil.

Lin et al. (2018) investigated the development of soil arching during tunnel excavation with

earth-pressure balanced shield (EPBS) in dry sand using FEM. Their results indicated

that the area ahead of the tunnel face forms a loosened zone due to the lack of the

support pressure. The vertical stress is significantly reduced in the loosened zone. Due

to the influence of the support pressure, the volume loss and the grouting pressure on the

soil surrounding the tunnel, the arching zone gradually develops upward until segments

are installed.

In addition to the aforementioned numerical studies, several numerical simulations of the

tunnel face stability problem were conducted by other researchers, through FEM (e.g.,

Peila, 1994; Ng & Lee, 2002; Mayer et al., 2003; Sterpi & Cividini, 2004; Kim & Tonon,
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2010), FDM (e.g., Li et al., 2009; Dias, 2011; Senent & Jimenez, 2015) and DEM (e.g.,

Maynar & Rodriguez, 2005; Funatsu et al., 2008; Zhang et al., 2011).

2.3.1.5 Physical model tests

To assess the required tunnel face support pressure, the failure mechanism and the evolu-

tion of soil arching resulting from tunnel excavation, physical models have been extensively

used in the laboratory. The physical model tests can be conducted under 1g conditions

or at increased g-level (ng) using a geotechnical centrifuge.

Chambon & Corte (1994) performed a series of ng-tests to determine the minimum support

pressure in dry sand. Their results indicated that the same failure geometry is observed

with different soil densities. The arching effect was found to occur in the upper part of

the failure zone, see Fig. 2.21 (a). On the other hand, the minimum support pressure was

reported to be affected by the changes in the cover depth ratio (e.g., C/D = 0.5, 1, 2 and

4) as well as by the density of the soil.

Takano et al. (2006) performed 1g tests using X-ray in order to evaluate the effect of

overburden on arching. They compared the three-dimensional failure zones for the differ-

ent heights of overburden (e.g., C/D = 1, 2 and 4). They found that the arching effect

occurs at an overburden of 2D or more. Moreover, according to the tests of Takano et al.

(2006), a semicircular slip surface is generated behind the tunnel face, and the failure

zone extends straightly upward with an elliptic cross-sectional shape above the tunnel.

Messerli et al. (2010) carried out 1g-tests on the stability of a tunnel face in sand in order

to study the effects of cover depth and unsupported span on the support pressure. The

tunnel face was supported by either a rigid movable or a flexible face. The unsupported

span was introduced by a latex membrane with very low stiffness. It was found that the

value of the support pressure measured at the face agrees well with the results of limit

equilibrium calculations (Anagnostou & Kovari, 1994). Furthermore, the rigid face test

confirmed clearly the failure mechanism proposed by Horn (1961), see Fig. 2.21 (b).

Kirsch (2010b) studied the support pressure in dense and loose sands by using 1g-tests.

The results indicated that the minimum support pressure is independent of the initial

density of the soil. In dense sand the failure zone developed in the vicinity of the tunnel

face and propagated stepwise towards the ground surface. Furthermore, in dense sand a

chimney wedge type collapse mechanism could be observed. On the other hand, for loose

sand, the soil movements immediately reached up to the ground surface, see Fig. 2.21 (c).
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steps of about 2 mm WC. Photographs after every 
step were taken. The start-point of a failure could 
be determined on the computer screen with greater 
accuracy and the associated support pressure read 
in mm WC on the mm-scale of the manometer. 
In order to avoid a falsification of the results, it is 
necessary to distinguish between local soil loosen-
ing phenomena and the start-point of the failure 
mechanism observed during the previously per-
formed PVC plate tests.

4 TEST RESULTS

4.1 Rigid movable face support plate

Figure 9 shows five stages of such a test. The vari-
able x denotes the distance of the PVC plate from 
the front boundary of the acrylic half  pipe. At the 
beginning of the test (Stage 1), the distance x is 
equal to the unsupported span (20 mm ahead of 
the face). Once the PVC plate is pulled back by 
5 mm (about 4% of the tunnel diameter), the fail-
ure plane of the wedge is already well recognisable 
(Stage 2). In Stage 3 the failure body is completely 
developed (wedge and prism), i.e. the prism reaches 
the surface and surface settlement therefore begins 

to appear. The propagating failure mechanism then 
results in a crater at the surface (Stage 4). The final 
state of equilibrium is shown in Stage 5. The crater 
at the surface was also observed at an overburden 
of three times the tunnel diameter.

The average critical opening angle ω of the wedge 
of the three tests was measured to be 22°, which agrees 
well with the calculated value of 25° (Figure 4).

4.2 Flexible face

Figure 10 shows four stages of a flexible face test. 
The initial state before starting the test is displayed 
in Figure 10a. It was observed that the failure 
mechanism sets in suddenly (Figure 10b) while 
the pressure in the air bag is slowly being lowered. 
Subsequently, and without any significant further 
lowering of the pressure in the air bag, the collapse 
of the tunnel heading continues (Figure 10c) until a 
new state of equilibrium is reached (Figure 10d).

Even though the stiffness of the latex membrane 
is very low, the base of the air bag prevents the 
wedge from slipping into the tunnel on the tunnel 
floor. The failure body is therefore slightly shifted 
upwards. It must be pointed out that the chosen 
unsupported span of 23% D as shown in Figure 10 
is unrealistically high. At a smaller unsupported 
span of 0.04 times the tunnel diameter, the result-
ing failure body was closer to the one observed in 
the rigid face tests.

Figure 9. Observed failure mechanism (H/D = 2, 
e/D = 15%).

Figure 10. Flexible face test (H/D = 2, e/D = 23%):
(a) initial state; (b), (c), (d) sudden failure.
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(b)

only have a marginal influence on the resultingND

(Tab. 2).
Plots of incremental displacement for an advance

step from 0.25 to 0.50 mm (Fig. 8) reveal a small
difference between the Mohr-Coulomb and the hy-
poplastic model: although both models predict soil
movements up to the ground surface, the magnitude
of incremental displacements in the failure zone is
smaller for the Mohr-Coulomb calculation.

(a) Mohr-Coulomb (b) Hypoplasticity
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Figure 8: Plots of incremental displacements for a pis-
ton advance from 0.25 to 0.50 mm forC/D = 1.0

5.2 Interpretation
The obtained load-displacement curves for the Mohr-
Coulomb calculations are in good qualitative agree-
ment with results published by Ruse [20]. In both in-
vestigations, no influence ofC/D on the necessary
support pressure was observed.

The absolute value forND is slightly smaller than
predicted by Ruse’s empirical formula: forϕ = 34◦,
ND = 0.1147. Reason for this might be that Ruse trig-
gered the face-collapse load-controlled. This is prob-

ably due to the fact that the kinematics of the problem
are slightly different, if the soil is allowed to bulge
into the tunnel. There is also a good agreement with
the theoretical model by Léca and Dormieux [18],
which predicts a value ofND = 0.0903.

Sterpi and Cividini [23] modelled the problem with
a strain softening material model. They found that ne-
glecting strain softening, as with the Mohr-Coulomb
model, led to an underestimation of displacements.
This statement is in agreement with the obtained pat-
terns of incremental displacements for the two applied
models (Fig. 8).

For the simulations with hypoplasticity there are
no published references. But the coincidence between
predictions forND with both material models is re-
markable.

The results of both the Mohr-Coulomb and the hy-
poplastic model are in good quantitative agreement
with the measured support pressures (shaded in grey
in Fig. 7).

The numerically obtainedND ≈ 0.10 value is
roughly 10% smaller than the meanND ≈ 0.11 from
the laboratory experiments. A reason for this might be
that the applied mesh (Fig. 6) is still not fine enough.
Still it allowed to perform the parametric study in
practicable computation times.

6 CONCLUSION

The numerical study has shown that both models are
capable of predicting the necessary support pressure
sufficiently well. Also the resulting displacement pat-
tern match the experimental observations well, with
some advantages for the hypoplastic model.

The Mohr-Coulomb model might seem easier to
grasp, but the calibration procedure is error-prone: the
expected loading history of the soil, its density and the
stress level need to be considered correctly. The hy-
poplastic model, in contrast, has the advantage that a
single set of input parameters is sufficient for one type
of soil. The effects of density and stress level on the
strength of the material are incorporated in the model
by means of the state parametere. But, there is a price
for this capacity: the finite element calculations with
hypoplasticity lasted about 25 times longer than the
Mohr-Coulomb calculations.
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Figure 2.21: Shape of the failure mechanism observed in physical model tests: (a) observed

failure mechanism for different C/D ratios, Chambon & Corte (1994); (b) observed failure

mechanism in dense sand, Messerli et al. (2010); (c) observed failure mechanism in loose

sand, Kirsch (2009); (d) observed failure mechanism in low-speed case, Liu et al. (2018)
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Idinger et al. (2011) performed ng-tests using dry sand. The influence of the overburden

was examined for three cover to diameter ratios (e.g., C/D = 0.5, 1, and 1.5). They

observed that the failure mechanism took the form of a narrow chimney extending from

the tunnel face to the ground surface. The slip surfaces arised from the bottom of the

tunnel face and propagated at an angle of about 45◦+ϕ/2 to the horizontal until it turned

more or less vertical reaching the ground surface.

Chen et al. (2013) conducted a set of 1g-tests for various cover to diameter ratios to

investigate the evolution of soil arching during face failure in dry sand. Their results

indicated a chimney-like failure mechanism. The measured minimum support pressure

increased with the increase of the C/D ratio.

Liu et al. (2018) studied the stability of the tunnel face for shallow tunnels in dry sand

using 1g large scale model tests. They investigated the influence of moving face speed on

the support pressure and the geometry of the failure mechanisms. The test results showed

that when the moving speed is relatively high, the minimum support pressure is lower

than in the case with relatively low moving speed. In both cases of speed, the observed

failure zone was similar to that in the wedge-silo model. However, for the low-speed case

the inclination angle of the sliding surface with respect to the horizontal plane θ was

much higher than 45◦+ϕ/2 and close to 45◦+ϕ, see Fig. 2.21 (d). Furthermore, for the

high-speed case the inclination angle (θ) was slightly higher than 45◦+ϕ/2. The effective

width of the failure zone was approximately 2D/3.

Date et al. (2008), Hisatake & Ohno (2008) and Juneja et al. (2010) performed series

of physical model tests to investigate the effect of a pre-supporting system (so-called

forepoling) on the stability of the tunnel face and the maximum possible unsupported

length during tunnel excavation.

Other physical model tests were reported by Lunardi et al. (1992), Al Hallak et al. (2000)

and Kamata and Mashimo (2003) to investigate the distribution and length of the vertical

face reinforcement on the stability of the tunnel face.

2.3.2 Tunnel face stability analysis in case of purely cohesive soils

The first study of the stability of tunnels in soft ground was conducted by Broms &

Bennermark (1967). This early work was performed on the stability of unsupported

circular vertical openings in an undrained cohesive soil, see Fig. 2.22. Their stability

solution was expressed in term of the stability number N . The stability number was
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Figure 2.22: Unsupported circular vertical opening, Broms & Bennermark (1967)

defined to be equal to the difference between the stress resulting from the weight of the

overburden including uniform surcharge pressure σs and the applied support pressure σt

divided by the undrained shear strength cu:

N =
σs + γ · (C +D/2)− σt

cu
(2.35)

where C is the cover depth and D is the tunnel diameter.

The support pressure at the axis of the tunnel face can be calculated with the following

expression:

σt = γ · (C +D/2) + σs −N · cu (2.36)

According to the method of Broms & Bennermark (1967) method, the collapse of the

tunnel face occurs if the vertical pressure is higher than 6cu.

The ranges of stability number corresponding to different states of ground surface defor-

mation are presented in Table 2.1. Following the concept of the stability number, a large

number of research papers have been subsequently published in the area of the tunnel

face stability.

Using the limit theorems of plasticity (lower and upper bound theorems), Davis et al.

(1980) investigated the stability of the tunnel face in cohesive soil. They considered three

different shapes of shallow underground opening using the lower bound solution.

The first solution referred to a plane strain unlined circular tunnel which represents an

infinitely long tunnel (Fig. 2.23 (a)). The second solution presented a plane strain heading

which approximates an infinitely long and unlined wide tunnel (Fig. 2.23 (b)). The third
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Table 2.1: Relation between the stability number and deformation, according to Broms

& Bennermark (1967)

N Deformation

< 1 Negligible

1− 2 Elastic

2− 4 Elastic-plastic

4− 6 Plastic

> 6 Collapse

solution is that for a circular tunnel heading for fully lined tunnels where P/D = 0 (P is

the unlined length), see Fig. 2.23 (c).

The corresponding stability numbers are respectively:

N = 2 · ln
(

2 · C
D

+ 1

)
(Fig. 2.23 (a)) (2.37)

N = 2 + 2 · ln
(

2 · C
D

+ 1

)
(Fig. 2.23 (b)) (2.38)

N = 4 · ln
(

2 · C
D

+ 1

)
(Fig. 2.23 (c)) (2.39)

Also, Davis et al. (1980) introduced four upper bound solutions with different failure

mechanisms (mechanisms A-D) for the stability of a plane strain cylindrical cavity, as

shown in Fig. 2.24.

Mechanism A is composed of a single sliding block which is deduced from failure mecha-

nisms observed in centrifuge model tests (Cairncross, 1973; Mair, 1979). Mechanism B is

composed of two sliding blocks, with an isosceles triangle and a trapezoid on the longitu-

dinal tunnel cross section. Mechanism C consists of three sliding blocks with four variable

angles describing the failure planes. Mechanism C and includes mechanisms A and B as

special cases. Mechanism D is composed of five sliding blocks, with three variable angles.

Finally, Davis et al. (1980) assessed the possibility of a local failure of the tunnel face,

studying 3D circular heading at the front of the tunnel face where the support pressure is

not dependent on the cover of the tunnel. The tunnel face is stable against local collapse

for the following value of the undrained shear strength:

cu ≥
D · γ
5.63

(2.40)
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each of which is relevant to the stability of tunnels or underground openings and from which 
some conclusions can be made as to the more general situation. The first and second cases are 
shown in Figs 3 and 4: both are problems of plane strain. The stability of the long cylindrical 
cavity of Fig. 3 (Case 1) will determine the radial pressure a cylindrical tunnel shield must resist. 
This case is equivalent to the case illustrated in Fig. 2 when the ratio P/D is large. The case 
shown in Fig. 4 (Case 2) is a ‘plane strain heading’; the excavated volume is not cylindrical but 
instead is similar to a long wall mining excavation. The third case to be considered is the Broms 
& Bennermark problem which has the configuration of Fig. 2 when P/D = 0. Of course the 
results for this case are directly relevant to the stability of the hand excavated tunnel referred to 
at the start of the introduction. The three problems defined above will be referred to as Cases 1,2 
and 3 in the remainder of this Paper. 

THE PLANE STRAIN UNLINED CIRCULAR TUNNEL (Case 1) 

Lower bound. yD/c, = 0: weightless soil 

The radially symmetric stress field within the annular region shown in Fig. 5 is given by 

c =G I +2c In 2 T ” 
0 D 

rJ@ = fJ,+2c, (2) 

?I3 = 0 

using the normal notation. Outside the annular region there is an isotropic stress field a,. Thus 
the lower bound solution is 

(a, - or.)/cU = 2 In (2C/D + 1) (3) 

The influence of surface and tunnel pressures on the lower bound solutions appearing in this 
Paper can be described by the single parameter o, -cr.. The reason for this is that the undrained 
shear strength is independent of the total mean normal stress; hence the addition of an arbitrary 
isotropic stress produces an equally valid solution. 

Lower bound, yDjc, > 0 

For different values of yD/c, a computer program (Seneviratne, 1979) has been used to 
generate equilibrium stress fields around the tunnels which are everywhere in a state of plastic 
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cylindrical cavity of length P in which there acts a uniform fluid pressure cr.. The ground has a 
unit weight y and a uniform pressure a, acts on the soil surface: this may be due to a large flexible 
footing or an overburden of water (or very weak material). This Paper investigates what tunnel 
pressures err are necessary to maintain the stability of the heading for different values of the 
parameters that have been defined (D, C, P, y, a,) and the strength of the ground. The collapse of 
the tunnel heading will usually be a sudden event (caused, for example, by a sudden loss of tunnel 
pressure) and hence it is appropriate to characterize the strength of the ground by its undrained 
shear strength cU. In the following analysis it is assumed that c, is constant with depth, although 
in practice c, will vary with depth depending on the history of the site. There are, however, many 
situations where this assumption will be adequate and the methods of analysis that are used here 
can be extended to cases where there is an arbitrary distribution of c, with depth. 

Broms & Bennermark (1967) conducted experiments in which they extruded clay under 
pressure through vertical circular openings and they considered field observations both where 
failure had occurred and where stability had been maintained. They defined a stability ratio N, 
equal to the difference between the total overburden stress in the ground at the axis of the tunnel 

(c)

Figure 2.23: Lower bound solution for tunnel heading, Davis et al. (1980): (a) plane strain

circular tunnel; (b) plane strain tunnel heading; (c) circular tunnel heading for fully lined

tunnels
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presented. It can be shown (see the section entitled Local collapse) that as yD/c, is increased a 
point is reached when it becomes impossible to maintain stability regardless of the magnitude of 
the applied uniform tunnel pressure. The overlapping stress characteristics or the failure to 
complete the extended stress field for low values of C/D when yD/c, = 3 or4 does not necessarily 
mean that these cases are inherently unstable. No attempt has been made to find alternative 
lower bounds since the generated solutions cover most of the range of parameters which is of 
practical significance. 

Upper bound 

Four upper bound mechanisms are shown in Figs 9 to 12. Mechanisms A and B are simple 
‘roof and ‘roof and sides’ mechanisms each containing one variable dimension (or angle) and 
were deduced from model tunnel tests at Cambridge University (Cairncross, 1973; Mair, 1979). 
The procedure for determining the critical collapse load is to derive an expression for (6, - (or) 
(involving the variable dimension or angle) and then to minimize the value of (a, - oT) with 
respect to the variation of the dimension or angle. This can be done either analytically or 
numerically (e.g. by a digital computer program). 
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Fig. 10. Upper bound mechanism B 
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Fig. 11. Upper bound mechanism C 

Fig. 12. Upper bound mechanism D 

The reason that a, and rrr appear only in the form (oS - rrT) in the upper bound calculations is 
that since a kinematically permissible mechanism for cohesive material involves no volume 
change then the decrease in area of the tunnel must equal the area of ground loss at the surface. 
Hence the work done by the pressures in the work calculation will be (0, -Q=) multiplied by that 
area. 

Mechanism C has four variable angles in its specification and includes mechanisms A and B 
as special cases. Mechanism D is a ‘roof, sides and bottom’ mechanism with three variable 
angles. Figures 13 and 14 show the results of a numerical optimization to discover the critical 
mechanisms for yD/c, = 0 and 3. In both cases mechanism C is more critical for low values of 
C/D and is superseded by mechanism D for high values of C/D. It can be seen that the value of 
C/D at which this changeover takes place is lower for the greater value of yD/c,. Figures 13 and 
14 also show the lower bounds which lie close to the best upper bounds indicating that the exact 
collapse loads have been closely bracketed. In the neighbourhood of the optimum upper bound, 
changes in the variable angles lead to small changes in the collapse load. There is not much 
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Figure 2.24: Upper bound mechanisms, Davis et al. (1980): (a) mechanism A; (b) mech-

anism B; (c) mechanism C; (d) mechanism D

(a) (b) (c)

Figure 2.25: 3D collapse mechanisms based on upper bound solution, Mollon et al. (2012):

(a) two blocks failure mechanism; (b) three blocks failure mechanism; (c) five blocks failure

mechanism
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Kimura & Mair (1981) conducted centrifuge model tests with clay. Their test results

suggested a wider range for the stability number between 5 and 10, depending on the ratio

of the cover depth to the tunnel diameter (C/D) and the unlined length of the tunnel.

They indicated that the stability number increases with increasing cover to diameter ratio

and decreases with the unsupported length of the tunnel head.

Osman et al. (2006) performed upper bound calculations of collapse loads in tunnels using

distributed shear deformation mechanism. Within the plastic deformation mechanism,

the soil is idealized as an elastic perfectly plastic material with cohesion equal to cu.

Outside this mechanism the soil is assumed to be rigid. This failure mechanism does not

incorporate slip surfaces and displacement discontinuities.

Sloan (1989), Sloan & Assadi (1993) and Sloan (1994) were the first who applied the Finite

Element Limit Analysis (FELA) to investigate the stability of a plane-strain circular

tunnel in cohesive soil using linear programming technique. In these research works a

wide range of geometrical tunnel profiles including circular, square, rectangular and twin

circular tunnel. Furthermore, these authors considered the shear strength of the soil

to vary linearly with depth. Their stability number is expressed as a function of two

parameters as follows:

N =
σs − σt
cu

= f

(
C

D
,
γD

cu

)
(2.41)

where C
D

is the depth ratio and γD
cu

is the shear strength ratio.

Klar et al. (2007) suggested a new kinematical approach in limit analysis theory for the

2D and 3D stability analysis of circular tunnels in purely cohesive soil. They substituted

the plastic velocity field for the elastic displacement field to study the tunnel stability in

clay ground.

Mollon et al. (2012) established an upper bound solution for purely cohesive soils. Based

on the normality condition of the kinematical theorem of limit analysis, they introduced

three failure mechanisms involving multiple rigid-blocks motions, see Fig. 2.25.

The minimum support pressure is assessed by the following equation:

p = D · γ ·Nγ − c ·Nc + σs ·Ns (2.42)

where Nγ, Nc and Ns are non-dimensional coefficients of purely cohesive soil and expressed

as follows:

Nγ = C/D + 0.5 (2.43)
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Ns = 1 (2.44)

Nc = N (2.45)

Mollon et al. (2012) proposed a set of graphs for the stability number N in Eq. (2.42).

2.4 Comments on the wedge-silo model

2.4.1 Failure mechanism and failure zone

Based on the results of the physical model tests (e.g., Kirsch, 2010b; Chen et al., 2013; Liu

et al., 2018), it can be concluded that the cover to diameter ratio C/D has a significant

effect on the geometry of the failure mechanism. If C/D is low (e.g., C/D = 0.5), the

failure zone reaches the ground surface leading to the development of a global failure zone,

see Fig. 2.26 (a and c). The global failure zone is divided into two sub-zones with different

mechanisms: the lower and the upper sub-zone. The soil in the lower sub-zone tends to

yield and rotate towards the tunnel face. This action is due to insufficient support and

weight of the soil (i.e. gravity). However, this tendency is resisted by friction forces at

the slip surface. The rotation trend was also observed by Kirsch (2010b), Idinger et al.

(2011) and Chen et al. (2013). The upper sub-zone is shaped by soil gravity. The soil

arching action is the main factor that defines the shape of the upper sub-zone. If C/D

is high (e.g., C/D = 1 or 2), a bulb-shaped failure zone consisting of a vertical chimney

above the tunnel crown and confined by a curved envelope forming a local failure zone,

see Fig. 2.26 (b and d).

According to the proposed failure mechanism of the wedge-silo model (e.g., Jancsecz &

Steiner, 1994; Anagnostou & Kovari, 1994; Broere, 2001), the height of the silo is assumed

to be identical to the whole cover depth above the tunnel crown. For different C/D ratio,

the failure mechanism of wedge-silo model assumes a globe failure zone. Therefore, to

incorporate the arching effect on failure mechanism of the wedge-silo model, the weight

of the soil in the silo is reduced by activating the shear forces along the sliding surfaces

of the silo. This reduced vertical stress is applied at the top of the wedge. Furthermore,

the shear forces acting on the flanks of the prismatic wedge are taken into account in the

static equilibrium of the forces.

In the wedge-silo model, the equilibrium of the forces needs an estimation of the shear

forces acting at the slip surfaces. However, the value of shear forces/stresses depends on
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Figure 2.26: Comparison of failure geometries in physical model tests and wedge-silo model: (a)

wedge-silo model failure mechanism; (b) schematic diagram of failure mechanism, Local collapse;

(c) global collapse (C/D = 0.5), Idinger et al. (2011); (d) local collapse (C/D = 1.5), Idinger

et al. (2011)
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Table 2.2: Comparison of the failure geometry in wedge-silo model with physical model

tests

Models Author C/D Mode of failure L∗ W+ pu/(γ ·D)

ng test Chambon & Corte (1994) 0.5 Global failure C 0.41D 0.044

2 Local failure 0.84D 0.60D 0.049

LEM Anagnostou & Kovari (1994) 0.5 Global failure C 0.38D 0.072

Anagnostou & Kovari (1994) 2 Global failure C 0.4D 0.075

LEM Horn (1961) 0.5 Global failure C 0.32D 0.084

Horn (1961) 0.5 Global failure C 0.30D 0.239

L∗ is the height of the silo

W+ is the width of the silo

LEM (Limit Equilibrium Method)

the horizontal stresses which cannot be calculated from equilibrium conditions (Anagnos-

tou, 2012). Thus, to overcome this statically indeterminate task, the horizontal stress

σh is assumed proportionally dependent on the vertical stress σv. The ratio between the

horizontal stress to corresponding vertical stress represents the coefficient of lateral earth

pressure. This value of the lateral earth pressure coefficient must be assumed in advance.

As shown in Table 2.2, the comparison between the results of physical model tests with the

results of the wedge-silo model (Horn, 1961; Anagnostou & Kovari, 1994) indicate a larger

silo height and a smaller width of the silo in the failure mechanism of the wedge-silo model.

Also, Table 2.2 shows that Horn (1961) gives a higher value of support pressure compared

to the results of Anagnostou & Kovari (1994) and physical model tests (Chambon & Corte

(1994)). This can be expected as in the model of Horn (1961), the vertical force acting

on the top of the wedge is the full weight of the silo (no arching).

2.4.2 Shape of tunnel cross section

In the wedge-silo model, the circular tunnel cross section Ac can be approximated in three

different ways. In the first case, the tunnel face is approximated by a square As having

the same area as the tunnel face (e.g., Horn, 1961; Anagnostou & Kovari, 1996; Kirsch &

Kolymbas, 2005), as illustrated in Fig. 2.27 (a). However, to achieve a coincidence of the

location of the centers of gravity of the circular and the square area, the cover depth C

and the diameter D must be modified to the equivalent cover-depth Ce and the equivalent
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(a) (b)

(c)

Figure 2.27: Different approximations of the circular tunnel cross-section by either a square

or a rectangle in the wedge-silo model: (a) Ac = As; (b) Ac < As; (c) Ac = Ar
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Table 2.3: Calculated support pressure using different tunnel cross-sections

Support pressure (kPa) Decreasing percentage (%)

ϕ Ac = As Ac < As (Reference) Ac = Ar Ac = As Ac = Ar

15o 100.36 106.84 102.99 6.45 3.63

20o 70.93 76.89 72.86 8.34 5.24

25o 49.57 54.55 50.66 10.04 7.13

30o 34.2 38.08 34.52 11.34 9.30

35o 22.99 26.09 23,037 12.19 10.04

tunnel diameter De as follows:

Ce = C + 0.057D (2.46)

De =

√
π

2
D (2.47)

It is important to mention that Anagnostou & Kovari (1996) and Kirsch & Kolymbas

(2005) neglected the portion 0.057D in Eq. (2.46) and assumed Ce = C for calculating

the support pressure.

Within the second case, the tunnel face is assumed to be a square area, as shown in

Fig. 2.27 (b). In that case the height H and the width W of the wedge are equal to the

diameter D of the tunnel face (e.g., Anagnostou & Kovari, 1994; Broere, 2001), leading

to a square area which is about 21.5 % larger than the area of the circular tunnel face.

In the third case, a rectangular area Ar is assumed which has the same sectional area as

the circular tunnel face. In that case the height H of the wedge is equal to the diameter

D of the tunnel face, whereas the width is smaller than the diameter D, as shown in

Fig. 2.27 (c). The width W of the wedge is calculated as follows:

W = 0.785D (2.48)

To address the effect of the three possible case of the assumed area on the support pressure,

the minimum support pressure for the face of the tunnel in dry cohesionless soil (γ = 18

kN/m3, c = 0 kPa, D = 10 m and C = 10 m) has been calculated for all three cases using

Anagnostou & Kovari (1994). The results are compared in Table 2.3. The minimum

support pressure calculated from the second case (Ac < As) is taken as reference value,

see Table 2.3.

From Table 2.3, it can be seen that the second case (Ac < As) which replaces the circular

tunnel face by an equivalent square leads to a higher support pressure than the other
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Figure 2.28: Vertical stress distribution with different values of Ksilo

two choices. In addition, the differences are more significant for larger friction angles.

However, the differences between the support pressures calculated with the three different

assumptions do not exceed 15%.

Therefore, it can be concluded that in calculations with the wedge-silo model, the assumed

shape of the tunnel cross-section has little influence on the minimum support pressure.

2.4.3 Effect of Ksilo on the vertical stress

Based on Janssen’s silo theory (1895), the vertical stress at the base of the silo increases

exponentially with silo depth and reaches asymptotically to a constant value. The rate of

approach to the asymptotic value of the vertical stress depends on the value of Ksilo (if

all other parameters and dimensions are identical). This can be seen clearly in Eq. (2.13),

where Ksilo is the variable of the natural exponential function. Meanwhile, the asymptotic

value of the vertical stress is dependent on the value of Ksilo, where Ksilo is placed in the

denominator of the first term in Eq. (2.13).

To study the effect of Ksilo on the vertical stress, the vertical stress distribution is il-

lustrated in Fig. 2.28 for three possible choices of Ksilo (Ksilo = Ka, Ksilo = K0, and

Ksilo = 0.8) in Eq. (2.13). The soil is assumed to be homogeneous. The dry unit weight
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is set to γ = 20 kN/m3, the friction angle is ϕ = 30o, the cohesion c = 0 kPa and the

tunnel diameter D = 10 m. For simplicity, the surcharge is neglected (q = 0 kPa).

It is obvious from Fig. 2.28 that the vertical stress decreases with increasing value of

Ksilo, from Ksilo = Ka (Ka = 0.33) to Ksilo = K0 = 0.5 by about 32 % and from Ka =

0.33 to Ksilo = 0.8 by about 55 %. Meanwhile, the asymptotic value is reached at lower

depth with increasing value of Ksilo = 0.8. For Ksilo = 0.8, the vertical stress reaches

its asymptotic value by a depth of about one times the diameter. For Ksilo = K0, the

corresponding depth is about two times of the diameter, while it is four times the diameter

for Ksilo = Ka.

Therefore, it can be inferred that the value of vertical stress and the depth of arching

is significantly influenced by the choice of Ksilo, which means that the value of support

pressure is significantly affected by the choice of Ksilo.

2.5 Conclusions

This chapter presents a review on analytical and numerical models as well as physical

model tests which have been used to analyze the stability of the tunnel face for dry

frictional, frictional-cohesive and pure cohesive soil. The following main conclusions can

be drawn:

1. Due to the assumed failure mechanism of the wedge-silo model, the stability of

tunnel face using the limit equilibrium method (LEM) is a statically indeterminate

problem. In order to solve this problem, some assumptions have to be made re-

garding the distribution of the vertical stress. Furthermore, the horizontal stress σh

is assumed to be linearly dependent on the vertical stress σv by the coefficient of

lateral earth pressure (e.g., Jancsecz & Steiner, 1994; Anagnostou & Kovari, 1994;

Anagnostou & Kovari, 1996; Broere, 2001; Kirsch & Kolymbas, 2005).

2. To use Janssen’s solution, it is required to choose an explicit value for the lateral

earth pressure coefficient of the silo. However, the values of Ksilo used in the liter-

ature vary in a wide range. Thus, the choice of an appropriate value for both the

lateral earth pressure coefficient of the silo Ksilo and the wedge Kwedge remains an

open question for further research.

3. For shallow tunnels, the observed failure mechanisms in the physical model tests are

similar to the wedge-silo type failure mechanism described by Horn (1961). However,
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the slip surface arising from the bottom of the tunnel face observed in the model

tests is curved instead of a straight sloped line assumed in the models (e.g., Idinger

et al., 2011; Kirsch, 2010a).

4. As the tunnel excavation proceeds, the soil at the front of the tunnel face tends

to yield towards the excavation face. However, this tendency is resisted by shear

stresses in the soil near the tunnel face. As a result, horizontal soil arching develops

around the tunnel face. This soil arching must be considered in a similar way as

that of the silo response over the face of the tunnel.

5. Using the limit theorems of plasticity a series of stability models has been proposed

for purely cohesive soil. Thes minimum support pressure predicted by these models

depends solely on the undrained shear strength cu. These model are based on the

stability number and the corresponding states of deformation of the soil.

Although many researchers have proposed different approaches for the analysis of the

tunnel face stability, there are still considerable efforts for calculating the support pres-

sure more accurately. Within this thesis, the tunnel face stability is analyzed with the

Kinematical Element Method (KEM) models are presented. The KEM models provide a

convenient estimation of the required support pressure for tunnels with a circular face in

frictional-cohesive soils. In addition, the KEM models overcomes the assumptions that

have been adopted in previous studies presented in the literature. A feasible method for

calculating the lateral earth pressure acting on the silo (Ksilo) based on a KEM model is

proposed, which can be easily applied to the failure mechanism and does not need any

further assumptions. The proposed KEM models are able to consider the effect of hori-

zontal arching action at the front of the tunnel face. The KEM failure mechanisms can

be easily adapted to take into account pore water pressures either under hydrostatic or

seepage conditions.





3 Kinematical Element Method (KEM)

3.1 General

The Kinematical Element Method (KEM) was presented for the first time by Gussmann

(1982). KEM is an advanced and computationally straightforward procedure to determine

the collapse loads in geotechnical stability problems, i.e. the loads that lead to the failure

of the soil mass.

In KEM, slip surfaces (shear bands) divide the soil mass into rigid blocks (kinematic

elements). Each element i moves with displacement vi. A set of a specific number of

kinematic elements is called failure mechanism. By assuming a displacement v1 for one

of the kinematic elements, it is possible to determine the displacement of all remaining

kinematic elements with the aid of kinematic compatibility conditions. Only tangential

translations between the kinematic elements are allowed. A rotation is not allowed and a

possible dilatancy in the shear band is not taken into account.

The forces acting between the elements are found by including an external unknown force

S in the static equilibrium analysis, which is interpreted as reserved load causing the

failure of the rigid blocks. At the failure state, the soil resistance is fully mobilized along

the slip surfaces. Plastic deformations occur only within the shear bands, whereas the

blocks are considered to be rigid. Within the shear bands the shear stress τ and the

normal stress σ satisfy the Mohr-Coulomb failure yield criterion.

To determine the direction of the shear force along the edge of each kinematic element, the

relative displacements between the kinematic elements are calculated with the condition

S · v1 > 0. The external unknown force is a function of the chosen failure mechanism,

which will be varied using an optimization technique until the external unknown force S is

found. The optimization can involve a maximization or minimization process depending

on the geotechnical stability problem.

A KEM calculation is composed of three types of analysis, namely the kinematic analysis,

the static analysis and the optimization process.

53
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3.2 Anwendung der KEM auf die Grundbruchproblematik 31

Es sollen die Fälle
”
vollkommen glatt“ und

”
voller Verbund“ betrachtet werden, entspre-

chend werden die Figuren von Hill und Prandtl nachempfunden. Als Diskretisierung der

Bruchmechanismen wird die Teilung in elf Elemente für den Prandtl-Bruchmechanismus

(vgl. Abbildung 3.3a) und zwölf Elemente für den Hill-Bruchmechanismus (vgl. Abbil-

dung 3.3b) gewählt.

Die geradlinigen aktiven und passiven Bereiche des Bruchmechanismus werden jeweils

durch ein einzelnes Element abgebildet, während die radialen Scherzonen in jeweils vier

Elemente geteilt werden, um den Mechanismus in diesem Bereich einer gekrümmten Gleit-

fläche anzunähern. Durch eine feinere Elementwahl sind meist genauere Ergebnisse zu

erwarten. Die Wahl der hier beschriebenen Diskretisierung wird in den entsprechenden

Kapiteln vor den Parameterstudien mittels Konvergenztests begründet.

Den Knoten an der Kante des Fundaments (eckig, ausgefüllt) wird zugewiesen, dass die-

se in horizontale und in vertikale Richtung fixiert sind. Die Knoten auf der Gelände-

oberfläche (rund, nicht ausgefüllt) sind nur entlang der Oberfläche beweglich. Die Kno-

ten entlang der Gleitfläche (rund, ausgefüllt) sind in beide Richtungen frei. Bei dem

Prandtl-Bruchkörper ist zudem ein rechteckiger, nicht ausgefüllter Knoten mittig un-

terhalb des Fundaments, welchem aus Symmetriegründen nur eine Verschiebung in y-

Richtung möglich ist. Tatsächlich liegen an dieser Stelle zwei Knoten übereinander. Das

ist vorbereitend für die Bruchfiguren von benachbarten Fundamenten so gewählt worden

und wird in Kapitel 3.2.1.2 näher beschrieben.

Bei den Rändern ist allgemein zu unterscheiden, ob diese entweder frei unterhalb der

(a)

(b)

Abbildung 3.3: Diskretisierung der KEM-Bruchmechanismen für ein vertikal und mittig

belastetes Fundament mit (a) rauer Sohlfläche nach Prandtl und (b) glatter Sohlfläche

nach Hill

(a)

(b)
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Vergleich zu Sloan et al. [20] nach der oberen Schranke:
Nc = 10,47), während man für den flach liegenden Anker
(Bild 13) mit dem Überlagerungsverhältnis H/B = 5 den
Wert Nc = (P/B – γ H)/c′ = (98,85/1 – 5 · 5)/10 = 7,35 er-
hält (vgl. untere und obere Schranken gemäß Sloan et al.
[20]: 6,6 bzw. 7,0 – aus Zeichnung gemessen). Zu beachten
ist, dass sich wieder – ähnlich wie beim Trapdoor-Problem
– die oberen beiden Elemente 1 und 2 wie ein gemein -

sames Element verhalten, also ohne gegenseitige Relativ-
verschiebung.

4.5 Teilgesättigter Boden

Da in teilgesättigten Reibungsböden in Abhängigkeit der
hydrostatischen Randbedingungen Saugspannungen ent-
stehen können, durch die die effektiven Druckspannun-
gen ansteigen, können sich hier die Traglasten erhöhen.
Aus gutem Grund wird diese Traglaststeigerung bei einem
Bruchnachweis meist nicht angesetzt, sondern als Belas-
tungsreserve angesehen. Ändern sich nämlich die hydrau-
lischen Randbedingungen entweder durch Austrocknung
oder durch Wasseraufsättigung, so verschwindet dieser Ef-
fekt ganz oder teilweise. Trotzdem ist es für manche Fälle,
z. B. bei zeitlich begrenzten und entsprechend kontrollier-
baren Zuständen, interessant zu wissen, wie groß denn
diese Laststeigerung sein kann.

Man kann die maßgebenden Berechnungen zurück-
führen auf eine Erweiterung der Grundbeziehung nach
Terzaghi:

τ = c′ + (σ – Sα uw) tanϕ′ (2)

Bild 10. Tragfähigkeit eines Ankers mit horizontaler Anker-
platte bei a) tief liegendem Bruchmechanismus und b) Kine-
matik
Fig. 10. Bearing capacity of an anchor with horizontal
 anchor plate and deep failure mechanism (a) and kinemat-
ics (b)

Bild 11. Tragfähigkeit eines Ankers mit horizontaler Anker-
platte bei a) flachem Bruchmechanismus und b) Kinematik
Fig. 11. Bearing capacity of an anchor with horizontal
 anchor plate and with shallow failure mechanism (a) and
kinematics (b)

Bild 12. Tragfähigkeit eines Ankers mit vertikaler Anker-
platte bei a) tief liegendem Bruchmechanismus und b) Kine-
matik
Fig. 12. Bearing capacity of an anchor with vertical anchor
plate and with deep failure mechanism (a) and kinematics (b)

Bild 13. Tragfähigkeit eines Ankers mit vertikaler Anker -
platte bei a) flachem Bruchmechanismus und b) Kinematik
Fig. 13. Bearing capacity of an anchor with vertical anchor
plate and with shallow failure mechanism (a) and kinemat-
ics (b)

(c)

Figure 3.1: KEM models for different geotechnical stability problems, Gussmann et al.

(2016): (a) bearing capacity of footing; (b) trapdoor problem; (c) vertical anchor plate

3.2 Application of KEM in geotechnical problems

KEM provides a computer implemented solution for rigid body failure mechanisms in-

cluding optimization tools to determine the most relevant failure mechanism. KEM can

be applied to analyze the bearing capacity of footings (Fig. 3.1 (a)), the active and passive

earth pressure, as well as the slope stability in 2D and 3D model analysis. This method

has been also applied to more complex geotechnical problems such as the trap door prob-

lem (Fig. 3.1 (b)) or to determine the ultimate load of plate anchors (Fig. 3.1 (c)) and

soil nails. In addition, KEM can be used to study more complex soil conditions such as

soil with pore water pressure, either hydrostatic or due to seepage flow, with drained or

undrained conditions as well as unsaturated soil conditions.
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(a) (b)

Figure 3.2: Basic element of KEM 2D model: a) triangle element; b) irregular polygon

element

(a) (b) (c)

Figure 3.3: Basic element of KEM 3D model: (a) tetrahedron element; (b) pyramid ele-

ment; (c) triangular prism
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3.3 Geometry

In KEM 2D or 3D analysis, the chosen failure mechanism consists of a number of rigid

blocks with a certain shape and plane boundaries, as shown in Fig 3.1. In case of two-

dimensional elements blocks, the soil mass is divided into convex polygons which are

bounded by straight line segments. These segments are called the edges or the bound-

aries. Triangles and quadrilaterals are examples of polygons which can be considered as

appropriate 2D rigid blocks (Fig. 3.2).

For three dimensional blocks, all convex polyhedrons whose faces are perfectly planar

polygons (e.g., tetrahedron, pyramid and triangular prism) can be used (Fig. 3.3). Each

3D block has its faces, edges (boundaries) and vertices. The vertices of the polygons or

the polyhedron are called kinematic nodes (Fig. 3.4), which can be either fixed or free

nodes. The sliding edges (2D) or surfaces (3D) of the mechanism are separated by contact

joint edges (2D) or surfaces (3D).

There are four plane boundary conditions in KEM (Figs. 3.5):

1. Inner boundary: boundary between two rigid blocks being in contact.

2. Flexible boundary: boundary with pre-known displacement.

3. Outer boundary: boundary between the rigid block and the soil at the rest.

4. Free boundary: boundary with no constraints.

In the case of a 3D KEM model, the method of vector analysis provides relatively simple

formulations to determine all the relevant features of each block including its volume,

the area of the faces and the positions of its vertices. The Cartesian coordinate system

x, y, and z is selected as global coordinate system and defined by the orthonormal unit

vectors {ex, ey, ez} with ex = [1, 0, 0], ey = [0, 1, 0] and ez = [0, 0, 1]. The failure surfaces

are represented by m vertices [P1, P2, ....., Pm] and n surfaces, [F1, F2, ....., Fn] with the

coordinates of the nodes [(x1, y1, z1), (x2, y2, z2), ...., (xm, ym, zm)], see Fig. 3.4.

The vector from point P1(x1, y1, z1) to point P2(x2, y2, z2) is determined as follows:

P1P2 = (x1 − x2)ex + (y1 − y2)ey + (z1 − z2)ez (3.1)

The matrix of direction cosine on the surface of the element spanned by the two vectors

(P1P2, P2P3) expressed by

[cosλ, cos β, cosα] =
P1P2 × P2P3

|P1P2 × P2P3|
(3.2)
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Figure 3.4: KEM model for 3D passive earth pressure (modified from Gussmann (1986))
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Figure 3.5: Boundary conditions and kinematics for KEM 2D passive earth pressure prob-

lem
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The distance from point Pm(xm, ym, zm) to point Pm+1(xm+1, ym+1, zm+1) is calculated as

follows:

d
((m+1),m)
(x,y,z) =

√
(xm+1 − xm)2 + (ym+1 − ym)2 + (zm+1 − zm)2 (3.3)

where

x((m+1),m) = xm+1 − xm
y((m+1),m) = ym+1 − ym
z((m+1),m) = zm+1 − zm
In order to determine the volume of the polyhedron blocks (e.g. pyramid element, tri-

angular prism) and the areas of its faces, a subdivision of the polyhedron block into a

number of tetrahedron blocks is applied.

The volume of a tetrahedron block can be computed from:

volume =
1

6

∣∣∣∣∣∣∣∣∣∣
x1 y1 z1 1

x2 y2 z2 1

x3 y3 z3 1

x4 y4 z4 1

∣∣∣∣∣∣∣∣∣∣
(3.4)

where xi, yi and zi (i=1, 2 , 3, 4) are the coordinate of the corner points of the tetrahedron

block.

The area of triangular face of a block in a 3D space is

area =
1

2

√√√√√√√
∣∣∣∣∣∣∣
y1 z1 1

y2 z2 1

y3 z3 1

∣∣∣∣∣∣∣
2

+

∣∣∣∣∣∣∣
z1 x1 1

z2 x2 1

z3 x3 1

∣∣∣∣∣∣∣
2

+

∣∣∣∣∣∣∣
x1 y1 1

x2 y2 1

x3 y3 1

∣∣∣∣∣∣∣
2

(3.5)

where xi, yi and zi (i = 1, 2, 3) are the coordinates of the corner points.

3.4 Kinematic analysis

Based on KEM assumptions, the rigid blocks can only slide tangentially along inner and

outer contact surfaces, and the rotation is not allowed. The outer contact surfaces are

located between the blocks and the surrounding soil, while the inner contact surfaces

are lying between the blocks. The kinematic process starts by initiating a pre-known
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displacement v (virtual displacement) on a flexible boundary, V= ve1, as shown in Fig. 3.4.

The flexible boundary is chosen based on the direction of the external (unknown) force

which causes the failure of the mechanism. The given virtual displacement induces a

displacement of each block i (i is the number of blocks). Each block moves along the shear

band with a global displacement Vi = [Vix, Viy, Viz]. The soil at the rest O is considered

as fixed rigid block with a zero displacement VO = [0, 0, 0].

By considering the compatibility conditions for the movable rigid blocks, a linear set of

equations for the kinematic system of the blocks can be written as follows:

[Kv]j×n · [V ]n×1 + [V̂ ]j×1 = 0 (3.6)

[V ]n×1 = −[Kv]
−1
j×n · [V̂ ]j×1 (3.7)

where n denotes the number of contact surfaces and j the number of degrees of freedom of

the rigid blocks, in which j = 3 · i (i is the number of blocks), j should be equal to n for a

normal condition. [Kv] is the kinematics matrix which contains the direction cosine of the

unit normal vectors of each surface with respect to the global coordinates system, [V ] is

the vector of unknown (virtual) displacements values of each block and [V̂ ] is the vector

of the pre-known displacement on the flexible boundary, which causes the displacements

of the kinematic system.

By solving Eq. (3.7), the global displacements of each block are obtained and the relative

tangential displacements between any adjacent blocks can be determined.

The directions of the relative tangential displacements between any adjacent blocks and

between the blocks with the surrounding soil are calculated as follows:

∆V
((i+1)−i)

(x,y,z) = V
(i+1)

(x,y,z) − V
(i)

(x,y,z) (3.8)

∆V
((i+1)−i)

(x,y,z) =
[(
V

(i+1)
(x) − V (i)

(x)

)
,
(
V

(i+1)
(y) − V (i)

(y)

)
,
(
V

(i+1)
(z) − V (i)

(z)

)]
(3.9)

∆V
(i−o)

(x,y,z) = V
(i)

(x,y,z) − V
(o)

(x,y,z) (3.10)

∆V
(i−o)

(x,y,z) =
[(
V

(i)
(x) − 0

)
,
(
V

(i)
(y) − 0

)
,
(
V

(i)
(z) − 0

)]
(3.11)

It must be noted that v is a virtual displacement and not a real displacement. The values

of the relative displacements do not influence the results. They are only necessary to define

the shear forces directions, which are determined by the sign of the displacements.



60 3 Kinematical Element Method (KEM)

Figure 3.6: Forces acting on the edge of 2D KEM element

3.5 Static analysis

By including an external normal force (unknown) in the equilibrium equations of the

forces, it is possible to find the normal forces acting between the blocks. Within the

shear bands the shear stress τ and the normal stress σ satisfy the Mohr-Coulomb failure

criterion.

τ = σ · tanϕ+ c (3.12)

The normal forces acting on each contact surface (see Fig. 3.6) are the effective nor-

mal force N ′n and the pore water pressure force Un. The total normal force Nn can be

calculated as follows:

Nn = N ′n + Un (3.13)

The frictional shear forces Rn and the total shear forces Tn along each sliding surfaces are

calculated as follows:

Rn = N ′n · tanϕn (3.14)

Tn = Rn + Cn (3.15)

where Cn is the cohesion force.

The direction of the shear forces is opposite to the relative tangential movement of the

blocks, which have been determined in the preceding analysis of the kinematics.
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The force equilibrium equations for each rigid block along the x, y and z-axis and the

resultant (Si) of all forces are given by

Si = (
n∑
i=1

Six,

n∑
i=1

Siy,

n∑
i=1

Siz) (3.16)

By assembling the force equilibrium equations over all rigid blocks taking the normal

forces acting at the contact surfaces and the virtual force at the flexible boundary as

unknowns, the equilibrium equations are represented in matrix form as follows:

[Ks]j×n · [N ]n×1 + [F ]j×1 = 0 (3.17)

where [Ks] is the static coefficient matrix, [N] is the normal vector of unknown forces and

[F] is the vector of known forces containing inertia forces, surface loads, cohesion forces

etc.

3.6 Optimization process

The aim of the optimization process in KEM is to find the critical geometry of the fail-

ure mechanism with respect to specific boundary conditions. The geometry of the block

system is expressed by contact surfaces which are defined by the nodes. Therefore, the op-

timization process for the geometry is can be done in terms of the coordinates of the nodes.

The coordinates of the free kinematic nodes will be varied until the critical failure mech-

anism is found. To do so, the algorithm of particle swarm optimization (PSO) (Kennedy

& Eberhart, 1995) is applied for finding a proper geometry of the failure mechanism.

Particle Swarm Optimization (PSO) is a computational method that can be used to solve

different kinds of engineering optimization problems. In 1995, Kennedy and Eberhart

were introduced PSO as a new metaheuristic search method. It was inspired by the social

behavior of individuals living together in groups such as bird flocking, and swarm of

insects. The population of particles occurs in the n-dimensional searching space. Each

particle will move about the searching space according to a certain amount of knowledge.

Each particle has some inertia and will continue to have a component of motion in the

direction in which it is moving. It also keeps track of the best solution for all the particles

achieved so far, as well as the best solution achieved so far by each particle. After each

iteration, every particle will modify its direction such that it has additional components

towards its own best position and towards the overall best position. The flowchart for the

PSO algorithm is shown in Fig. 3.7.
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Figure 3.7: Flowchart for PSO algorithm
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Table 3.1: PSO parameters

PSO parameter Symbol Parameter value

No. of particles Psize 25

Maximum velocity vmax 0.2

Minimum velocity vmin -0.2

First acceleration parameter c1 0.50

Diversity of the population maintenance c2 1.25

Maximum number of iterations Tmax 250

The velocity of each particle is updated using the following equation:

vid(t+ 1) = wvid(t)︸ ︷︷ ︸
momentum

+ c1r1 (pid(t)− xid(t))︸ ︷︷ ︸
cognitive component

+ c2r2(t) (pgd(t)− pid(t))︸ ︷︷ ︸
social component

(3.18)

w = [(Tmax −G) · (0.9− 0.4)/Tmax] + 0.4 (3.19)

The position of particle xi is then updated according to the following equation:

xid(t+ 1) = xid(t) + vid(t+ 1) (3.20)

where t is current step time, xid(t) is the current position of each particle at site d, vid(t)

is the current velocity at site d, pid(t) is the best position found so far at a certain site d,

pgd(t) is the neighborhood best state found so far at site d, r1 and r2 are two independent

random numbers in the range [0:1] and c1 and c2 are cognitive and social parameters,

respectively, w is an inertia weight parameter and G is the current iteration number. The

PSO parameters are used in the simulations of this thesis listed in Table 3.1.

PSO reaches its objective if it meets the termination criteria. The termination criteria

can be set as follows:

1. Reaching the maximum number of iterations.

2. Finding the best solution.

3. Achieving a constant fitness for a certain number of iterations.





4 KEM model (M) for tunnel face

stability

4.1 Introduction

One of the major aspects for the mechanized tunneling process is to adequately support

the soil at the tunnel face during tunnel construction. To prevent the tunnel face from

collapse a minimum pressure at the tunnel face is required.

Within this chapter the Kinematical element method (KEM) will be applied to analyze the

stability of a circular tunnel face. The 3D KEM model (M) is introduced. The KEM model

(M) consists of two rigid blocks, a tetrahedron wedge block (lower part) and triangular

prism block (upper part). The results obtained with KEM model (M) are compared with

the results of analytical and numerical approaches as well as physical model tests available

in the literature. To further validate KEM model (M), numerical simulations using the

Finite Element Limit Analysis (FELA) have been performed and compared with the

results of KEM model (M).

4.2 KEM model (M) for tunnel face stability

4.2.1 Geometry of the failure mechanism

The failure mechanism consists of two parts (see Fig. 4.1). The soil wedge block (lower

part) is enclosed by four surfaces: The tunnel face, two outer contact surfaces and the

inner contact surface with the upper silo block. The silo block (upper part) raises from the

crown of the tunnel to the ground surface enclosed by five surfaces: the ground surface,

the inner contact surface with the wedge block, and three vertical outer contact surfaces

to the adjacent soil. The positions of the nodes (P1, P2, P3, P6, P7) in the Cartesian

coordinate system depends on chosen cover height (C) and diameter (D) of the tunnel.

65
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Figure 4.1: Geometry of the failure mechanism

Based on the results of physical model tests (Chambon & Corte, 1994; Kirsch, 2010b; Chen

et al., 2013) and numerical calculations (Kirsch, 2010b; Lin et al., 2018), the failure zone

for the tunnel face collapse consists of two failure zones. The first failure zone above the

tunnel crown occurs in a vertical band and ends at the ground surface. The second failure

zone at the front of the tunnel face occurs with a semicircular slip surface. Therefore, the

degrees of freedom for each node of KEM model M during the optimization process to

find the relevant geometry of the failure mechanism is chosen as follows:

1. The nodes P1, P2, P3, P6 and P7 are fixed in x, y and z direction.

2. The node P4 is fixed in y and free in x and z direction.

3. The node P5 is fixed in y and z direction and is bounded to the node P4 in x

direction.



4.2 KEM model (M) for tunnel face stability 67

D

C

a

b

P1

P2

P7

P6

a

Tunnel face

P3

b

Block 2

Block 1

D

C

Tunnel face

Block 2

Block 2

B

PRODUCED BY AN AUTODESK STUDENT VERSION

P
R

O
D

U
C

E
D

 
B

Y
 
A

N
 
A

U
T

O
D

E
S

K
 
S

T
U

D
E

N
T

 
V

E
R

S
I
O

N

PRODUCED BY AN AUTODESK STUDENT VERSION

P
R

O
D

U
C

E
D

 
B

Y
 
A

N
 
A

U
T

O
D

E
S

K
 
S

T
U

D
E

N
T

 
V

E
R

S
I
O

N

Figure 4.2: Geometry of the triangle

4.2.2 Equivalent area of the tunnel face

The tunnel face is approximated by triangle with two equal sides (b) (see Fig. 4.2), the

area of triangle is same area as the tunnel face. The sides a and b of the equilateral triangle

are calculated as follows:

a = 0.25 · π ·D (4.1)

b =
√
D2 + a2 (4.2)

where D is the diameter of the tunnel.

The width B between the nodes (P1, P2) for the outer contact surface (P1, P2, P6, P7)

(see Fig. 4.2) is calculated as follows:

B = 2 · a (4.3)

B = 0.5 · π ·D (4.4)

4.2.3 Half of KEM model (M)

The KEM model (M) can be further simplified considering the symmetry of the failure

mechanism (see Fig. 4.3). The simplified model considers only one half of the problem.

The following assumptions are made:
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(a) (b)

Figure 4.3: Geometry of the failure mechanism: (a) KEM model (M); (b) KEM model

(M) considering the symmetry of the failure mechanism

1. The circular tunnel face is modeled with the half area of an equilateral triangle, see

Fig. 4.4.

2. No displacement in y direction over the symmetric plane.

3. No shear forces along the symmetric plane.

4. The normal forces on the symmetric plane are taken into account.

4.2.4 Kinematic analysis

The kinematic process will start by initiating unit displacement v (virtual displacement)

on the face of the tunnel V = -ve1 (see Fig. 4.5). Each block i moves with a global

displacement Vi = [Vix, Viy, Viz] with respect to the soil at rest O. The soil at rest is

considered as an element with zero displacement VO = [0, 0, 0]. The relative displacement

of each block is determined by a hodograph, as shown in Fig. 4.6.

The directions of the relative tangential displacements between any adjacent blocks and

between the blocks and the surrounding soil are determined according to Eqs. (3.9) and

(3.11), respectively (Chapter 3).
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Figure 4.4: Approximated shape of the tunnel face: (a) KEM model (M); (b) half of KEM

model
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Figure 4.5: Kinematic of the blocks
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4.2.5 Acting forces

Fig. 4.7 presents the external and the internal forces acting on each block for the total

system and the symmetric half of KEM model (M). These forces are defined as follows:

1. For the total system of KEM model (M) (Fig. 4.7 (a))

a) Acting forces

i. Wi : The weight of each block.

ii. Q : The surcharge load acting on the ground surface.

b) Reaction forces

i. Nn : The normal forces on each of the slip surfaces (n = 2 .....7).

ii. Rn = Nn· tan ϕn : The frictional shear forces for each of the slip surfaces

(n is the number of slip surface).

iii. Cn : The cohesion forces on each of the slip surfaces (n = 2 .....7).

c) P (N1) : The support force on the tunnel face.

2. For symmetric half of KEM model (M) (Fig. 4.7 (b))

a) Acting forces

i. 0.5·Wi : The weight of each block.

ii. 0.5·Q : The surcharge load acting on the ground surface.

b) Reaction forces

i. Nn : The normal forces on each of the slip surfaces (n = 2, 4, 5, 6).

ii. N7
∗ : The normal force on symmetric plane (silo).
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Figure 4.7: The free-body diagram: (a) KEM model (M); (b) half of KEM model (M)

iii. N3
∗ : The normal force on symmetric plane (wedge).

iv. Rn = Nn· tan ϕn : The shear forces for each of the slip surfaces (n = 2, 4,

5, 6).

v. R7
∗ : The frictional shear force on the symmetric plane (silo), R7

∗ = 0.

vi. R3
∗ : The shear force on the symmetric plane (wedge), R3

∗ = 0.

vii. Cn : The cohesion forces on each of the slip surfaces (n = 2, 4, 5, 6).

viii. C7
∗ : The cohesion force on the symmetric plane, C7

∗ = 0.

ix. C3
∗ : The cohesion force on the symmetric plane (wedge), C3

∗ = 0.

c) 0.5·P (0.5·N1) : The support force on the tunnel face.
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4.2.6 Problem of indeterminacy

The static system-matrix for the half of KEM model (M) is formulated as follows:

[Ks]6×7 · [N ]7×1 + [F ]6×1 = 0 (4.5)

From Eq. (4.5), it is obvious that the system is statically indeterminate: the number of

unknowns is greater than the number of available equations. Hence, equilibrium equations

alone are insufficient for obtaining a solution. In order to solve the problem, using the

physical model tests and the numerical results, one can estimate the lateral stresses im-

posed on the silo delivering the one unknown force of the system. The problem is discussed

more detail in the following section.

4.2.7 Setting up the static system

According to the observations from physical model tests (Chambon & Corte, 1994; Messerli

et al., 2010; Chen et al., 2013), for low cover to diameter ratios (e.g., C/D = 0.5) silo

mechanism forms directly above the tunnel face and sinkhole develops at the ground sur-

face (global failure), see Fig. 4.8 (a). However at larger values of cover depth (e.g., C/D

= 2) a bulb-shaped failure zone is observed above the tunnel face (local failure), while

there is no obvious settlement on the ground surface.

The outcomes of the physical model tests demonstrate that the soil mass bounding the

silo mechanism moves slightly in the direction to the silo, allowing the soil mass to ex-

pand horizontally. This small movement of the surrounding soil allows a reduction in the

horizontal stress acting on the silo. This reduction of horizontal stress in the soil sur-

rounding the silo is observed in the physical model tests (Chen et al., 2013, Fig. 4.8 (b))

and numerical results (Chen et al., 2011), as shown in Fig. 4.8 (c, d).

Clearly, the moving soil mass inside the silo must support the surrounding soil mass by a

minimum pressure to avoid extending the collapse. With the relaxation in the surrounding

soil mass, the horizontal stress around the silo is less than at rest (Chen et al., 2011; Chen

et al., 2013). Besides, the horizontal stresses around the silo cannot drop below their active

values.

Based on the earth pressures and failure patterns of tunnel face observed in physical model

tests, Chen et al. (2013) concluded that the surrounding soil mass is brought into active

state.
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Figure 4.8: Shape of the failure mechanism observed in physical model tests and numerical

simulations: (a) observed failure mechanism for different C/D ratios, Chambon & Corte

(1994); (b) distribution of stress concentration, Chen et al. (2013); (c) failure zone from

DEM simulations, Chen et al. (2011) (A: limited displacement of tunnel face displace-

ment/diameter = 0.043, B: elevated displacement of tunnel face displacement/diameter

= 0.269); (d) variation of horizontal stress, Chen et al. (2011) (A: limited displacement

of tunnel face displacement/diameter = 0.043, B: elevated displacement of tunnel face

displacement/diameter = 0.269)
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From the previous discussion two assumptions can be made to solve the problem of inde-

terminacy as follows:

1. It is assumed that 3D active earth pressure acts on the outer contact surface F6 (P1,

P2, P6, P7) (see Fig. 4.1) of the silo which is located above the tunnel face. Since

only half of the KEM model (M) is used in calculating the support force, only half

of 3D active earth pressure is assumed to act on the half of outer contact surface F6

(P1, P7, P8, P9) (see Figs. 4.3 and 4.9).

2. The pre-given normal virtual displacement differs from zero for the 3D KEM model

active earth pressure. However, the displacements of the outer sides of the silo are

assumed zero when coupling the 3D KEM model for active earth pressure (half of

the model) with the half of the outer contact surface F6 (P1, P7, P8, P9) in KEM

model (M).

The influence of two previous assumptions for the forces acting on the two other outer

contact surfaces F5 (P1, P4, P5, P7) and F7 (P2, P4, P5, P6) will be discussed later.

Since the process of finding a minimum support pressure (maximum force) at the tunnel

face is linked to a technique for finding the minimum factor of safety, it could consider

the process as an optimization problem.

4.3 3D lateral earth pressure coefficient

Within this section, the procedure for calculating the 3D lateral earth pressure coefficient

(K3D) using KEM is described and validated. In the following part, the results of the

KEM model (Fig. 4.10) for 3D active earth pressure are presented and discussed.

The horizontal normal force of the 3D KEM model for the active earth pressure problem

is defined by:

N6 = 0.5 ·K3D · γ · C2 ·B (4.6)

Therefore, the calculated 3D active earth pressure coefficient (K3D) is

K3D =
N6

0.5 · γ · C2 ·B (4.7)

Fig. 4.11 shows the comparison of the present solution with the methods of Huder (1972)

derived from the silo theory, Walz & Prager (1978) based on the theory of element slices
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Figure 4.9: Forces transferred from 3D active earth pressure model to tunnel face stability
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Figure 4.10: KEM model for 3D active earth pressure problem: (a) geometry of the failure

mechanism; (b) half of KEM model
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Figure 4.11: Comparison of K3D value obtained from different methods with results from

KEM model for 3D active earth pressure problem; (a) ϕ = 20o, δ = 0o; (b) ϕ = 30o, δ = 0o;

(c) ϕ = 40o, δ = 0o
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Figure 4.12: Comparison of experimental and numerical results with results from KEM

model (M), ϕ = 31.7o

and Washbourne (1984), who modified the shape of the sliding wedge, assuming the wedge

as triangular prism sliced by plane. Walz & Prager (1978) suggested the value of earth

pressure coefficient (Ky) to lie within the range Kc ≤ Ky ≤ Ko, where K0 = 1− sinϕ and

Kc = cos2 ϕ. Fig. 4.11 represents the value of the K3D/K2D ratio as a function of C/B

ratio (see Fig. 4.10). Where the 2D active earth pressure coefficient (K2D) is calculated

as follows:

K2D =
1− sinϕ

1 + sinϕ
(4.8)

The results indicate that the K3D/K2D ratio decreases with increasing C/B ratio. It

can also be observed that the K3D/K2D ratio for a specific C/B ratio decreases with

increasing friction angle of the soil. Furthermore, the KEM model (3D active) gives almost

identical or slightly smaller K3D/K2D values than the theory of Walz & Prager (1978)

(Ky = cos2 ϕ), which again are lie below the values obtained by Huder (1972) and Walz

& Prager (1978) with Ky = 1 − sinϕ. The K3D/K2D values of Washbourne (1984) are

significantly lower than those of all other approaches.

In Fig. 4.12, the small scale test results and the numerical results given by tom Wörden &

Achmus (2013) are used for the validation of KEM (3D active) model. The best agreement

with the numerical and experimental results of tom Wörden & Achmus (2013) is obtained

with KEM model (3D active earth pressure) and the approach of Walz & Prager (1978)

using Ky = cos2 ϕ.
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The values of the 3D lateral earth pressure coefficient K3D obtained from the KEM model

are given as a function of C/B ratio for different values of the friction angles are presented

in Fig. 4.13. An equation for calculating K3D as a function of C/B ratio and ϕ has been

developed as follows:

K3D =
2 · e−0.054·ϕ

1.75 + C/B − (0.025 · ϕ)
(4.9)

The 3D lateral earth pressure coefficients obtained from the KEM model or from Eq. (4.9),

respectively, are presented in Fig. 4.14.

4.4 Optimization procedure

Searching for critical failure mechanism is a problem of maximization. Fig. 4.15 presents

the flow chart for optimization algorithm of calculating minimum support pressure. The

iterative optimization algorithm is started by specifying input data for the soil parameters

(ϕ, γ and c), the diameter of the tunnel (D), the cover depth (C) and also by defining

the surcharge load acting on the ground surface (Q), see Figs 4.1 and 4.7.

After setting up initial input data, the cover depth (C) and the half length between nodes

(P1, P2) (0.5B) are switched from the subroutine ”tunnel face stability” to the subroutine

”3D active earth pressure”, as shown in Fig. 4.9. Thereafter, randomly selected values for

the x-coordinate of the nodes P10 and P11 as well as for y-coordinate of node P10 are

initiated. An iterative procedure using PSO is implemented to the subroutine ”3D active

earth pressure” to find the maximum normal force (0.5N6) for 3D active earth pressure

failure.

The value of maximum normal force (0.5N6) is transferred to the subroutine ”tunnel

face stability”. This force acts at the slip surface between the nodes (P1, P7, P8, P9).

Subsequently, in the subroutine ”tunnel face stability”, the value of the shear force at

the slip surface between the nodes (P1, P7, P8, P9) is computed as 0.5N6 · tanϕ. Then,

from the static equilibrium equations, the support pressure is calculated using Eq. (4.5).

To continue searching for the maximum support force in the subroutine ”tunnel face

stability”, new coordinates for free nodes (P4, P5) are chosen based on their current

position finding the most adequate failure mechanism described by the x-coordinate of

the nodes P4 and P5 and by the z-coordinate of the node P4. The optimization procedure

is terminated, when PSO in the subroutine ”tunnel face stability” reaches a termination

criteria, that can be either when a predefined maximum number of iterations is reached
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Table 4.1: Selected physical model tests for verification of KEM model (M)

Author Model Tested material ϕ [o] c [kPa] C/D [−]

Chen et al.(2013) 1g test Yangtze River sand 37 0.5 0.5, 1, 2

Chambon and Corte (1994) ng test Fontainebleau sand 38− 42 0− 5 0.5, 1, 2, 4

Kirsch (2009) 1g test Ottendorf-Okrilla sand 32.5 0 0.5, 0.75, 1, 1.5, 2

or when a constant value of support pressure for a certain number of iterations. Finally,

minimum support pressure is calculated based on the support force.

4.5 Development of failure mechanism by optimization

process

The development of the geometry of the failure mechanism, the minimum support pres-

sure, and the lateral earth pressure coefficient at surface F5 (P1, P4, P5, P7) during the

iterations of the optimization process is shown in Fig. 4.16. In this, the final value of the

inclination of the bottom surface (β) of the wedge is about β = 55o, which is close to the

slip surface angle for the 2D active state (θa = 45o + ϕ/2) Rankine’s theory (Rankine,

1857). The final value of the lateral earth pressure coefficient acting on the surface F5 (P1,

P4, P5, P7) of the silo part is about 0.39, which is close to the 3D active earth pressure

value calculated by KEM model (3D active) for the surface F6 (P1, P2, P6, P7) which is

0.37. For all geometrical parameters as well as for the support pressure the final values

have been reached after about 50 iterations, starting from specific initial geometries. Of

course the shape of the curves and the number of iterations to reach final values depends

on the initial geometry.

4.6 Verification by physical model tests

Three series of physical model tests from literature have been chosen to verify the accuracy

of KEM model (M) for predicting the minimum support pressure. The specifications of

the physical model tests are summarized in Table 4.1.

Fig. 4.17 presents the comparison of normalized support pressure (pu/(γD)) calculated

by the KEM model (M) with the results from Chambon & Corte (1994), Kirsch (2009)

and Chen et al. (2013).
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Figure 4.16: Iteration steps in the optimization process: (a) the failure mechanism; (b)

development of the failure mechanism; (c) minimum support pressure; (d) 3D active earth

pressure coefficient
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Figure 4.17: Comparison of pu/(γD) value obtained from the KEM model (M) with phys-

ical model tests: (a) pu/(γD) obtained from KEM model (M) compared to ng tests of

Kirsch (2009); (b) pu/(γD) obtained from KEM model (M) compared to ng tests of Chen

et al. (2013); (c) pu/(γD) obtained from KEM model (M) (c = 0 kPa) compared to ng

tests of Chambon & Corte (1994); (d) pu/(γD) obtained from KEM model (M) (c = 5 kPa)

compared to ng tests of Chambon & Corte (1994)
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From Fig. 4.17, it can be seen that the normalized minimum support pressure obtained

from the ng tests of Chambon & Corte (1994), Chen et al. (2013) and the 1g tests of

Kirsch (2009) increases slightly with the increase in the C/D ratio. This tendency is

reproduced by KEM model (M). This dependency of the minimum support pressure on

the C/D ratio was also detected by Anagnostou & Kovari (1994), Anagnostou1994 and

Chen et al. (2011).

The values of normalized support pressure calculated by KEM model (M) show a good

agreement with the results obtained by Kirsch (2009). Furthermore, when the results of

KEM model (M) are compared with normalized support pressures obtained from Chen

et al. (2013), the difference between the pu/(γD) values vary between 6.5 % and 16.4 %

only.

The soil used in the ng tests of Chambon & Corte (1994) is reported to have a little

cohesion, which is given as the range c = 0 - 5 kPa. The values of pu/(γD) obtained from

the ng tests of Chambon & Corte (1994) are less than those predicted by KEM model

(M) if a cohesionless soil (c = 0 kPa) is assumed. However, if a cohesion c = 5 kPa is

considered, the KEM model (M) predicts a minimum support pressure much closer to the

ng test results.

As a conclusion, it can be inferred that the minimum support pressure calculated by KEM

model (M) approximates the physical model test results very well.

4.7 Comparison of the KEM model (M) results with

other approaches

Analogous to the method proposed by Terzaghi (1943) for bearing capacity analysis, the

minimum support pressure (pu) is often represented by the following form in the literature

(Vermeer et al., 2002; Mollon et al., 2010; Anagnostou, 2012):

pu = γ ·D ·Nγ − c ·Nc + q ·Nq (4.10)

where the contribution of different loads and soil parameters including self-weight (γ),

cohesion (c) and surface surcharge (q) are expressed by sum of three terms incorporating

the the non-dimensional bearing capacity coefficients Nγ, Nc and Nq which are functions

of the internal friction angle ϕ of the soil. Due to the active conditions around the tunnel

face the cohesion is reducing the necessary support pressure.
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Within this section, Eq. (4.10) is adopted to express the minimum support pressure. In

KEM calculations with c = 0 kPa and q = 0 kPa, the soil unit weight coefficient (Nγ) is

obtained. Furthermore, setting γ = 0 kN/m3 and q = 0 kPa, the cohesion coefficient Nc is

calculated. In addition, with γ = 0 kN/m3 and c = 0 kPa, the surcharge load coefficient

Nq can also be obtained.

The minimum support pressure computed from Terzaghi’s bearing capacity formula (Eq.

4.10), which is based on the superposition principle is not a rigorous solution. It delivers

an approximate solution of the minimum support pressure and it includes an error due

to the superposition effect. However, Mollon et al. (2010) reported that this error is quite

small and can be neglected.

To validate the results of the KEM model (M), the non-dimensional coefficients Nγ and

Nc were examined individually in simulations with KEM model (M) and compared with

the results of other available approaches in literature. Also, an additional check is made

by comparing the KEM model (M) results with finite element limit analysis (upper and

lower bound solutions) results.

4.7.1 Comparison of the KEM model (M) results with the existing

approaches

Fig. 4.18 compares the value of the non-dimensional coefficient Nγ calculated by the KEM

model (M) with those given by the approaches of other researchers as a function of friction

angle, for a C/D ratio equal to 1.

It can be seen from Fig. 4.18 that the results of Vermeer et al. (2002) obtained by FEM

calculations and Anagnostou (2012) derived from a modified wedge model based on the

infinitesimally thin slices method and Mollon et al. (2010) using the upper bound method

give Nγ values lying close to the results of KEM model (M), while the differences are

larger for the other models. The method of Anagnostou (2012) and the KEM model (M)

are taking into account the contribution of horizontal arching action over the tunnel face,

which leads to similar results calculated by both methods.

The results given by Krause (1987) lie above those of KEM model (M). In that model the

soil conditions above the tunnel face are not taken into account in calculating the support

pressure. The solution of Anagnostou & Kovari (1994) using limit equilibrium method

significantly overestimates the value of Nγ compared to the other solutions. This is due

to the simplified way of considering the vertical stress distribution (linear distribution)
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Figure 4.18: Comparison of Nγ values obtained from different approaches in the literature

for different friction angles with the results of KEM model (M)
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Figure 4.19: Comparison of Nc value obtained from the theoretical methods using different

friction angles with KEM model (M)
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which disregards the arching effect in the calculation of the horizontal stress at the sides

of the wedge.

The non-dimensional coefficients Nγ obtained from Leca & Dormieux (1990) using the

upper bound method are clearly lower than the results given by the others approaches.

This is due to that the shape of the tunnel face is considered as an elliptic cross section

inscribed to the circular face (the elliptic cross section and the circular tunnel face do not

have the same area). Furthermore, the two-blocks mechanism given by Leca & Dormieux

(1990) is constrained by the normality condition, required by plasticity theory. The ve-

locity vector must enclose an angle ϕ with the discontinuity surfaces along the sliding

surfaces. However, this condition restricts the development of the three-dimensional slip

surfaces.

As can be seen in Fig. 4.19, where C/D ratio is 2, the results of Vermeer et al. (2002) and

Anagnostou (2012) for Nc are the same. The non-dimensional coefficients Nc obtained by

KEM model (M) are slightly lower than those of Vermeer et al. (2002), Anagnostou (2012)

and Mollon et al. (2010). However, Krause’s results for Nc are extremely conservative.

As shown in Figs. 4.18 and 4.19, the minimum support pressure predicted by KEM model

(M), replacing the circular shape of the tunnel face by a isosceles triangle of equivalent

area, is very close to the minimum support pressure given by Anagnostou (2012), who

substituted the circular shape of the tunnel face with a square area. Also the solution of

Vermeer et al. (2002) and Mollon et al. (2010), who used a circular shape of the equivalent

area, are very close to the KEM results. Therefore, it can be concluded that the shape

of the equivalent area of the tunnel face has little influence on the calculated minimum

support pressure. In addition, the data in Figs. 4.18 and 4.19 reveal that, the values of Nγ

and Nc obtained from KEM model (M) as well as all other approaches from the literature

increase strongly with a decrease in friction angle.

4.7.2 Comparison of KEM model (M) with Finite Element Limit

Analysis (FELA) results

4.7.2.1 Modeling of tunnel face stability in OptumG3

In this section, Finite Element Limit analysis (FELA) using the commercial software

(Krabbenhoft et al., 2015) OptumG3 ware employed to investigate the stability of the

tunnel face. Due to the symmetry of the problem, the numerical model encompasses

only half of the domain as shown in Fig. 4.20. A circular tunnel with diameter (D) was
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Table 4.2: Soil parameters and tunnel geometry

Parameter Value Unit

Tunnel diameter (D) 10 [m]

Cover depth (C) 5-20 [m]

Friction angle (ϕ) 15− 45 [o]

Dry unit weight(γ) 18 [kN/m3]

Cohesion (c) 0 [kPa]

Surcharge (q) 0 [kPa]

modeled by a half cylinder. Any effect of the tunneling process was neglected. The tunnel

has a cover depth (C) measured from the ground surface. In order to investigate the

stability of the tunnel face in frictional-cohesive soil, the stress-strain behavior of the soil

was modeled as perfectly plastic Mohr-Coulomb material with associated flow rule and a

dilatancy angle (ψ) equal to the friction angle (ϕ) of the soil.

The boundary conditions of the symmetric plane were defined such that the normal dis-

placements at the plane were zero, while the displacements in the other remaining direc-

tions were free allowed. The nodes of the bottom plane were fixed in all directions, while

displacement conditions at the vertical boundary planes were the same as those of the

symmetric plane. The soil was assumed to be homogeneous in dry condition. The geome-

try of the tunnel and the soil strength parameters are summarized in Table 4.2. The size

of the model was chosen so that these restraints had very little effect on the results.

4.7.2.2 Results and discussion

Five adaptive steps were selected to obtain an accurate solution, where an initial mesh

with 2000 elements was automatically adapted to a final mesh with about 20000 elements.

It can be seen from Fig. 4.21 that little mesh refinement occurs in the vicinity of the model

boundaries, meaning that the boundaries have no noticeable impact on the results. The

shear strains for the collapse failure mechanism obtained with OptumG3 are shown in

Fig. 4.22.

The results obtained using the OptumG3 are rigorous upper and lower bounds solutions.

An approximate estimation of the collapse load can be simply calculated as the mean

value (pm) of the upper and lower bound solutions as follows:

pm =
pup + plw

2
(4.11)
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D 

C 
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Figure 4.20: Geometry the boundary conditions of tunnel for the 3D model

Figure 4.21: Finite element mesh with mesh adaptivity
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Figure 4.22: Upper bound results of 3D FELA model showing shear strain

Table 4.3: Comparison of the minimum support pressures obtained from KEM model (M)

and FELA for C/D = 1

ϕ FELA (LB) FELA (UB) FELA (Mean value) KEM model (M)

15o 76.07 74.03 75.05 74.52

20o 51.10 49.51 50.30 49.68

25o 36.19 34.81 35.50 34.38

30o 26.57 25.45 26.01 25.02

35o 19.89 18.99 19.44 18.36

40o 14.98 14.12 14.55 13.14

45o 10.50 10.27 10.38 9.36
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Figure 4.23: Comparison of normalized support pressure as a function of C/D ratio ob-

tained from KEM model (M), FELA (lower and upper bound solutions) and different

approaches from the literature

where pup is the upper bound solution of the collapse support pressure, while plw is its

lower bound solution. Table 4.3 shows a comparison between the results of KEM model

(M) and those of FELA for C/D = 1 and various values of friction angles. The results

of FELA were obtained with the final adaptive meshes. The comparison indicates a good

agreement of the KEM results with the mean values of the upper and lower bounds

solutions.

From Fig. 4.23, it can be seen that the KEM model (M) results show a slight increase

of pu/(γD) with an increase of C/D. Similar trends are observed in different types of

wedge-silo models (Anagnostou & Kovari, 1994; Chen et al., 2015) and DEM simulations

(Chen et al., 2011). Meanwhile, the results of the FELA simulations and the upper bound

solution Mollon et al. (2010) show that C/D has almost no effect on pu/(γD).
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Figure 4.24: Influence of friction angle on normalized support pressure for two different

values of cohesion and different values of C/D ratio; results obtained with KEM model

(M): (a) c = 4 kPa; (b) c = 8 kPa

4.8 Parametric studies with the KEM model (M)

4.8.1 Influence of friction angle

For two different values of cohesion (c = 4 and 8 kPa), the influence of friction angle (ϕ)

on normalized support pressure (pu/(γD)) for different C/D ratios is shown in Fig. 4.24.

It is obvious that the normalized support pressure for the same C/D ratio is decreasing

non-linearly with the increase of the friction angle approaching to 0 (no support pressure

is needed) for higher friction angles ϕ ≥ 50o. It is interesting to note that the effect of

C/D ratio on normalized support pressure is more pronounced at lower friction angles

ϕ ≤ 35o.

4.8.2 Influence of the cohesion

The influence of cohesion on normalized support pressure is further studied based on

the simulation results presented in Fig. 4.25. C/D ratio was assumed to be either 1 or

2. The friction angle was set to ϕ = 20o, 25o, 30o, 35o and 40o, while the cohesion was

varied from 0 kPa to 10 kPa. Examining the trend of the curves in Fig. 4.25, it appears
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Figure 4.25: Influence of cohesion on normalized support pressure for two different values

of cohesion and different values of C/D ratio; results obtained with KEM model (M): (a)

C/D = 1; (b) C/D = 2

that the normalized support pressure is decreasing linearly with increasing cohesion. The

smaller ϕ, large is the rate of support pressure decrease. Thus, it can be concluded that

the cohesion affects the normalized support pressure more significantly for lower friction

angles. This applies to both studied with different C/D ratios.

4.8.3 Influence of cover depth to diameter ratio (C/D)

The analysis of influence of the C/D ratio on the normalized support pressure is conducted

for cohesion (c = 4 kPa and c = 8 kPa) within a common range of C/D ratios (0.5 - 2.5).

The results in Fig. 4.26 illustrate that for the friction angles ϕ = 20o and ϕ = 25o, the

normalized support pressure is significantly influenced by the C/D ratio and grows non-

linearly with increasing the C/D. For higher friction angle ϕ= 30o, the normalized support

pressure increases almost linearly with increasing C/D ratio. It is evident in Fig. 4.26 that

the influence of C/D becomes less pronounced with increasing friction angle.
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Figure 4.26: Influence of cover to diameter ratio C/D on normalized support pressure for

two different values of cohesion and different friction angles for the results obtained with

KEM model (M): (a) c = 4 kPa; (b) c = 8 kPa

4.9 Development of design equations

Figs. 4.27 and 4.28 show the non-dimensional coefficients Nγ and Nc obtained with the

KEM model as functions of friction angles and C/D ratios. As the friction angle decreases,

the effect of C/D ratio becomes more prominent and the inclination of the Nγ-ϕ and Nc-ϕ

curves higher.

The Nq - ϕ curves in Fig. 4.29 and the values in Table 4.4 demonstrate that Nq becomes

zero for C/D ratios greater than or equal to 1.5 for ϕ ≥ 15o. The same applies to friction

angles ϕ = 40o at C/D = 0.5 as well as for ϕ = 30o at C/D = 1.

Based on a fitting of the results of Figs. 4.27, 4.28 and 4.29 the following equations

approximating the Nγ, Nc and Nq values have been developed for ϕ ≥ 15◦:

Nγ ≈ a1 · (tanϕ)−b1 (4.12)

a1 = 0.055 + 0.007 · C/D (4.13)

b1 = 1.50 · (C/D − 0.37)0.044 (4.14)

Nc ≈ (tanϕ)−b2 (4.15)
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Figure 4.27: Nγ as function of the soil friction angle, KEM model (M)
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Figure 4.28: Nc as function of the soil friction angle, KEM model (M)
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Figure 4.29: Nq as function of the soil friction angle, KEM model (M)

Table 4.4: Values of Nγ, Nc and Nq for various internal friction angles and C/D ratios;

results obtained with KEM model (M)

Nγ Nc Nq

C/D

ϕ 0.5 1 1.5 2 2.5 0.5 1 1.5 2 2.5 0.5 1 1.5 2 2.5

15o 0.345 0.414 0.457 0.506 0.536 3.100 3.371 3.784 4.203 4.811 0.235 0.091 0.000 0.000 0.000

20o 0.242 0.276 0.304 0.329 0.356 2.398 2.590 2.820 3.099 3.373 0.150 0.052 0.000 0.000 0.000

25o 0.171 0.191 0.202 0.219 0.233 1.950 2.067 2.161 2.310 2.485 0.100 0.025 0.000 0.000 0.000

30o 0.126 0.139 0.147 0.155 0.163 1.601 1.689 1.770 1.814 1.940 0.060 0.000 0.000 0.000 0.000

35o 0.093 0.102 0.108 0.114 0.121 1.330 1.382 1.442 1.501 1.580 0.030 0.000 0.000 0.000 0.000

40o 0.067 0.073 0.078 0.082 0.088 1.092 1.135 1.181 1.232 1.290 0.000 0.000 0.000 0.000 0.000

45o 0.047 0.052 0.057 0.060 0.065 0.891 0.928 0.971 1.02 1.080 0.000 0.000 0.000 0.000 0.000

50o 0.037 0.041 0.045 0.048 0.052 0.741 0.771 0.802 0.841 0.891 0.000 0.000 0.000 0.000 0.000
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Figure 4.30: Fitting curves for the approximated equations of (a) Nγ, (b) Nc, (c) Nq
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Figure 4.31: Design charts for the minimum support pressure, KEM model (M) (q = 0

kPa): (a) C/D = 0.5; (b) C/D = 1; (c) C/D = 1.5; (d) C/D = 2
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b2 = 0.77 + 0.17 · C/D (4.16)

Nq ≈ a2 · b3
tanϕ) (C/D ≤ 1.0) (4.17)

a2 = 1.04− 0.56 · C/D (4.18)

b3 = 0.0022− 0.0019 · C/D (4.19)

These equations can be applied in combination with Eq. (4.10) to predict the minimum

support pressure Fig. 4.30 shows the comparison between the Nγ Nc and Nq and values

obtained from the KEM simulations (circles) for different friction angles and C/D ratios,

confirming a good agreement.

For a practical application Table 4.4 provides the values of Nγ, Nc and Nq for different

values of friction angle and C/D ratio. Furthermore, a design charts giving the normalized

support pressure pu/(γD) as a function of the normalized cohesion c/(γD) for different

friction angles and C/D ratios.

4.10 Limitations of KEM model (M)

The comparison between the KEM model (M) and the other existing approaches indicates

that the KEM solution gives reasonable results for tunnel face stability calculations in

frictional and frictional-cohesive soil under simple conditions. A ground water table and

seepage flow around the tunnel face have not been studied yet. However, based on the

investigations done so far the limitations of this KEM model can be noted as follows.

1. KEM model (M) simplifies the geometry of the tunnel face by replacing the circular

shape of the tunnel with an equivalent triangle having the same cross-sectional

area. However, the location of the centroid of the circular area does not coincide

with centroid of the triangle (see Fig 4.32). Therefore, if KEM model (M) is applied

to saturated soil conditions, the hydrostatic pore pressure at the centroid of the

triangle will be lower than the that at the centroid of the circular tunnel face.

2. In the case of the hypothetic case ϕ = 0, c = 0 kPa (material properties of water)

and for C/D = 0.5, in wedge silo model the normalized support pressure pu/(γD)

converges to 1, while in KEM model (M) it approaches to 0.833. This is due to

the shape of the tetrahedron wedge block (lower part) in KEM model (M), which

leads to a reduction of the volume of the ”wedge” block by 0.167 compared to the

wedge-silo model, see Fig 4.33.
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Figure 4.32: Geometry of the tunnel face in KEM model (M)
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Figure 4.33: Shape of the wedge in wedge-silo model and KEM model (M): (a) wedge-silo

model; (b) KEM model (M)
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cases of collapse and blowout. These velocity fields are described in some details in Section 3. Finally,
Section 4 is devoted to a validation of the proposed velocity fields by comparison of their results with
those of the numerical model described in Section 2. The paper ends with a conclusion.

2. NUMERICAL MODEL USING FLAC3D

The numerical simulations presented in this study make use of the three-dimensional (3D) numerical
model shown in Figure 3. These simulations are based on FLAC3D software (Fast Lagrangian
Analysis of Continua [26]). This software is a commercially available 3D finite difference code. A
key parameter used in the software is the so-called ‘unbalanced force ratio’. It is defined at each
calculation step (or cycle) as the average unbalanced mechanical force for all the grid points in the
system divided by the average applied mechanical force for all these grid points. The system may be
stable (in a steady state of static equilibrium) or unstable (in a steady state of plastic flow). A steady
state of static equilibrium is one for which (i) a state of static equilibrium is achieved in the soil-
structure system due to given loads with constant values of the soil displacement (i.e. vanishing
values of the velocity) as the number of cycles increases and (ii) the unbalanced force ratio becomes
smaller than a prescribed tolerance (e.g. 10-5 as suggested in FLAC3D software). On the other hand,
a steady state of plastic flow is one for which soil failure is achieved. In this case, although the
unbalanced force ratio decreases as the number of cycles increases, this ratio does not tend to zero

Figure 2. Picture of a face collapse in undrained clays as obtained by centrifuge experiment (provided by
Schofield [4]).

Figure 3. Numerical model for the analysis of face collapse and blowout.

INSTABILITY VELOCITY FIELDS OF A PRESSURIZED TUNNEL FACE

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. (2012)
DOI: 10.1002/nag

Figure 4.34: Tunnel face collapse in undrained clays, Schofield (1980)

3. Based on the centrifuge tests performed by Schofield (1980) and Kimura & Mair

(1981), the collapse of the tunnel face in undrained clays does not involve the motion

of rigid blocks, but a continuous deformation of the soil (see Fig 4.34). The soil

mass tends to yield and rotate towards the tunnel face. In that case, a significant

discrepancy exists between the failure mechanism assumed in KEM model (M) and

those obtained from centrifuge tests. To consider such failure mechanism, KEM

model (M) needs to be modified by increasing the number of elements in the wedge.

Therefore, the slip surface of the wedge will become curved.

Due to these limitations or shortcomings of the KEM model (M), the modifications de-

scribed in Chapter 5 were undertaken.

4.11 KEM 3D tunnel face stability software (KEM-3D-T)

Based on the Kinematical Element Method (KEM), a software for calculating the min-

imum support force necessary for the tunnel face stability has been developed, named

KEM-3D-T. The computer program is written using Matlab language with graphical user

interface which can be easily applied by non expert users. When the program is opened

by the user, a screen similar to the one shown in Fig. 4.35 is presented.

Three different KEM models have been implemented in KEM-3D-T, namely the models

(M), (M1) and (M2). Models (M1) and (M2) will be presented in Chapter 5.

In KEM-3D-T, the first step is to model the geometry of the tunnel. The geometry tab

contains a number of options such as the coordinate of the ground level, the overburden



102 4 KEM model (M) for tunnel face stability

Figure 4.35: KEM-3D-T opening screen

and the diameter of the tunnel. Once the model geometry has been established, the soil

properties can be specified.

The next step is to run the analysis. The results of the analysis are presented by the

maximum support force on the tunnel face and the relative displacements of each block.

Some useful tools have been added to the software. For example, the button in the fore-

ground gives the user the ability to select zoom in or out. The drop-down box is used to

select the type of the KEM models (M), (M1) or (M2). The check boxes on the left side

can be used to display the color of the face of the blocks, the number of the node and the

number of each face.

Figs 4.36 to 4.43 demonstrate the input of the model geometry and the results of different

KEM models using different tools.
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Figure 4.36: KEM-3D-T shows the failure mechanism for KEM Model (M)
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Figure 4.37: KEM-3D-T shows the support force for KEM Model (M)
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Figure 4.38: KEM-3D-T shows the support force for KEM Model (M) without displaying

the color and the number of the nodes
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Figure 4.39: KEM-3D-T shows the virtual displacements for KEM Model (M)
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Figure 4.40: KEM-3D-T shows the virtual displacements for KEM Model (M1) with three

elements
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Figure 4.41: KEM-3D-T shows the virtual displacements for KEM Model (M1) with four

elements
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Figure 4.42: KEM-3D-T shows the failure mechanism of KEM Model (M2)
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Figure 4.43: KEM-3D-T shows the virtual displacements for KEM Model (M2)
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4.12 Summary

In this chapter the KEM is applied to estimate the minimum support pressure being

necessary for stabilizing the tunnel face in dry frictional and frictional-cohesive soil. 3D

KEM model (M) is developed which consists of two rigid blocks, the tetrahedron wedge

block (lower part) and the triangular prism block (upper part, silo part). In order to

incorporate the influence of 3D soil arching in the silo part a 3D active earth pressure

acting on the vertical slip surfaces of the prism from the surrounding soil is presumed.

The results for the minimum support pressure obtained with the KEM model (M) are

compared with the results of numerical simulations and analytical approaches, as well

as physical model tests available in the literature. Similar to Terzaghi’s superposition

method commonly used in bearing capacity analysis, the minimum support pressure is

expressed as the sum of cohesion (c), surcharge load (q) and weight of the soil along

the tunnel diameter D (γ ·D) multiplied by non-dimensional coefficients Nc, Nq and Nγ.

Simple formulas have been developed for calculating the non-dimensional coefficients as a

function of cover depth to tunnel diameter ratio (C/D) and internal friction angle of the

soil (ϕ). To further validate the proposed KEM model (M), numerical simulations using

Finite Element Limit Analysis (FELA) have been performed The upper and lower bound

solutions obtained from the FELA simulations were compared with the KEM model (M)

results. The KEM model (M) gives good results in terms of minimum support pressure

compared to physical model test results, various analytical and numerical solutions as

well as FELA for the tunnel face stability analysis in homogenous soils. The results of the

simulations with KEM model (M) are presented in design charts using the normalized

support pressure (pu/(γD)) and normalized cohesion (c/(γD)) on the axes.
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5.1 Introduction

In geotechnical engineering, the result of a stability analysis is significantly dependent on

the chosen failure mechanism. The selection of a proper failure mechanism is thus of great

importance in estimating the collapse load.

Michalowski (1997) proposed a multi-wedge discretization system for estimating the bear-

ing capacity of a strip footing. He concluded that the multiblock mechanism significantly

improves the solutions given by the two-blocks failure mechanism. This is due to the

increase in the number of degrees of freedom offered by the multiblock mechanism to

compered to two-blocks mechanism.

Latterly, the multiblock failure mechanism was applied for the analysis of three-dimensional

passive earth pressure (Soubra & Regenass, 2000) and bearing capacity of square and rect-

angular footings (Michalowski, 2001).

Based on the upper bound method, a number of authors has also applied the multiblock

failure mechanism to investigate the stability of the tunnel face. Mollon et al. (2010),

Zhang et al. (2015) and Han et al. (2016) improved the two solid conical failure mechanism

proposed by Leca & Dormieux (1990) using 3D failure mechanisms composed of several

rigid blocks.

In Chapter 4, the proposed failure mechanism consists of two rigid blocks (KEM model

(M)) offering two degrees of freedom for the wedge (see Figs. 4.1 and 4.3). In order to im-

prove the solution efforts are undertaken within this chapter to refinement the two-blocks

mechanism by increasing the number of blocks in the failure mechanism of KEM model

(M). To verify the accuracy of the modified KEM models (M1 and M2), a comparative

calculations are carried out between KEM models (M1 and M2) and different approaches i

literature. The results are presented in charts demonstrating the influence of internal fric-

tion angle of the soil (ϕ) and cohesion (c) on the normalized support pressure (pu/(γD)).

113
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Furthermore, the strength reduction method is used to calculate the safety factor of the

tunnel face, as well as the maximum diameter in open-face tunneling.

5.2 Multiblocks failure mechanism (M1)

5.2.1 Geometry

The M1 failure mechanism is an extension of two-blocks failure mechanism. Fig. 5.1 shows

the failure mechanism (M1) using KEM 3D tunnel face stability software (KEM-3D-T).

The first modified model (M1) is multiblocks composed of five rigid blocks in which

the wedge block is divided into a sequence of four blocks. In general, the geometrical

construction of this mechanism is similar to that of the two-blocks failure mechanism i.e.,

the silo block is a triangular prism block ranging from the crown of the tunnel to the

ground surface. The tunnel face is approximated by a equilateral triangle with the same

area as the tunnel face as shown in Fig. 5.2.

5.2.2 Kinematic analysis

The stationary soil mass outside the failure mechanism is identified as region O with a zero

displacement VO = [0, 0, 0]. To start the kinematic process a unit displacement is initiated

on the face of the tunnel with displacement V1 = [1, 0, 0]. In this model all elements move

as rigid blocks in the downward direction (see Fig. 5.3). The directions of the relative

tangential displacements between any adjacent blocks are determined according to Eq.

(3.9) (Chapter 3).

5.2.3 Static analysis

The static system-matrix for one half of KEM model (M1) is written as follows :

[Ks]15×16 · [N]16×1 + [F]15×1 = 0 (5.1)

From Eq. (5.1), the system has 16 unknown reaction normal forces, while there are only

15 equations of equilibrium. To solve the system of equations an additional equation or

one reaction force is needed.

As discussed in Chapter 4, the load acting from the adjoining soil of the silo is considered

as a 3D active earth pressure exerting on the vertical slip surface of the silo. The 3D lateral
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Figure 5.2: Geometry of equilateral triangle for KEM model (M1)
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Figure 5.3: Kinematic of the blocks for KEM model (M1) using KEM-3D-T

earth pressure coefficient between the silo and the adjoining soil is calculated according

Eq. (4.9) (Chapter 4) leading to an estimate of one unknown force of the system.

5.2.4 Discussion and comments on KEM model (M1)

Beside the failure mechanism with five rigid blocks, also the failure mechanisms with two,

three and four elements shown in Figs 5.4 and 5.5 have been included in the analysis.

Table 5.1 presents the values of the minimum support pressure for different the numbers

of the rigid blocks, varying from two to five, considering both cohesionless and frictional-

cohesive soils. The percent of improvement in the support pressure corresponding to a

given number of blocks is calculated with reference to the failure mechanism (M) composed

of two blocks.

From Table 5.1, it can be seen that the improvement in the minimum support pressure

increases with the increase in the number of blocks. However, this increase of accuracy

is rather small. For instance as shown in Fig. 5.6, when using five instead of two rigid

blocks, an improvement of 4.34 % is achieved for a cohesionless soil with a friction angle

of 25o. The variation of the inclination angle (θ) for the silo and the width of the silo (x)

with the number of blocks is shown in Fig. 5.7. When the number of blocks increases, the

inclination angle of the surface at the bottom of the silo decreases, while, the the width



5.2 Multiblocks failure mechanism (M1) 117

erties 

25friction, phi

0

18

, C

[ Deg. ]

[ KPa ]

[ KN/m3 ]

y 

f the Tunnel , D

[m]10 of the TunneL ( H )

10 [m]

vel ( 0 ) 40 [z]

Optimization Tool

metry

echanism

Kinematics

ame

n

Calculate timization 

Calculatezation 

Kh_F5 0.10.208

(F5) 

Support pressure

es num...

es num...

oured faces

(a)

erties 

25friction, phi

0

18

, C

[ Deg. ]

[ KPa ]

[ KN/m3 ]

y 

f the Tunnel , D

[m]10 of the TunneL ( H )

10 [m]

vel ( 0 ) 40 [z]

Optimization Tool

metry

echanism

Kinematics

ame

n

Calculate timization 

Calculatezation 

Kh_F5 0.2350.208

(F7) 

Support pressure

es num...

es num...

oured faces

(b)erties 

25friction, phi

0

18

, C

[ Deg. ]

[ KPa ]

[ KN/m3 ]

y 

f the Tunnel , D

[m]10 of the TunneL ( H )

10 [m]

vel ( 0 ) 40 [z]

Optimization Tool

metry

echanism

Kinematics

ame

n

Calculate timization 

Calculatezation 

Kh_F5 0.0780.078

     

Support pressure

es num...

es num...

oured faces

(c)

ties 

15tion, phi

5

20

C

[ Deg. ]

[ KPa ]

[ KN/m3 ]

he Tunnel , D

[m]20the TunneL ( H )

6 [m]

( 0 ) 40 [z]

Optimization Tool

ry

anism

Kinematics

e

Calculate ization 

Calculatetion 

Kh_F5 0.1170.117

9) 

Support pressure

num...

num...

ed faces

(d)

Figure 5.4: Failure mechanism for different numbers of elements for KEM model (M1)

using KEM-3D-T with ϕ = 25o, c = 0 kPa: (a) 2 elements; (b) 3 elements; (c) 4 elements;

(d) 5 elements
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Figure 5.5: Kinematics for different numbers of elements using KEM-3D-T with ϕ = 25o,

c = 0 kPa: (a) 2 elements; (b) 3 elements; (c) 4 elements; (d) 5 elements
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Table 5.1: Influence of the number of blocks on the minimum support (C/D = 1 and γ

= 18 kN/m3)

Cohesionless soils

ϕ = 25o, c = 0 kPa ϕ = 35o, c = 0 kPa

Number Minimum support pressure Improvement Minimum support Improvement

of blocks pressure (kPa) (%) pressure (kPa) (%)

2 34.53 18.35

3 35.38 2.41 18.48 0.65

4 35.80 3.54 18.57 1.13

5 36.10 4.34 18.71 1.87

Frictional-cohesive soils

ϕ = 25o, c = 5 kPa ϕ = 35o, c = 2 kPa

Number Minimum support pressure Improvement Minimum support pressure Improvement

of blocks pressure (kPa) (%) pressure (kPa) (%)

2 24.04 14.26

3 24.10 0.23 14.291 0.20

4 24.23 0.77 14.37 0.76

5 24.40 1.47 14.42 1.10

Number of blocks [-]
2 3 4 5 6

M
in

im
u
m

su
p
p
or

t
p
re

ss
u
re

[k
P
a]

34.4

34.6

34.8

35

35.2

35.4

35.6

35.8

36

36.2

36.4

C = 10 m
D = 10 m

? = 25 o

c = 0 kPa 

. = 18 kN/m3
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Figure 5.7: Variation of the inclination angle θ of the surface at the bottom of the silo:

(a) inclination angle for the silo (θ) with the number of blocks; (b) width of the silo (x)

with the number of blocks

of the silo increases. By using KEM model (M1), the approximation of the geometry of

the failure mechanism within the wedge comes closer to reality. With increasing number

of blocks the slip surface of the wedge approaches a curved surface (see Figs. 5.4 and 5.5)

which is similar to the semicircular slip surfaces observed in physical model tests (e.g.,

Idinger et al., 2011; Kirsch, 2010a).

5.3 Multiblocks failure mechanism (M2)

5.3.1 Geometry

The modified KEM model (M2) consists of two domains (see Fig. 5.8), the wedge (lower

part) and the silo (upper part). The wedge is divided into three rigid blocks. Two outer

tetrahedron blocks have scalene triangles at each of its faces. The inner rigid block is a

three-dimensional rectangle-based pyramid having one square face (tunnel face), while the

other faces are triangles with a common vertex. The silo is divided into three triangular

prisms, each of them with two triangular faces at the top and the bottom and three

rectangular faces at the sides. In this model the circular tunnel face is approximated by a

square area (As) with side length equal to the diameter (D) of the tunnel face as shown
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in Fig. 5.8 (b).

As = D ·D (5.2)

5.3.2 Kinematic analysis

By initiating a unit displacement v (virtual displacement) on the face of the tunnel V

= -ve1, the rectangle-based pyramid wedge moves downward with displacement vector

Vi = [1, 0, Viz]. The downward movement of the square pyramid wedge (P1, P2, P6, P14,

P15) is accommodated by the movement of adjacent and above tetrahedron blocks. The

two triangular prisms of the silo are translating vertically with different displacements.

The left-hand side wedge moves with displacements Vi = [Vix, 0, Viz]. In general, the direc-

tions of the relative tangential displacements between any adjacent blocks are determined

according to Eq. (3.9) (Chapter 2).

5.3.3 Static analysis

The static system-matrix for one half of KEM model (M2) is written as follows:

[Ks]12×13 · [N]13×1 + [F]12×1 = 0 (5.3)

From Eq. (5.3), it becomes clear that the system has 13 unknown reaction normal forces,

while there are only 12 equations of equilibrium (statics), indicating that the number of

unknown reaction normal forces exceeds the number of in equilibrium equations by one.

In order to solve this statically indeterminate problem a 3D active earth pressure acting

on the vertical slip surface (P2, P12, P13, P14) of the prism is assumed. The value of

maximum normal (0.5N13) and shear (0.5R13) force is transferred from the subroutine

”3D active earth pressure” to the subroutine ”tunnel face stability”, see Fig. 5.9. Based

on the results of the calculations shown in Fig. 5.10 the following equation for calculating

K3D as a function of C/B ratio and friction angle ϕ has been developed for cohesionless

soils:

K3D =
2.47 · e−0.062·ϕ

0.78− (0.0375 · ϕ) + (0.00039 · ϕ2) + C/B
(5.4)

The good approximation of the numerical K3D data by Eq. (5.4) is demonstrated by the

curves in Fig. 5.11.
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Figure 5.8: KEM model (M2): (a) geometry of the failure mechanism; (b) geometry of the

tunnel face; (c) half of the model
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Figure 5.9: Forces transferred from 3D active earth pressure model to tunnel face stability

model (M2)
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friction angles (ϕ) used for KEM model (M2)
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tions fitted by Eq. (5.4)
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Figure 5.12: Comparison of KEM model (M) with KEM model (M2) for (a) cohesionless

soil and (b) frictional-cohesive soil
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5.4 Comparison of KEM model (M) with KEM model

(M2)

Fig. 5.12 presents a comparison between the results of KEM model (M) and KEM model

(M2) results for frictional and frictional-cohesive soil. It can be concluded that KEM

model (M2) delivers a larger in minimum support pressure. The increase of the minimum

support pressure of KEM model (M2) with respect to KEM model (M) lies in the range

12 - 23 % in case of cohesionless soil and 14 - 25 % for frictional-cohesive soil.

5.5 Comparison with other existing approaches

5.5.1 Homogeneous soil

To evaluate the validity of KEM models (M and M2), the effect of friction angle (ϕ) and

cohesion (c) on normalized support pressure (pu/(γD)) is investigated by these two models

and compared with five models from the literature covering two different approaches, Limit

Equilibrium Method (LEM) and Limit Analysis Method (LAM). The soil is assumed to

be homogeneous. The dry unit weight is set to γ = 18 kN/m3, the tunnel diameter D =

10 m and C/D ratio is assumed to be 1. The surcharge is neglected (q = 0 kPa).

Fig. 5.13 presents the relationship between the normalized support pressure (pu/(γD))

and normalized cohesion (c/(γD)) for two different values of friction angle, ϕ = 20o and

40o.

Fig. 5.13 shows that for ϕ = 20o and ϕ = 40o, the slope of the line representing the solution

of Krause (1987) is higher than that of the other solutions, indicating that cohesion has

much more effect on the support pressure compared to the other approaches. In contrast,

the slopes of the lines resulting from the solutions of Broere (2001), Anagnostou & Kovari

(1994), Anagnostou (2012), KEM model (M) and KEM model (M2) are quite similar.

Therefore, the effect of cohesion on the minimum support pressure is described in a

similar way by all these models.

It can be seen in Fig. 5.13 that for ϕ = 20o, the solution of Anagnostou & Kovari (1994)

using limit equilibrium method predicts higher values pu/(γD) than the other approaches.

However, at ϕ = 40o, the solution of Broere (2001) exceeds the solution of Anagnostou

& Kovari (1994). This can be attributed to two reasons; firstly, the simplified way of

considering the vertical stress distribution along the sides of the wedge, i.e. linear vertical
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Figure 5.13: Normalized support pressure (pu/(γD)) as function of normalized cohesion

(c/(γD)), comparison of results of KEM models (M1) and (M2) with other approaches

from the literature: (a) ϕ = 20o and C/D = 1; (b) ϕ = 40o and C/D = 1

stress distribution in the model of Anagnostou & Kovari (1994). Secondly, for ϕ > 35o

Anagnostou & Kovari (1994) assumed Kwedge = 0.4 which is higher than the value of set

into approach by Broere (2001) (Kwedge = K0). Consequently, in Anagnostou & Kovari

(1994) model, the vertical stress and the frictional resistance acting on the wedge are con-

siderably higher than the corresponding values used in the Broere (2001) model. Finally,

at ϕ = 40o, the combination of the two previous reasons leads to lower the minimum sup-

port pressures prediction by Anagnostou & Kovari (1994) model compared to the model

of Broere (2001).

For ϕ = 20o, the values of pu/(γD) obtained from KEM model (M2) are close to the

prediction by Broere (2001) model. The difference in pu/(γD) between these two methods

is less than 5 %. Meanwhile, for ϕ = 40o, the values of pu/(γD) obtained from the model

of Anagnostou & Kovari (1994) and KEM model (M2) are almost identical.

According to Fig. 5.13, for both studied two friction angles (ϕ = 20o and 40o), the results

of Anagnostou (2012) which are based on the infinitesimally thin slices method and the

results of KEM model (M) using a two-blocks mechanism are located between the results

of KEM model (M2) and the upper bound solution of Leca & Dormieux (1990).

For both friction angles (ϕ = 20o and 40o), the values of pu/(γD) obtained from Leca &

Dormieux (1990) using the upper bound method are clearly below the results given by
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Figure 5.14: Model considering two layers of soil

the other approaches. This is due to that the shape of the tunnel face is considered as

an ellipse inscribed to the circular tunnel face. Furthermore, the two-blocks mechanism

given by Leca & Dormieux (1990) is constrained by the normality condition, required by

plasticity theory. The velocity vector must enclose an angle ϕ with discontinuity surfaces

along the sliding surfaces. However, this condition prevents the three-dimensional slip

surfaces from developing more freely.

5.5.2 Layered soil

In this section, the tunnel face stability in layered soils is investigated using different

approaches, the model considers two layers (cover and cross layer) of the soil is shown in

Fig. 5.14. The cover and the cross layer are assumed to be located above the groundwater

table. The soil strength parameters and geometry of the tunnel are described in Table 5.2.

The effect of the soil parameters of the cover layer on the minimum support pressure is

investigated by varying the friction angle of the cover layer, while the soil properties of the

cross layer are kept constant. The variation of the normalized minimum support pressure

with the friction angle of the cover layer is shown in Fig. 5.15.

It is clear from Fig. 5.15 that the results obtained from the different approaches are

quite different. It can be noticed that the wedge-silo models (Jancsecz & Steiner, 1994;

Anagnostou & Kovari, 1994; Broere, 2001) give much larger support pressures than the

KEM models (M and M2), the limit analysis models and the FELA models. The results of
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Table 5.2: Soil parameters and tunnel geometry (soil with two layers)

Model description Parameter Value Unit

Cover layer Cover depth (C) 9 [m]

Friction angle (ϕ) 15-45 [o]

Unit weight(γ) 18 [kN/m3]

Cohesion (c) 2.5 [kPa]

Cross layer Tunnel diameter (D) 6 [m]

Friction angle (ϕ) 20 [o]

Unit weight(γ) 18 [kN/m3]

Cohesion (c) 2.5 [kPa]

Han et al. (2016) are slightly below the upper and lower bound results of FELA. This can

be attributed to the fact that the 3D failure mechanism of Han et al. (2016) is composed

of five truncated cones which offers much more degrees of freedom. However, in the failure

mechanism assumed by Han et al. (2016), the shape of the tunnel face is considered as

an ellipse. This ellipse and the circular tunnel face do not have the same cross-sectional

area. Furthermore, the soil arching effect above the cones is considered by a vertical force

according to Janssen’s silo theory. The results of KEM model (M2) are above the results of

KEM model (M). In addition, the results obtained using KEM model (M) slightly exceed

the results obtained using FELA upper and lower bound solutions. The upper bound

solution of Tang et al. (2014) gives significantly smaller values than the other approaches.

This can be explained by the fact that the upper bound solution of Tang et al. (2014) is

based on the mechanism composed of two cones proposed by Leca & Dormieux (1990),

which is restricted in the number of the degrees of freedom.

Furthermore, it can be seen from Fig. 5.15 that the minimum support pressure decreases

with increasing friction angle in case of the upper bound solution of Han et al. (2016), both

KEM models, the FELA results and the Anagnostou & Kovari (1994) model. The steepest

trend is predicted by the model of Anagnostou & Kovari (1994). Surprisingly, applying

the solution of Broere (2001), the minimum support pressure decreases up to a minimum

value at ϕ = 40o before increasing again with further increase of ϕ. A similar trend is

obtained from the approach of Jancsecz & Steiner (1994). In that case the minimum

support pressure decreases slightly to the minimum value at ϕ = 30o, while it increases

subsequently.

The trends of the support pressure predicted by the wedge-silo models (Jancsecz & Steiner,

1994; Anagnostou & Kovari, 1994; Broere, 2001) can be explained as follows. From silo
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Figure 5.15: Minimum support pressure as a function of different friction angles
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Figure 5.16: Ksilo · tanϕ as a function of the friction angle of the cover layer obtained

from different approaches
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Figure 5.17: Vertical stress distribution in different models: (a) Anagnostou & Kovari

(1994) model; (b) Broere (2001) model; (c) Jancsecz & Steiner (1994) model
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theory (Eq. (2.13), Chapter 2), the value of vertical stress above the tunnel crown is mainly

dependent on the value of Ksilo· tanϕ (for the same soil strength parameters). For the

model of Anagnostou & Kovari (1994) model this value will be 0.8 · tanϕ, for the Broere

(2001) solution it will be (1-sinϕ)·tanϕ, and for the Jancsecz & Steiner (1994) solution

(tan2(45 − ϕ/2))·tanϕ. As shown in Fig. 5.16, the value of Ksilo · tanϕ in the solution

of Anagnostou & Kovari (1994) increases exponentially. According to the approach of

Broere (2001), the value of Ksilo· tanϕ increases up to a maximum value at ϕ = 40o

before it decreases again. The same trend is obtained for the equations of Jancsecz &

Steiner (1994), where the maximum value is reached at ϕ = 30o.

The effect of Ksilo · tanϕ on the vertical stress distribution in the different model is shown

in Fig. 5.17. From those diagrams one it conclude that in the models of Jancsecz & Steiner

(1994) and Broere (2001), the vertical stress for ϕ = 45o is close or slightly higher than

that for ϕ = 35o at any depth. In contrast, in the approach of Anagnostou & Kovari

(1994), the vertical stress for ϕ = 35o is always higher than that for ϕ = 45o.

Based on the previous results it can be concluded that for the set of soil parameters and

geometry of the tunnel used in this study (see in Table 5.2) the approaches of Jancsecz

& Steiner (1994) and Broere (2001) predict a trend of the minimum support pressure

with friction angle which contradicts practical experience. The discrepancies between the

support pressure predicted by the different approaches are obvious in Fig. 5.15.

5.6 Development of design equations based on KEM

model (M2) simulations

Figs. 5.18 to 5.20 give the non-dimensional coefficients Nγ, Nc and Nq derived from simu-

lations with the KEM model (M2) for different friction angles and C/D ratios. The results

reflect the expected the decrease in Nγ, Nc and Nq values as friction angle increases for a

constant C/D ratio. Table 5.3 provides the values of Nγ, Nc and Nq for different ranges

of friction angle and C/D ratio. The results of Nq in fig 5.20and Table 5.3 show that the

value of Nq becomes equal to zero for C/D ratios greater than or equal to 1.5 for any

friction angle.

Based on a fitting of the data shown in Fig. 5.21, simple relationships for calculating Nγ,

Nc and Nq have been developed as follows:

Nγ ≈ a3 · (b4)tanϕ (ϕ ≥ 15o) (5.5)
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Figure 5.18: Nγ as function of the soil friction angle, KEM model (M2)

a3 = 0.628 + 0.366 · C/D (5.6)

b4 = 0.066− 0.009 · C/D (5.7)

Nc ≈ a4 · (tanϕ)−b5 (ϕ ≥ 15o) (5.8)

a4 = 1.198 + 0.077 · C/D (5.9)

b5 = 0.715 + 0.104 · C/D (5.10)

Nq ≈ a5 · e−(b6 · tanϕ) (For C/D ≤ 1.5) (5.11)

a5 = 0.8265− 0.4525 · C/D (5.12)

b6 = 2.557 + 0.575 · C/D (5.13)

Fig. 5.21 shows the comparison between the values of Nγ, Nc and Nq obtained from

the KEM simulations with those calculated from Eqs. (5.5) to (5.13), confirming the

good agreement. For a practical application, the normalized support pressure (pu/(γD))

is plotted as a function of normalized cohesion (c/(γD)) for different friction angles in

Fig. 5.22.

5.7 Open-face tunneling

The conventional methods in tunnel construction can be categorized as closed face-

tunneling and open face-tunneling (Chapman et al., 2017). In closed face-tunneling, a
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Figure 5.19: Nc as function of the soil friction angle, KEM model (M2)
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Figure 5.20: Nq as function of the soil friction angle, KEM model (M2)



134 5 Modified KEM models (M1 and M2)

� ������
15 20 25 30 35 40 45

�
�

��
�

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5
0.55

0.6
0.65

0.7
0.75

0.8
	
��
�� 
����
���
������ ����

C/D = 2.5

C/D = 2.0

C/D = 1.5

C/D = 0.5

C/D = 1.0

[°]

(a)

� ������
15 20 25 30 35 40 45

�
�
��
�

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5
	
��
�� 
����
���
������ ����

C/D = 2.0

C/D = 2.5

C/D = 1.5

C/D = 1.0

C/D = 0.5

[°]

(b)

� ������
15 20 25 30 35 40 45

�
�
��
�

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
	
��
�� 
����
���
������ ����

C/D = 1.5

C/D = 1.0

C/D = 0.5

[°]

(c)

Figure 5.21: Fitting curves for the approximated equations of (a) fitting curve for Nγ, (b)

fitting curve for Nc and (c) fitting curve for Nq
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Figure 5.22: Design charts for the minimum support pressure for KEM model (M2) (q =

0 kPa): (a) C/D = 0.5; (b) C/D = 1; (c) C/D = 1.5; (d) C/D = 2
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Table 5.3: Nγ, Nc and Nq for various internal friction angles and C/D ratios for KEM

model (M2)

Nγ Nc Nq

C/D

ϕ 0.5 1 1.5 2 2.5 0.5 1 1.5 2 2.5 0.5 1 1.5 2 2.5

15o 0.386 0.475 0.557 0.633 0.698 3.239 3.633 3.967 4.401 4.901 0.292 0.147 0.058 0.000 0.000

20o 0.289 0.345 0.396 0.443 0.488 2.701 2.988 3.192 3.448 3.782 0.224 0.113 0.045 0.000 0.000

25o 0.221 0.257 0.289 0.320 0.348 2.256 2.460 2.601 2.754 2.954 0.165 0.083 0.032 0.000 0.000

30o 0.164 0.188 0.210 0.230 0.248 1.892 2.043 2.130 2.229 3.367 0.120 0.057 0.020 0.000 0.000

35o 0.119 0.136 0.151 0.165 0.177 1.593 1.694 1.757 1.840 1.926 0.090 0.036 0.014 0.000 0.000

40o 0.085 0.097 0.106 0.114 0.124 1.323 1.410 1.462 1.529 1.612 0.059 0.018 0.006 0.000 0.000

45o 0.06 0.068 0.073 0.081 0.085 1.099 1.168 1.207 1.262 1.333 0.034 0.003 0.000 0.000 0.000

50o 0.042 0.046 0.048 0.051 0.057 0.900 0.960 1.010 106 1.130 0.000 0.000 0.000 0.000 0.000

face support pressure is needed to stabilize the tunnel face (non-stable condition). For

open face-tunneling, no face support pressure is needed (stable condition) because the

soil shear strength is high enough to ensure stability of the tunnel face.

5.7.1 Factor of safety for open-face tunneling

In this section, the Strength Reduction Method (SRM) (Bishop, 1955) is adopted to

calculate safety factor (Fs) in open-face tunneling. The safety factor is defined as the

ratio of actual shear strength (c and ϕ) to the reduced or increased shear strength (ce and

ϕe) at failure. The material strength parameters are simultaneously reduced or increased

according to Eqs. (5.14) and (5.15).

ce = c/Fs (5.14)

ϕe = arctan

(
tanϕ

Fs

)
(5.15)

where, Fs is the strength reduction coefficient, which is identical to the safety factor.

The strength reduction coefficient or safety factor, respectively, can be obtained by updat-

ing ce and ϕe until the minimum support pressure is equal to zero. The stable condition

(zero support pressure) is represented by the following equation:

γ ·D ·Nγ − c ·Nc + q ·Nq = 0 (5.16)
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For the stable tunnel face condition, Eq. (5.16) is obtained from Eq. (5.16):

λ =
Nγ

Nc

=
ce

D · γ (5.17)

Generally, the non-dimensional coefficients Nγ and Nc are dependent on friction angle ϕ.

Therefore, λ can be reformulated to be a function of arctan( tanϕ
Fs

).

λ = f

(
arctan

(
tanϕ

Fs

))
=

c

Fs ·D · γ (5.18)

As an example, Krause (1987), Vermeer et al. (2002) and Anagnostou (2012) proposed

the following non-dimensional coefficients Nγ and Nc:

Nγ =
1

9 tanϕ
Nc =

π

2 tanϕ
(Krause, 1987) (5.19)

Nγ =
1

9 tanϕ
− 0.05 Nc =

1

tanϕ
(Vermeer et al., 2002) (5.20)

Nγ =
0.05

tanϕ1.75
Nc =

1

tanϕ
(Anagnostou, 2012) (5.21)

Using Eq. (5.15), the values of safety factor based on the models of Krause (1987), Vermeer

et al. (2002) and Anagnostou (2012) as well as KEM (M) and KEM (M2) models can be

obtained as follows:

Fs =
9 · c · π
2 ·D · γ For Krause (1987) model (5.22)

Fs =
9 · c
D · γ +0.45 ·tanϕ For Vermeer et al. (2002) model (5.23)

Fs =

(
c · tanϕ0.75

0.05 ·D · γ

) 1
1.75

For Anagnostou (2012) model (5.24)

Fs =

(
c · tanϕ(b1−b2)

a1 ·D · γ

) 1
(1+b1−b2)

For KEM model (M) (5.25)

where

a1 = 0.055 + 0.007 · C/D (5.26)

b1 = 1.50 · (C/D − 0.37)0.044 (5.27)

b2 = 0.77 + 0.17 · C/D (5.28)

Fs =

(
a4 · c · tanϕ(−b5)

a3 ·D · γ · b4
( tanϕ
Fs

)

) 1
(1−b4)

For KEM model (M2) (5.29)
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Figure 5.23: Safety factor (Fs) as function of normalized cohesion (c/(γD)) Comparison

of different approaches for (a) ϕ = 20o, C/D = 1 and (b) ϕ = 40o, C/D = 1

where

a3 = 0.628 + 0.366 · C/D (5.30)

b4 = 0.066− 0.009 · C/D (5.31)

a4 = 1.198 + 0.077 · C/D (5.32)

b5 = 0.715 + 0.104 · C/D (5.33)

For an unstable tunnel face Fs < 1, for the critical state Fs = 1 and for the stable tunnel

face Fs > 1 holds.

Fig. 5.23 shows the safety factor as a function of the normalized cohesion (c/γD) calculated

by different approaches. In Fig. 5.23, for the same C/D, the safety factor increases with

the increase of cohesion and friction angle with exception of the solution by Krause (1987).

In the model of Krause (1987), the friction angle has no effect on the safety factor. The

computed λ takes the same value for any friction angle (see Eq. (5.22)).

By examining the trend of the data in Fig. 5.23, it appears that the safety factor increases

linearly with the normalized cohesion. At ϕ = 20o, the model of Krause (1987) provides

the highest values of safety factor for almost all values of the cohesion factor. In contrast,

the model of Anagnostou & Kovari (1994) gives lower safety factor than the other models.

The safety factor calculated by KEM model (M2) is in good agreement with the results
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Figure 5.24: Safety factor as function of normalized cohesion for different friction angles

(q = 0 kPa) for KEM model (M2): (a) C/D = 0.5; (b) C/D = 1; (c) C/D = 1.5; (d) C/D

= 2
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of Broere (2001) and close to the Fs values obtained from the approach of Anagnostou

(2012).

At ϕ = 40o, the approach of Leca & Dormieux (1990) almost achieves stable tunnel face.

The relationships between safety factor and cohesion factor obtained from KEM model

(M2), KEM model (M) and the solution of Anagnostou & Kovari (1994) intersect at

about Fs = 1. Beyond that point the KEM model (M) gives higher factor of safety than

KEM model (M2) and the approach of Anagnostou & Kovari (1994). The safety factors

according to Anagnostou (2012) are slightly larger than those from KEM model (M). For

c/(γD) ≥ 0.075, Anagnostou & Kovari (1994) and KEM model (M2) attain a factor of

safety of one or greater.

From the previous results, it can be concluded that as the friction angle increases, the

normalized cohesion (c/(γD)) for achieving a stable tunnel face decreases. Generally, the

increase in friction angle of the soil results in an increase in the safety factor.

A comparison between KEM model (M2) and other existing approaches shows that the

factor of safety derived from KEM model (M2) is close to the values obtained from wedge-

silo model.

For practical purpose, design charts have been provided in Fig. 5.24, showing the safety

factor (Fs) as a function of the normalized cohesion (c/γD) for different values of friction

angle ϕ and C/D ratio.

5.7.2 Maximum tunnel diameter for open-face tunneling

Eq. 5.16 could be reformulated to calculate the maximum tunnel diameter for open-face

tunneling depending on the soil strength parameters and the surface load. The maximum

tunnel diameter (Dmax) can be obtained as follows:

1. For q = 0

Dmax =
c

γ
· Nc

Nγ

(5.34)

2. For q > 0

Dmax =
c ·Nc − q ·Nq

γ ·Nγ

(5.35)

Eqs. (5.34) and (5.35) demonstrate that the maximum diameter (Dmax) in open face

tunneling is linearly related to the cohesion.
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Figure 5.25: Maximum diameter (Dmax) in open face tunneling with q = 0 kPa

Using Eq. (5.34) for q = 0 kPa, the maximum tunnel diameter (Dmax) calculated by

Krause (1987), Vermeer et al. (2002), Anagnostou (2012) as well as KEM (M) and KEM

(M2) models are as follows:

Dmax =
4.5 · c · π

γ
For Krause (1987) model (5.36)

Dmax =
9 · c

γ · [1− (0.45 · tanϕ)]
For Vermeer et al. (2002) model (5.37)

Dmax =
20 · c · tanϕ0.75

γ
For Anagnostou (2012) model (5.38)

Dmax =
c · tanϕ(b1−b2)

a1 · γ
For KEM model (M) (5.39)

where

a1 = 0.055 + 0.007 · C/D (5.40)

b1 = 1.50 · (C/D − 0.37)0.044 (5.41)

b2 = 0.77 + 0.17 · C/D (5.42)

Dmax =
a4 · c · tanϕ−b5

a3 · γ · b4
(tanϕ)

For KEM model (M2)(5.43)

where

a3 = 0.628 + 0.366 · C/D (5.44)

b4 = 0.066− 0.009 · C/D (5.45)
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a4 = 1.198 + 0.077 · C/D (5.46)

b5 = 0.715 + 0.104 · C/D (5.47)

To examine the validity of KEM model (M) and KEM model (M2) results, Fig. 5.25

shows a comparison of the values of the maximum tunnel diameter with the results given

by five different approaches for C/D = 1 and friction angles ϕ varying from 15o to 45o.

The comparison shows that the results of KEM model (M2) are close to the results of

Broere (2001). In addition, the maximum difference between KEM model (M) and KEM

model (M2) does not exceed 5 % for ϕ > 20o. The maximum tunnel diameter given by

the solution of Anagnostou (2012) is larger than those predicted by the other approaches.

Meanwhile, the model of Krause (1987) predicts a maximum tunnel diameter which is

independent of the friction angles.

5.8 Practical examples

5.8.1 Closed-face tunneling

5.8.1.1 Determining the minimum support pressure

A tunnel boring machine (TBM) has a diameter D = 8 m and is buried at a cover depth

C = 12 m in dry frictional-cohesive soil with γ = 18 kN/m3, ϕ = 25o and c = 7 kPa.

No surcharge pressure has to be considered. The safety factor is assumed to be 1. The

following two steps can be used to determine the minimum support pressure for preventing

the collapse of the tunnel face.

1. Calculating the dimensionless ratios C/D = 12/8 = 1.5 and c/(γD) = 7/(18 ·8). C/D =

1.5, ϕ = 25o and c/(γD) = 0.049, Fig 5.22 (c) is applied. From Fig 5.22 (c), it is

found that pu/(γD) = 0.163. Then, the minimum support pressure can be computed

as pu = 8 · 0.163 · 18 = 23.5 kPa.

5.8.1.2 Determination of maximum cover depth

A tunnel with D = 10 m is proposed to be excavated in dry frictional-cohesive soil with

γ = 18 kN/m3, ϕ = 15o and c = 5 kPa. The proposed TBM has the capacity to provide a

support pressure of 75 kPa, while the surface surcharge pressure is 0 kPa. The safety factor
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is assumed to be 1. The following procedures can be used for calculating the maximum

cover depth to maintain stability of the tunnel face.

1. Calculating dimensionless ratios pu/(γD) = 75/(18·10) = 0.417 and c/(γD) =

5/(18·10) = 0.028.

2. From Fig 5.22 (b and c) with pu/(γD) = 0.417, c/(γD) = 0.028 and ϕ = 15o, it

can be found that the maximum possible cover depth lies between C = 1.5D = 1.5

m and C = 1.0D = 10 m. Using Eqs. (5.5) and (5.8) with trial and error method,

the maximum cover depth ratio (C/D) is approximately calculated. The obtained

value C/D = 1.23 corresponds to, C = 12.3 m.

The previous example can be used in a similar manner with the same procedure to cal-

culate the maximum tunnel diameter (D) for a given cover depth (C).

5.8.2 Open-face tunneling

5.8.2.1 Determination of the safety factor

It is proposed to to excavate a shallow tunnel in dry homogenous frictional-cohesive soil.

The soil properties are γ = 18 kN/m3, ϕ = 30o, and c = 6 kPa. No surcharge pressure has

to be taken into account. The cover above the tunnel is C = 10 m and the diameter of

the tunnel is D = 5 m. The designer should determine the factor of safety for open-face

tunneling (no tunnel face support pressure). Referring to Eq. (5.29), the minimum factor

of safety (Fs) is obtained as 1.2.

5.8.2.2 Determination of the maximum tunnel diameter

It is proposed to excavate a shallow tunnel through dry homogenous frictional-cohesive

soil. the soil properties are γ = 18 kN/m3, ϕ = 35o, c = 8 kPa, and q = 0 kPa. The

cover above the tunnel (C) is 10 m thick. The designer should determine the maximum

diameter for open-face tunneling.

1. From Table 5.3 and Eq. (5.34), the maximum tunnel diameter can be calculated

for different C/D (0.5, 1, 1.5, 2 and 2.5) with the known data, γ = 18 kN/m3, ϕ =

35o and c = 8 kPa.

2. For different C/D, it is found that the maximum tunnel diameter Dmax is 4.95 m

when C/D = 2.
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5.9 Summary

Based on the two-blocks failure mechanism considered in KEM model (M), two different

modified failure mechanisms are studied using KEM to estimate the minimum support

pressure of the tunnel face. The first modified KEM model (M1) is composed of five

blocks. The second modified KEM model (M2) consists of six blocks. The modified fail-

ure mechanism (M2) improves significantly the two-blocks mechanism (M) in terms of

the minimum support pressure. In addition, the modified model (M1) leads to a slight

improvement in the minimum support pressure for frictional and frictional-cohesive soil.

For the purpose of verification, the results proposed by KEM model (M2) are compared

with the results of KEM model (M) and other solutions available from the literature in the

form of dimensionless design charts. The results obtained by KEM model (M2) provide a

higher minimum support pressure than KEM model (M) and are close to the minimum

support pressure calculated by wedge-silo models (Anagnostou & Kovari, 1994; Broere,

2001).

KEM model (M2) has been also used to study the tunnel face stability in a ground

composed of two layers. Also in that case a comparative study was conducted in which

the results of KEM model (M2) were confronted with other models from literature, as

well as with the upper and lower bound solutions from FELA. The values of the minimum

support pressure predicted by KEM model (M2) were higher than those from FELA other

the upper bound solutions.

For an open-face tunneling, the factor of safety against a collapse of the tunnel face was

calculated using the strength reduction technique. A comparisons between the factor of

safety obtained from KEM model (M2) and other existing approaches is presented.

Furthermore, for open-face tunneling without applying the support pressure, a formula

for the maximum diameter of the tunnel is presented. The results for the maximum tunnel

diameter calculated with KEM model (M2) are verified against the results from different

approaches in the literature.

On the basis of the results taken from the performed parametric analysis with KEM

model (M2), a number of design charts and formulas have been proposed for a practical

application in tunnel face stability problems.



6 Effect of excess pore pressure on the

stability of the tunnel face

6.1 Introduction

Slurry tunnel boring machine are widely used for excavating and supporting the tunnel

face. In case of a slurry tunnel boring machine, the required support pressure is provided

by a pressurized mixture of bentonite and water. Because the pressure of the support-

ing mixture is higher than the hydrostatic pore pressure, the bentonite slurry tends to

infiltrate into the soil at the front of the tunnel face.

According to Maidl et al. (2012), two infiltration mechanisms are possible. Firstly, in high

permeability soils or when the shear resistance of the slurry is low, the slurry signifi-

cantly infiltrates into the soil and the bentonite does not form a filter cake (penetration

mechanism), see Fig. 6.1. Secondly, in a low permeability soil, the bentonite forms a thin

impermeable filter cake at the front of the tunnel face acting as an impermeable membrane

(membrane mechanism).

The penetration of the slurry into the soil can be distinguished into two processes (Talmon

et al., 2013): mud spurt and filter cake formation. When mud spurt starts, the slurry (water

with bentonite) penetrates into the soil. After some time, the water is squeezed out of the

slurry, leaving bentonite particles consolidated in pores of the soil and an external filter

cake is formed.

During the drilling phase of the slurry shield, the filter cake is continuously removed by

the cutting tools of the TBM. Within the excavation process, the pore water is displaced

leading to excess pore pressure at the front of the tunnel. When the slurry shield is in

stand-still phase, the cutter head rotation is stopped and the pressure in the excavation

chamber is constant resulting in the formation of a filter cake. This filter cake limits the

filtration and thus the pore pressure on the outer side of the filter cake decreases with

time until it becomes equal to the hydrostatic pore pressure.

145
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Figure 6.1: Infiltration mechanisms, Maidl et al. (2012): (a) penetration mechanism; (b)

membrane mechanism

CHAPTER 3. Experimental evidences of the tunnelling effects

Looking from the right side of the plot it is worth to note that when the tunnel
face is relatively far, change of the pore pressure is very limited and it increases
when shield approaches to the gauge. The drop of pressure during stand-still
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Figure 3-14: Distribution of the face pressure along face height for slurry shield
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48

Figure 6.2: Pore pressure measured in the tunnel axis as a function of the distance to the

slurry shield, data from Heinenoord tunnel, Bezuijen (2002)
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The change of pore water pressure during excavation of 2nd Heinenoord-tunnel was pre-

sented by Bezuijen (2002), see Fig. 6.2. The pore pressure transducers (PPTs) were in-

stalled in the tunnel track and used until their destruction. Fig. 6.2 presents the support

pressure as a function of the actual distance between the position of the transducer an

the tunnel face. As it can be seen from the measurements, when the drilling phase starts,

the pore water pressure increases above the hydrostatic pore pressure, whereas during

the stand-still phase the pore water pressure decreases to the hydrostatic pore pressure.

The closer the tunnel face is to the pressure transducer, the larger is the increase of pore

pressure during the drilling phase.

To predict the development excess pore pressure at the front of the tunnel face in saturated

sand, some analytical solutions have been developed (e.g., Broere, 2001; Bezuijen, 2002).

The excess pore pressure at the front of the tunnel face is associated with a hydraulic gra-

dient between the mixing chamber and the surrounding soil of the tunnel. The hydraulic

gradient leads to a fluid flow from the the tunnel face. This fluid flow changes the effective

stress state resulting in lower effective stress and thus lower shear strength in the soil.

In this chapter, the influence of the increase or decrease of pore pressures on the minimum

support pressure during tunnel excavation will be discussed in terms of effective and total

support pressure. The calculation procedure will be elaborated by implementing the two

solutions proposed by Bezuijen et al. (2016) in KEM (M2) model as well as in the models

of Horn (1961), Anagnostou & Kovari (1994) and Broere (2001).

6.2 Stresses in soil under hydrostatic conditions

This section reviews briefly the key aspects related to the total stress, the pore water

pressure and the effective stress in soils, see Fig. 6.3.

In homogenous saturated soil, the vertical total stress σv(h) at depth z is obtained by

integrating the density % of the soil and water above the depth h multiplied by the

gravitational acceleration:

σv(h) =

∫ h

0

ρg dz (6.1)

If ρg remains constant throughout the soil, then

σv(h) = ρgh = γsath (6.2)

where γsat is the weight of the saturated soil per unit volume and h is the depth below

the ground surface.
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(a) (b)

Figure 6.3: Distribution of total stress, pore water pressure and effective stress with depth:

(a) dry soil; (b) saturated soil

If ground water table is at the ground surface, the hydrostatic pore pressure u at depth

h below the free surface can be obtained as:

u = γw

∫ h

0

dz = γwh (6.3)

The effective vertical stress is the difference between the total vertical stress and the

hydrostatic pore pressure:

σ′v(h) = σv − u(h) = γsath− γwh = γ′h (6.4)

where γ′ is the buoyant unit weight of the soil.

6.3 Safety factors

The soil properties such as unit weight and shear strength are determined from laboratory

tests or using some empirical relationships which introduces uncertainties. The purpose of

safety factors is to take into account the uncertainties in the value of the design loads and

the soil properties. The safety factors for tunnels projects are regulated in German code

(ZTV, 2012) ”Technical contract terms and policies for civil engineering works, tunneling”.

By multiplying the support forces counteracting earth and pore pressures by partial safety

factors, the design value of the total force to be applied on the TBM face (P ) is obtained

according to Eq. (6.5):

P = ηe · Pe + ηw · Pw (6.5)

Pe is the support force balancing the earth pressure, Pw the support force counteracting

the pore pressure, ηe the safety factor for earth pressure and ηw the safety factor for water
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pressure. German code (ZTV, 2012) suggests ηe and ηw to be 1.5 and 1.05, respectively. In

addition, German code (ZTV, 2012) recommends that for calculating the operational face

pressure using the slurry shield machine, a safety margin of 10 kPa above the pressure

obtained from Eq. (6.5) must be considered.

6.4 Blow out

When the support pressure is too high, the soil is heaved in front of the tunnel face.

Such failure is often classified as blow out. To avoid this, the maximum allowable support

pressure should be determined. The maximum support pressure (pmax) for the tunnel face

can be estimated as (DAUB, 2016):

pmax = C · γsat + 0.5 ·D · γs (6.6)

where D is the tunnel diameter, C is the cover depth, γsat is the unit weight of saturated

soil and γs is the unit weight of support medium.

6.5 Bezuijen models

Bezuijen et al. (2002, 2016) developed two approximated solutions to describe the change

of the pore pressure distribution in front of a TBM. The first solution is proposed to

predict the excess pore pressure distribution in homogenous saturated sand, when drilling

of tunnel occurs in an unconfined aquifer. The second solution is presented to predict the

decrease in pore pressure with time during stand-still phase assuming that the pressure

difference between the excess piezometric head in the mixing chamber and the piezometric

head at the maximum depth of infiltration is dependent on the flow resistance and shear

strength of the bentonite.

6.5.1 Bezuijen model for excess pore pressure distribution during

drilling phase

In the model of Bezuijen (2002), it is assumed that the drilling speed of the slurry TBM

is higher than the slurry penetration velocity and consequently no filter cake is formed.

Therefore, the pressure is transferred due to the flow of slurry into the soil skeleton and

the resulting shear stresses between slurry and soil without a distinct pressure drop at a
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Figure 6.4: Point source and equipotential surface

filter cake. The theory was developed based on measurements of the change of pore water

pressure in the front of the tunnel face at the 2nd Heinenoord as discussed before.

According to Bezuijen (2002), the increase of piezometric head at the tunnel face is caused

by a constant hydraulic source over the entire tunnel face. To calculate the excess of pore

pressure distribution, in the first step the increase in piezometric head caused by a point

source on the surface of a half space is discussed, see Fig. 6.4. The flow rate at the point

source on the surface of the half space is equal to the flow rate at a certain distance along

a surface which is called an equipotential surface. A simple sketch of the flow model is

shown in Fig. 6.5.

For a steady state flow, the discharge (Q) across the equipotential surface is calculated

as follows:

Q = A · k · i (6.7)

where, A is the area of the hemispherical zone, k is coefficient of permeability of the soil

and i is the hydraulic gradient.

The hydraulic gradient between the point source and the equipotential surface can be

obtained as:

i =
φ

s
(6.8)
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Figure 6.5: Tunnel face flow, Bezuijen (2002)

where φ is the piezometric head at the point source and s is the distance from point source

to the equipotential surface.

A = 2 · π · s2 (6.9)

Eq. (6.7) can be reformulated to obtain the piezometric head as follows:

φ =
Q

2 · π · k · s (6.10)

From Eq. (6.10), in the second step, the piezometric head at a distance s resulting from

a fluid injection and over a small area drdϑ of the tunnel face can be defined as:

dφ =
q · rdr · dθ
2 · π · k · s (6.11)

To calculate piezometric head in a point A at the tunnel axis with distance x from the

tunnel face for the whole area of tunnel face, Eq. (6.11) is integrated over the circumference

and over the radius of the tunnel face, where s =
√
x2 + r2 and R is the radius of the

tunnel face.

φ =
q

2 · π · k · s

∫ R

0

∫ 2π

0

r dr dθ√
x2 + r2

(6.12)



152 6 Effect of excess pore pressure on the stability of the tunnel face

Figure 6.6: Distribution of excess piezometric head φo with distance to the tunnel face

The distribution of piezometric head (Fig. 6.6) is obtained as:

φ(x) =
φo
R

(
√
x2 +R2 − x) (6.13)

where φ is the excess piezometric head above hydrostatic level at distance x from the

tunnel face and φo is the excess piezometric head at the tunnel face.

Taking the derivative of Eq. (6.13) at x = 0, the hydraulic gradient (i) at the tunnel face

is obtained as:

i =
φo
R

(6.14)

Using Darcy’s law, the penetration velocity (vp) at front of the tunnel can be formulated

as:

vp =
k · i
n

=
k · φo
n ·R (6.15)

where n is the porosity of the soil.

6.5.2 Bezuijen model for decrease of pore pressure during stand-still

phase

When drilling stops, an external filter cakes forms in the soil. Bezuijen (2002) described

the pressure drop over the infiltrated zone (external filter cake and mud spurt) using

Darcy’s law for the flow of the slurry and the water flow. Based on Bezuijen (2002) the

difference between the excess piezometric head at the tunnel face φ0 and the piezometric

head at the far side of the mud spurt φmx is described with Eq. (6.16).
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φ0 − φmx =
x · φ0

L︸ ︷︷ ︸
at the filter cake

+
x · q
kg︸︷︷︸

at the mud spurt

(6.16)

where L is the maximum penetration depth after a long time, x is the penetration depth

at a certain time, q is the discharge and kg is the coefficient of permeability of the slurry.

The piezometric head at the far side of the mud spurt φmx can be described as

φmx =
q ·R
k

(6.17)

The discharge q is rewritten with Darcy’s law as q = (dx/dt)n leading to the following

equation

φ0 =

(
n ·R
k

+
n · x
kg

)
dx

dt
+
x · φ0

L
(6.18)

Eq. (6.18) can be reformulated as follows:

dx

dt
=
φo(1− x

L
)

n
R

+ n
kg
· x (6.19)

By solving Eq. (6.19), φo can be computed as a function of time, if the parameters R, n,

L, x and kg are known.

6.6 Implementation of excess pore pressures into

different models.

In the following subsections, the procedure of taking into account the excess pore pressure

in predicting the minimum tunnel face support pressure using wedge-silo (Horn, 1961;

Anagnostou & Kovari, 1994; Broere, 2001) and KEM model (M2) will be presented.

In order to obtain the distribution of excess pore pressure around the tunnel face generated

by tunnel excavation, the analytical model proposed by Bezuijen (2002) is integrated into

the tunnel face stability models, see Fig. 6.7.

Based on the assumptions of the model of Bezuijen (2002), Eq. (6.13) can be used to pre-

dict the excess pore pressure at any distance from the center of the tunnel face. However,

the flow of slurry from the TBM to the soil is a 3D flow, which would make the resulting
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excess pore water distribution more complex and its calculation time-consuming. To get

around this 3D flow problem, Bezuijen (2002) assumed that Eq. (6.13) can be used to

estimate the distribution of excess pore pressure along the distance x from the tunnel face

at every point on the tunnel face.

6.6.1 Implementing the excess pore pressure in wedge-silo model

The major steps to include the effect of excess pore pressure in predicting the minimum

tunnel face support pressure are as follows. Firstly, the the wedge is divided into horizontal

slices and the hydraulic head difference between the assumed failure surface and the tunnel

face is calculated in each slices. The effective weight of each slice including the hydrostatic

forces and the seepage forces is calculated. Finally, the maximum effective support force

in equilibrium condition is determined using the optimization process. The previous steps

are discussed in more details in the following.

To include the excess piezometric head in the static equilibrium analysis of the wedge, the

wedge is divided into several slices along the vertical direction. Each slice (i) is loaded by

the effective weight from the slice above it (i-1) and below (i+1), see Figs. 6.7 and 6.8.

By integrating Eq. (6.13) from x = 0 to xi and dividing the results by xi, the average

increment of excess pore pressure is obtained at each height from i to n:

φavg =

∫ xi

0

φo
R

(
√
x2 +R2 − x) dx (Dias & Bezuijen, 2016) (6.20)

φavgi = φo

[
0.5
(√

xi2 +R2 − xi
)

+
R2

2xi
ln
(√

xi2 +R2 − xi
)
− 1

2xi
R2ln(R)

]
(Dias & Bezuijen, 2016) (6.21)

Considering the hydrostatic pore pressure, in the models of Anagnostou & Kovari (1994)

and Broere (2001), the vertical effective stress at the top of the wedge is computed based

on the silo theory (Janssen, 1895) as follows:

σ′vsilo(C) =
a · γ′ − c′

Ksilo · tanϕ′
(1− e−Ca ·Ksilo·tanϕ′) (6.22)

In the model of Horn (1961) model, the vertical effective stress at the top of the wedge is

computed as follows:

σ′vsilo(C) = C · γ′ (6.23)
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Figure 6.7: Excess piezometric head distribution in the wedge

Figure 6.8: Pressures and forces in each slice of the wedge



156 6 Effect of excess pore pressure on the stability of the tunnel face

Figure 6.9: Distribution of hydrostatic and excess pore pressure in KEM model (M2)
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If additionally also pore water pressure is considered, the vertical effective stress at the

top of the wedge is computed as follows:

σ′vtop(C) = σ′vsilo(C)− φavg(zi) · γw (6.24)

The total vertical stress on each slice along the sides of the wedge is calculated as:

σv(zi) = (D − zi) · γ + σvsilo(C) (0 ≤ z ≤ D) (6.25)

with γ being the specific unit weight of the water-saturated soil and the vertical coordinate

z running from the bottom of the tunnel face. Considering the hydrostatic and excess pore

water pressures, the vertical effective stress along the sides of the wedge is calculated as:

σ′vwedge
(zi) = σv(zi)− u(zi)− φavg(zi) · γw (6.26)

u(zi) is the hydrostatic pore pressure and φavg(zi) is the average excess piezometric head

at distance xi from the tunnel face.

The resisting shear force acting on both sides of the sliding wedge can be obtained as

follows:

T ′s = 2 ·Kwedge · tanϕ′ ·
n∑
i=1

(
xi + xi+1

2
·
σ′viwedge + σ′vi+1wedge

2

)
(Dias & Bezuijen, 2016)

(6.27)

The effective weight G′w of the wedge is calculated as follows:

G′w = D ·
n∑
i=1

(
xi + xi+1

2
·
σ′viwedge + σ′vi+1wedge

2

)
(Dias & Bezuijen, 2016) (6.28)

The vertical force G′s of the silo on the top of the wedge is calculated as follows:

G′s = σ′vsilo(C) ·D2 · cot θ (6.29)

The effective support force P ′ needed to support the tunnel face is obtained from:

P ′ =
G′s +G′w
cot(θ + ϕ′)

− T ′s + c′ · ( D2

sin θ
)

sin ·θ(cot θ + tanϕ′)
(6.30)

The effective support force will vary with the sliding angle (θ). The critical inclination

θcrit is determined by maximizing the effective support force P ′:

dP ′

dθcrit
= 0 (6.31)

where 0o < θcrit < 90o

The minimum effective support pressure is assumed to be uniformly distributed over the

tunnel face and given by

p′ =
P ′

D2
(6.32)
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6.6.2 Implementing the excess pore pressure in KEM model (M2)

The proposed failure mechanism of KEM model (M2) consists of 6 elements. Due to

the symmetry of the failure mechanism, one half of KEM model (M2) is considered to

investigate the effect of excess pore pressure on the tunnel face support pressure, as shown

in Fig 5.8 (Chapter 5).

The hydrostatic forces on the contact and sliding surface are calculated as:

Um = γw ·
∫
Am

dA (6.33)

where m is the number of the faces under consideration and Am is the area of the surfaces

Eq. (6.33) can be simplified to:

Um = γw · hc · Am (6.34)

with hc being the distance from the ground surface to the centroid of the area.

The wedges are divided into slices (Fig. 6.9). The average increment of excess pore pressure

in each surface is calculated using Eq. (6.23). Thereafter, the total average force caused

by excess pore pressure in each face of the wedge is calculated as follows:

Uie = γw ·
n∑
i=1

φavgi Ai (6.35)

Ai is the area of the slice i.

By assembling the force equilibrium equations over the whole KEM model (M2) and

representing them in matrix form, where the total support force and the normal forces on

each surface are unknowns, the following equilibrium equation can be written:

[Ks]j×m · [N ]m×1 + [F ]j×1 = 0 (6.36)

where, [Ks] is the static coefficient matrix, [N] is the normal vector of unknown forces and

[F] is the vector of known forces, including inertia forces ([J]), hydrostatic forces ([U]) and

the forces caused by the excess pore pressure ([Ue]):

[F ]j×1 = [J ]j×1 + [U ]j×1 + [Ue]j×1 (6.37)

6.7 Problem definition

Based on the analysis methods presented in the previous section, the wedge-silo (Horn,

1961; Anagnostou & Kovari, 1994 and Broere, 2001) and KEM (M2) models are used to
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Figure 6.10: Schematic diagram for the applied pressure in TBM due to hydrostatic and

excess piezometric head

investigate the stability of a circular tunnel which is excavated under the water table. The

geometry of the problem and the considered pressures are shown in the schemes Fig. 6.10,

where D denotes the tunnel diameter, C refers to the tunnel depth, hw is the water table

elevation measured from the bottom of the tunnel to the ground surface and φo refers to

the excess piezometric head correlated to excess pore pressure in the soil at the tunnel

face. The soil is assumed to be fully saturated with the ground water table at the ground

surface. φ′ and c′ are the effective shear strength parameters of the soil, where φ′ indicates

the effective friction angle, c′ is the effective cohesion, and γ′ is the buoyant unit weight

of the soil. The soil parameters and the tunnel geometry are given in Table 6.1.

The soil has been assumed to be homogeneous and under drained condition. For simplicity,

the safety factors ηe and ηw are set to 1. Also, the surcharge is neglected (q = 0 kPa).

Fig. 6.11 presents the flow chart for the procedure of incorporating the excess pore pressure

in tunnel face stability models.

6.8 Results and discussion

6.8.1 Effect of hydrostatic pore pressure on the tunnel face stability

The key point in this section is to present the effect of hydrostatic pore pressure on the

tunnel face stability. In the following section the effect of excess pore pressure on the

tunnel face stability is addressed.
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Figure 6.11: Flow chart for the procedure of incorporating the excess pore pressure in

tunnel face stability models

Table 6.1: Soil parameters and tunnel geometry

Parameter Value Unit

Tunnel diameter (D) 10 [m]

Cover depth (C) 10 [m]

Maximum penetration depth (L) 0.25 [m]

Unit weight of saturated soil (γsat) 20 [kN/m3]

Unit weight of supported medium (γs) 12 [kN/m3]

Permeability of the soil (k) 10−4 [m/s]

Permeability of the soil for the slurry (kg) 10−6 [m/s]

Porosity of the soil (n) 0.4 [-]



6.8 Results and discussion 161

�� ������
15 20 25 30 35 40 45

�
�
��
	


�

150

160

170

180

190

200

210

220
��
� ����� ������
��
�����������

� ������
 
��
� �!""��
�#$ ����� �$!�

C = 10 m
D = 10 m
c = 0 kPa 

�
� = 10 kN/m3

[°]

(a)

�� ������
15 20 25 30 35 40 45

�
�
��
	


�

0

10

20

30

40

50

60

70

80
��
� ����� ������
��
�����������

� ������
 
��
� �!""��
�#$ ����� �$!�

C = 10 m
D = 10 m
c = 0 kPa 

�
� = 10 kN/m3

[°]

(b)

Figure 6.12: Minimum support pressure considering hydrostatic pore pressure: (a) total

support pressure; (b) effective support pressure

The conventional method for calculating the support pressure is simply to consider the

influence of hydrostatic pore pressure distribution around the tunnel face in the stability

analysis, i.e. the total support pressure at the tunnel face is obtained without considering

the excess pore pressure.

When the static equilibrium of forces is set up, the maximum effective support force can

be obtained using the optimization procedure. In that case, the total support pressure is

equal to the sum of effective and hydrostatic pore pressure.

Fig. 6.12 presents a comparison of the total and effective support pressures obtained from

KEM model (M2) and different wedge-silo models (Horn, 1961; Anagnostou & Kovari,

1994 and Broere, 2001).

As seen in Fig. 6.12, for cohesionless soil both the total and the effective support pressure

decrease with the increase in friction angle. From a comparison of the two diagrams in

Fig. 6.12, it can be concluded that the sum of the effective support pressure and the

hydrostatic pore pressure at the center-line of the tunnel face (150 kPa) is equal to the

total support pressure for the same friction angle. In addition, for ϕ < 35o, the results

of Broere (2001) are closer to the results of KEM model (M2) than the other models.

For ϕ > 35o, however, the results of KEM model (M2) agree well with the results of

Anagnostou & Kovari (1994). The differences in the results between Anagnostou & Kovari
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Figure 6.13: Applied support pressure considering hydrostatic pore pressure: (a) opera-

tional support pressure; ( b) piezometric head
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Figure 6.14: Comparison of normalized minimum support pressure in dry condition and

effective support pressure in saturated condition: (a) normalized support pressure in dry

condition; (b) normalized effective support pressure in saturated condition
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(1994) and Broere (2001) are due to the different assumptions regarding the distribution

of vertical stress along the sides of the silo and the wedge.

From Fig. 6.12, it is clear that the total and the effective support pressure calculated

with the model of Horn (1961) (no arching is considered) is substantially higher than the

values obtained from the other models.

As mentioned before, the total support pressure is equal to the sum of the effective and

the hydrostatic support pressure.

The operational pressure is considered as the total support pressure increased by a safety

margin of 10 kPa (Fig. 6.13 (a)). This operational pressure must be verified against the

possibility of blowout as well.

From Fig. 6.13 (a), it can be noticed that the operational support pressures calculated

by different models are less than the maximum allowable support pressure. The pressure

corresponding to the piezometric head φo at the tunnel face is equal to the effective

pressure with a safety margin of 10 kPa (φo = p′

γw
+ 1 m). For purely frictional soil,

it can be deduced from the diagrams in Fig. 6.14 that the ratio between the minimum

support pressure (pu) in dry condition and the effective support pressure (p′) in saturated

condition is equal to the ratio between the dry and submerged unit weight of the soil ( γ
γ′

).

Therefore, the following relationship can be concluded:

p′ = pu ·
γ′

γ
(6.38)

pu = Nγ · γ ·D (6.39)

p′ = Nγ · γ′ ·D (6.40)

where γ′ is the buoyant unit weight of the soil, γ is the dry unit weight of the soil and

Nγ is the non-dimensional coefficient representing the contribution of soil weight in dry

condition to the minimum tunnel face support pressure.

In saturated soil, the total support pressure (ptotal) at the tunnel face can be calculated

as follows:

ptotal = Nγ · γ′ ·D + γwater · C (At the top of the tunnel face) (6.41)

ptotal = Nγ ·γ′ ·D+γwater ·(C+0.5D) (At the center of the tunnel face) (6.42)

ptotal = Nγ ·γ′ ·D+γwater ·(C+D) (At the bottom of the tunnel face) (6.43)

where, γw is the unit weight of water.
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Eqs. (6.41) to 6.43 are useful for a direct computation of the total support pressure

(ptotal) in saturated condition from the design graphs, which are given for the soil in dry

conditions (e.g., Fig 5.18, Chapter 5)

6.8.2 Effect of hydrostatic and excess pore pressures on the tunnel

face stability

When the tunnel is excavated under the water table, the stability analysis of the tunnel

face should generally consider both the hydrostatic and the excess pore pressures. As

explained above, beside the hydrostatic and the excess pore pressures leads to a further

reduction of the effective stress in the soil and thus affects the tunnel face support pressure.

From the model of Bezuijen (2002), the excess pore pressure distribution at the failure

surfaces can be obtained as described in Section 6.6. The forces arising from these excess

pore water pressures are added as external loads in the static equilibrium of the forces.

It is clear from Fig. 6.15 that the total and effective tunnel face support pressures decrease

as the effective friction angle ϕ′ increases. Fig. 6.15 shows that the model of Horn (1961)

gives a higher value of operational support pressure compared to the other analytical

solutions, because soil arching is not considered. The results of KEM model (M2) lie

below the results of the other models. However, the differences in operational support

pressure between KEM model (M2) and the solutions of Anagnostou & Kovari (1994)

and Broere (2001) does not exceed 10 %. Moreover, the operational support pressures

calculated by different models are less than the maximum allowable support pressure.

Fig. 6.15 (b) shows the effective support pressure calculated by different models. Inter-

estingly, the results calculated by the different models show a similar trend as the results

of effective support pressure calculated by only considering the hydrostatic pore pressure

(see Fig. 6.15 (b)).

Fig. 6.15 (c) illustrates the relationship between the excess pore pressure and the friction

angle. From a comparison of all three diagrams in Fig. 6.15, it can be concluded that the

sum of the excess pore pressure and the hydrostatic pore pressure at the center-line of the

tunnel face (150 kPa) is equal to the total support pressure for the same friction angle.

It is expected that a consideration of the excess pore pressure in the tunnel face stability

analysis will increase the total support pressure. Fig. 6.16 presents the percentage of

increase in the operational support pressure by including the resulting and the excess

pore water pressures in the force equilibrium. As can be seen in Fig. 6.16, the increase in



6.8 Results and discussion 165

�� ������
15 20 25 30 35 40 45

�
�
��
	


�

140

160

180

200

220

240

260

280

300

320

340
��
� ����� ������
��
�����������

� ������
 
��
� �!""��
�#$ ����� �$!�
 ��% ���

C = 10 m
D = 10 m
c = 0 kPa 

�
� = 10 kN/m3

[°]

(a)

�� ������
15 20 25 30 35 40 45

�
�
��
	


�

0

5

10

15

20

25

30

35

40
��
� ����� ������
��
�����������

� ������
 
��
� �!""��
�#$ ����� �$!�

C = 10 m
D = 10 m
c = 0 kPa 

�
� = 10 kN/m3

[°]

(b)

��
15 20 25 30 35 40 45

�
�
��
�

0

1

2

3

4

5

6

7

8

9

10

11

12
���� ��	
� �
��
�
����������������� �
����
���
�
 ����
�
�� ��	
� � ��

C = 10 m
D = 10 m
c = 0 kPa 

�
� = 10 kN/m3

[°]

(c)

Figure 6.15: Required support pressures considering hydrostatic and excess pore pressures:

(a) operational support pressure; (b) effective support pressure; (c) piezometric head
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Figure 6.16: Percentage of increase in operational support pressure due to excess pore

pressure
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Figure 6.17: Penetration velocity versus effective friction angle
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Figure 6.18: Design charts for normalized operational support pressure considering hydro-

static and excess pore water pressures: (a) Horn (1961) model; (b) Broere (2001) model;

(c) Anagnostou & Kovari (1994) model; (d) KEM model (M2)
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the minimum support pressure by considering the excess pore pressures is higher in case

of the wedge-silo models compared to KEM model (M2). In addition, the differences in

the percentage of increase between the different models gets smaller as the friction angle

decreases.

From the previous discussion it can be concluded that the hydraulic gradient during the

optimization process for computing the maximum effective support pressure is developed

slightly lower in KEM model (M2) compared to the models of Anagnostou & Kovari (1994)

and Broere (2001). This can be attributed to the increase in the number of elements in

the failure mechanism of KEM model (M2).

Fig. 6.17 shows the penetration velocity (vp) of the slurry calculated from Eq. (6.15) as a

function of the effective friction angle. Assuming that the average TBM drilling velocity

is 1 mm/s, it can be seen that the velocity of slurry penetration from the chamber to

the ground is less than the TBM drilling velocity. Therefore, the cutter wheel rotation

of TBM will continuously remove the bentonite, so that there is no possibility to form a

filter cake.

For the condition that the soil is fully water-saturated and the ground water table is lo-

cated at the ground surface, several design charts are provided in Fig. 6.18. In these design

charts, the normalized operational support pressure (p′o/(γ
′D)) is plotted as a function

of effective friction angle. The design charts consider the excess pore water pressures

generated by the drilling process.

6.9 Drops in piezometric head with time during

stand-still phase

When drilling stops, the bentonite penetrates to the soil and a filter cake will be built

up causing a reduction of piezometric head in the soil behind the filter cake. Using the

soil parameters summarized in Table 6.2, the decrease in piezometric head imposed to

the soil is obtained from time by applying Eq. (6.19), which was solved numerically with

increments of 5 second. For the different models, the drop of the piezometric head with

function of time is shown in Figs. 6.19 to 6.22 for different C/D and friction angles.

Furthermore, the corresponding relationships between the slurry penetration depth and

time calculated from Eq. (6.19) are shown in Figs. 6.23 to 6.26.
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Figure 6.19: Development of piezometric head imposed to the soil with time for Horn

(1961) model: (a) C/D = 1; (b) C/D = 1.5; (c) C/D = 2; (d) C/D = 2.5
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Figure 6.20: Development of piezometric head imposed to the soil with time for Anag-

nostou & Kovari (1994) model: (a) C/D = 1; (b) C/D = 1.5; (c) C/D = 2; (d) C/D =

2.5
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Figure 6.21: Development of piezometric head imposed to the soil with time for Broere

(2001) model: (a) C/D = 1; (b) C/D = 1.5; (c) C/D = 2; (d) C/D = 2.5
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Figure 6.22: Development of piezometric head imposed to the soil with time for KEM

model (M2): (a) C/D = 1; (b) C/D = 1.5; (c) C/D = 2; (d) C/D = 2.5
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Figure 6.23: Slurry penetration depth with time for Horn (1961) model: (a) C/D = 1; (b)

C/D = 1.5; (c) C/D = 2; (d) C/D = 2.5
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Figure 6.24: Slurry penetration depth with time for Anagnostou & Kovari (1994) model:

(a) C/D = 1; (b) C/D = 1.5; (c) C/D = 2; (d) C/D = 2.5
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Figure 6.25: Slurry penetration depth with time for Broere (2001) model: (a) C/D = 1;

(b) C/D = 1.5; (c) C/D = 2; (d) C/D = 2.5
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Figure 6.26: Slurry penetration depth with time for KEM model (M2): (a) C/D = 1; (b)

C/D = 1.5; (c) C/D = 2; (d) C/D = 2.5
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Table 6.2: Soil parameters and tunnel geometry

Parameter Value Unit

Tunnel diameter (D) 10 [m]

Cover depth (C) 20 [m]

Friction angle of the soil (ϕ′) 25 [ o]

Cohesion of the soil (c) 0 [kPa]

Maximum penetration depth (L) 0.25 [m]

Drilling velocity of the slurry TBM (vTBM) 1 [mm/s]

Unit weight of saturated soil (γsat) 20 [kN/m3]

Unit weight of supported medium (γs) 12 [kN/m3]

Permeability of the soil (k) 10−4 [m/s]

Permeability of the soil for the slurry (kg) 10−6 [m/s]

Porosity of the soil (n) 0.4 [-]

6.10 Practical example

The following example is provided for determining the operational support pressure and

the piezometric head at TBM in closed-face tunneling.

It is proposed to use a slurry the TBM to excavate a circular tunnel in homogenous purely

frictional soil. The soil is assumed to be fully saturated with the ground water table at

the ground surface. No surcharge surface pressure exists (q = 0 kPa). The soil parameters

and the tunnel geometry are shown in Table 6.2. The tunnel engineer should determine

the operational support pressure in the work chamber, so that the slurry TBM can be

operated safely. A safety margin of 10 kPa is considered in the analysis. The analysis

will be performed using four different models, KEM model (M2) and the models of Horn

(1961), Anagnostou & Kovari (1994) and Broere (2001) models.

The following two methods are used to determine the operational support pressure:

1. Determining the operational support pressure considering only hydrostatic pore

pressure.

2. Determining the operational support pressure considering hydrostatic and excess

pore pressures.

In this example, the operational support pressure is calculated with a simple procedure

using the design graphs which are given in this thesis or can be obtained from the published

data in literature.



178 6 Effect of excess pore pressure on the stability of the tunnel face

(a) (b)

(c) (d)

Figure 6.27: Operational support pressure considering hydrostatic pore pressure: (a) Horn

(1961) model; (b) Anagnostou & Kovari (1994) model; (c) Broere (2001) model; (d) KEM

model (M2)

Table 6.3: Operational support pressure for different models considering only hydrostatic

pore pressure

Operational support

pressure (kPa)

Horn (1961) Anagnostou &

Kovari (1994)

Broere (2001) KEM model (M2)

Crown 273.18 242.47 239.40 233.37

Center 323.18 292.47 289.40 283.37

Bottom 373.18 342.47 339.40 333.37
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Table 6.4: Piezometric head for different models considering only hydrostatic pore pres-

sures

Piezometric

head (m)

Horn (1961) Anagnostou &

Kovari (1994)

Broere (2001) KEM model (M2)

Crown 7.32 4.25 3.94 3.34

Center 7.32 4.25 3.94 3.34

Bottom 7.32 4.25 3.94 3.34

(a) (b)

(c) (d)

Figure 6.28: Operational support pressure considering hydrostatic and excess pore pres-

sures: (a) Horn (1961) model; (b) Anagnostou & Kovari (1994) model; (c) Broere (2001)

model; (d) KEM model (M2)
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Table 6.5: Operational support pressure for different models considering hydrostatic and

excess pore pressures

Operational support

pressure (kPa)

Horn (1961) Anagnostou &

Kovari (1994)

Broere (2001) KEM model (M2)

Crown 328.82 264.73 262.9 255.04

Center 378.82 314.73 312.90 305.04

Bottom 428.82 364.73 362.90 355.04

Table 6.6: Piezometric head for different models considering hydrostatic and excess pore

pressures

Piezometric

head (m)

Horn (1961) Anagnostou &

Kovari (1994)

Broere (2001) KEM model (M2)

Crown 12.89 6.49 6.27 5.50

Center 12.89 6.49 6.27 5.50

Bottom 12.89 6.49 6.27 5.50

Table 6.7: Penetration velocity (vp) for different models

Horn (1961) Anagnostou &

Kovari (1994)

Broere (2001) KEM (M2)

Pore velocity (mm/s) 0.64 0.32 0.31 0.27



6.10 Practical example 181

Time (min.)
0 10 20 30 40 50 60

P
ie

zo
m

e
tr

ic
 h

e
a

d
 (

m
)

0

2

4

6

8

10

12

14

S
lu

rr
y 

p
e

n
e

tr
a

tio
n

 d
e

p
th

 (
m

)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(a)

Time (min.)
0 10 20 30 40 50 60

P
ie

zo
m

e
tr

ic
 h

e
a

d
 (

m
)

0

2

4

6

8

10

12

14

S
lu

rr
y 

p
e

n
e

tr
a

tio
n

 d
e

p
th

 (
m

)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(b)

Time (min.)
0 10 20 30 40 50 60

P
ie

zo
m

e
tr

ic
 h

e
a
d
 (

m
)

0

2

4

6

8

10

12

14

S
lu

rr
y 

p
e
n
e
tr

a
tio

n
 d

e
p
th

 (
m

)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(c)

Time (min.)
0 10 20 30 40 50 60

P
ie

zo
m

e
tr

ic
 h

e
a
d
 (

m
)

0

2

4

6

8

10

12

14

S
lu

rr
y 

p
e
n
e
tr

a
tio

n
 d

e
p
th

 (
m

)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(d)

Figure 6.29: Slurry penetration depth with time for different model: (a) Horn (1961)

model; (b) Anagnostou & Kovari (1994) model; (c) Broere (2001) model; (d) KEM model

(M2)
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6.10.1 Determination of operational support pressure considering

only hydrostatic pore pressure

Within this method, only the effect of hydrostatic pore pressure on the operational support

pressure is considered. The calculation results are presented in Tables 6.3 and 6.4. The

presented values for the operational support pressure are the sum of effective and the pore

pressure at the crown, axis or the bottom of the tunnel face.

The following four steps are used to determine the operational support pressure.

1. Calculating Nγ for dry soil which can be obtained from given graph in this thesis

(e.g., Fig 5.18, Chapter 5) or from publications on the applied wedge-silo models.

Then, use Eqs. (6.41), (6.42) and (6.43) for calculating the effective and the total

support pressure.

2. Adding the safety margin of 10 kPa for the effective support pressure resulting in

the pressure corresponding to the piezometric head.

3. The operational support pressure po is equal to the sum of the pressure corresponding

to the piezometric head and the hydrostatic pore pressure.

4. The maximum support pressure (pmax) is calculated using Eq. (6.6) resulting in

pmax = 460 kPa, for the given example, which is higher than the operational support

pressure for all stability models, see Table 6.3.

The calculated operational support pressures are graphically shown in Fig. 6.27.

6.10.2 Determination of operational support pressure considering

hydrostatic and excess pore pressures

In this method, both the effect of hydrostatic and excess pore pressures on the operational

support pressure po is considered. The values of the operational support pressures are

presented in Table 6.5 at the crown, axis or the bottom of the tunnel face.

The following five steps are used to determine the operational support pressure.

1. Obtaining the value of po/γ
′D from Fig. 6.18 (C/D = 2, ϕ′ = 25o) for different

stability models. Thereafter, the operational support pressure po is calculated. The

calculated operational support pressures are graphically shown in Fig. 6.28.
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2. The maximum support pressure (pmax) is 460 kPa, which is higher than the opera-

tional support pressure for all stability models, see Table 6.5

3. The pressure corresponding to piezometric head uφo is calculated by subtracting

the hydrostatic pore pressure from the operational support pressure (uφo = po− u).

Thereafter, the piezometric head φo is calculcaltd by dividing uφo with γw (φo =
uφo
γw

),

see Table 6.6

4. The penetration velocity (vp) is calculated for each stability model using Eq. (6.15).

Then, the penetration velocity is compared with drilling velocity of TBM (vTBM).

As can be seen from Tables 6.2 and 6.7, the penetration velocity (vp) for every

stability model is less than the drilling velocity of TBM (vTBM = 1 mm/s) . This

means that the supporting fluid will not be able to penetrate further than the depth

that is scraped away during each cutterhead rotation.

5. Calculating the drop in piezometric head with time for each stability model during

the stand-still phase using Eq. (6.18) or using Figs. 6.19 to 6.22. The results for

each model are presented in Fig. 6.29.

6.11 Summary

Tunnels are often constructed below the water table. Therefore, the destabilizing effect

induced by the hydrostatic and excess pore pressure should be taken into account in

calculating the minimum support pressure. The traditional wedge-silo models and KEM

model (M2) have been extended to consider with the excess pore pressure.

The excess pore pressure distribution resulting from the model of Bezuijen (2002) has

been integrated into these stability models. After adding the external forces caused by

the excess pore pressure into the equations of static equilibrium, the total support pressure

for stabilizing the tunnel face is obtained. The results show a significant influence of excess

pore pressure on the calculated operational support pressure.

Numerous calculations were carried out and dimensionless graphs for the operational

support pressure were developed. These graphs allow a quick assessment of the tunnel face

stability in case of fully saturated soil. A practical example is provided, demonstrating

the potential use of the proposed design charts.





7 Conclusions and future work

7.1 Conclusions

The stability and safety of the excavation face has always been of great concern in tunnel

construction. The support pressure needed at the face of the tunnel can be determined

using various analytical and numerical methods. The main goal of this research is to

apply the principle of Kinematical Element Method (KEM) to investigate the stability

of the tunnel face in dry or saturated homogenous or layered soil. In order to achieve

this objective, three-dimensional (3D) stability KEM models (M, M1 and M2) have been

developed. Firstly, 3D KEM model (M) consists of two rigid blocks, a tetrahedron wedge

block and a triangular prism block. Thereafter, two different modified KEM models with

a failure mechanisms consisting of either five (model M1) or six (model M2) blocks are

proposed. The KEM models (M and M2) have been used to investigate the effect of cover to

diameter ratio (C/D), internal friction (ϕ) and cohesion on minimum the support pressure

in dry soil. Furthermore, KEM model (M2) has been applied to study the influence of

hydrostatic and excess pore pressure on the stability of the tunnel face.

The conclusions derived from the simulations with the three different KEM models have

been grouped in three main subsections as follows: conclusions from the basic KEM model

(M), conclusions from modified KEM models (M1 and M2) and finally the conclusions

drawn regarding the effect of excess pore pressure on the stability of the tunnel face.

KEM model (M)

1. A computer program w with graphical user interface (KEM-3D-T) was developed.

Thereafter numerous calculations were carried out with this program. The results

were presented in terms of stability charts. These stability charts represent a tool

for a convenient estimation of the minimum support pressure on a circular face of

a tunnel in dry soil.

185
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2. Based on earth pressure measured above the tunnel crown in physical model tests

(Chen et al., 2013), a 3D active earth pressure acting on the one of the surfaces of

the vertical prism (silo block) is assumed. The consideration of the 3D active earth

pressure on one of the vertical surfaces of the silo block arching in KEM model (M)

supersedes any further assumptions.

3. The results of KEM model (M) for minimum support pressure are compared with the

results of analytical models, numerical simulations (FEM and DEM) and physical

model tests from the literature as well as with the results of own simulations using

the Finite Element Limit analysis (FELA). The results show a reasonable agreement

with the outcome of these methods for ϕ ≥ 20o. Furthermore, the KEM simulations

have the advantage of reduced computation time when compared to FEM and FELA

models.

4. A formula for calculating the minimum support pressure is proposed in terms of the

sum of unit weight of the soil (γ), cohesion (c) and surcharge load (q) multiplied

by non-dimensional bearing capacity coefficients Nγ, Nc and Nq respectively. The

parametric studies showed that Nγ, Nc and Nq are decreasing with an increase in

the friction angle of the soil. The value of Nq becomes equal to zero for C/D ratios

greater than or equal to 1.5 at ϕ ≥ 15o.

5. The results of KEM model (M) revealed that the cover to diameter ratio C/D has

a significant influence on the minimum support pressure. This effect is also deduced

from the solutions of other limit equilibrium methods (e.g., Jancsecz & Steiner, 1994;

Anagnostou & Kovari, 1994; Broere, 2001) and has been also observed in physical

model tests (Chambon & Corte, 1994; Chen et al., 2011).

6. The results of the KEM simulations indicate that for all surfaces of the silo part

above the tunnel face, the values of the 3D lateral earth pressure coefficients (K3D)

are very close. A new equation for the determination of the 3D lateral earth pressure

coefficient (K3D) between the silo and the adjoining soil is proposed.

7. As a result of searching for the minimum support pressure in the optimizing process

of the failure mechanism, the sliding surface between the silo block (upper part)

and the wedge block (lower part) is found to be inclined instead of horizontal as

assumed by some of the analytical methods. The inclination of this internal failure

plane depends on the soil strength parameters, as well as the geometry of the tunnel.
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Modified KEM models (M1 and M2)

1. The increase in the number of blocks within the wedge in case of the modified fail-

ure mechanism (M1) slightly improves the value of the minimum support pressure,

meaning that this value slightly increases. The modified failure mechanism (M1)

with its curved failure zone in the soil in front of the tunnel face is more consistent

with the failure zones that were observed in physical model tests.

2. The minimum support pressure obtained from KEM model (M2) is higher than

that predicted by KEM model (M), which indicates that the solution of the modified

failure mechanism (M2) is conservative compared to the failure mechanism assumed

in model (M).

3. The results of KEM model (M2) are much closer to the results of Broere (2001) than

to those of Anagnostou & Kovari (1994) for ϕ < 30o. In contrast for ϕ > 30o, the

solution of KEM model (M2) agrees well with the results of Anagnostou & Kovari

(1994).

4. In case of a ground composed of two soil layers, the results of KEM model (M2)

predicted a higher minimum support pressure than KEM model (M), FELA and

other upper bound solutions. However, the simulations with KEM model (M2) gave

a lower minimum support pressure than wedge-silo models.

5. For open face tunneling, as expected the result of the KEM calculations indicate

that by increasing the friction angle and the cohesion of the soil, the safety factor

increases. The results also demonstrate that the ratio of cover to diameter (C/D)

has a significant effect on the safety factor.

6. On the basis of the results from simulations with KEM model (M2), a number of

design charts and fitting formulas have been established. These charts and formu-

las enable an assessment of the support pressure that needs to be applied on the

tunnel face to ensure the stability of the tunnel face. These charts can be used by

geotechnical engineers for preliminary design of closed face and open face tunneling.

Effect of excess pore pressure on the stability of the tunnel face

1. A tunnel excavation below the ground water table elevation exerts a significantly

unfavourable impact on stability of the tunnel face. In particular, the face pressure

required is increasing due to the hydrostatic pore pressure. A large amount of the

operational support pressure is needed to equilibrate the hydrostatic pore pressure.
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2. The excess pore pressure is incorporated into KEM model (M2) as external forces

acting on each face of the wedge. The model of Bezuijen (2002) is used to predict

the excess pore water pressures acting on of each face of the failure mechanism.

3. As expected the results of the KEM simulations show that under the influence of

hydrostatic and excess pore pressure, an increase of the friction angle of the soil

leads to a decrease of the operational support pressure as well as the piezometric

head in the TBM chamber.

4. A comparison between the results of different models considering the excess pore

pressure revealed that the KEM model (M2) gives lower operational support pres-

sures than the methods of Anagnostou & Kovari (1994) and Broere (2001). However,

the differences do not exceed 10%.

5. The excess pore pressure acting on the tunnel face should be considered for proper

design and consequently safe construction of a tunnel. Therefore, as a result of a

parametric study, a number of design graphs is proposed, in which the normalized

operational support pressure is plotted as a function of friction angle for different

C/D ratios and for different models.

6. In order to demonstrate the influence of excess pore pressure on the operational

support pressure, a practical example is presented.

7.2 Future work

While, the objectives of this research have been achieved, there are some valuable exten-

sions that deserve further studies in future. The potential developments can be stated as

follows:

1. Although, KEM model (M2) is composed of six blocks in the failure mechanism

gives a good results in comparison to other approaches, a further modification can

be implemented to the failure mechanism of KEM model (M2) by increasing the

number of blocks in the wedge.

2. A further study can be carried out to investigate the stability of a circular tunnel

in purely cohesive soils where the undrained shear strength is either constant or

increases linearly with depth.

3. The present study does not take into account the heterogeneity of natural soil. The

stability of the tunnel face in multilayered soil with different geometrical soil profiles
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(plane, or sloping ground surface, and horizontal or inclined layers) could be further

investigated using KEM model (M2).

4. The coupling of KEM model (M2) with other numerical methods (e.g., FEM) can

be potentially implemented in suitable computer codes to investigate the effect of

excess pore pressure on the operational support pressure.
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des Grundbauinstituts der Technischen Universität Berlin, Heft 4 .

Washbourne, J. (1984), ‘The three-dimensional stability analysis of diaphragm wall

excavations’, Ground Eng. 17, 24–29.

Yamamoto, K., Lyamin, A. V., Wilson, D. W., Sloan, S. W. & Abbo, A. J. (2011),

‘Stability of a single tunnel in cohesive frictional soil subjected to surcharge load-

ing’, Canadian Geotechnical Journal 48, 1841–1854.

Yamamoto, K., Lyamin, A. V., Wilson, D. W., Sloan, S. W. & Abbo, A. J. (2013),

‘Stability of dual circular tunnels in cohesive-frictional soil subjected to surcharge

loading’, Computers and Geotechnics 50, 41–54.

Zhang, C., Han, K. & Zhang, D. (2015), ‘Face stability analysis of shallow circular

tunnels in cohesive frictional soils’, Tunnelling and Underground Space Technology

50, 345–357.

Zhang, Z., Hu, X. & Scott, K. D. (2011), ‘A discrete numerical approach for modeling

face stability in slurry shield tunnelling in soft soils’, Computers and Geotechnics

38(1), 94–104.

ZTV (2012), Zusätzliche Technische Vertragsbedingungen und Richtlinien für In-

genieurbauten. Teil 5: Tunnelbau. Abschnitt 3: Maschinelle Vortriebsverfahren.

Bundesanstalt für Straßenwesen, in German, Technical report.



Schriftenreihe des Lehrstuhls für Grundbau, Boden- und Felsmechanik

der Ruhr-Universität Bochum

Herausgeber: H.L. Jessberger

1 (1979) Hans Ludwig Jessberger

Grundbau und Bodenmechanik an der Ruhr-Universität Bochum

2 (1978) Joachim Klein

Nichtlineares Kriechen von künstlich gefrorenem Emschermergel

3 (1979) Heinz-Joachim Gödecke
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Über das Verpressankertragverhalten unter kalklösendem Kohlensäureangriff
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