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Vorwort des Herausgebers

Herr Qarmout hat sich in seiner Dissertation mit der Stabilitat der Ortsbrust beim
maschinellen Tunnelvortrieb auseinandergesetzt. Fiir den minimal erforderlichen Stiitz-
druck, der vom Schild einer Tunnelbohrmaschine auf die Ortsbrust wirken muss, existiert
eine Reihe analytischer und numerisch basierter Anséatze, die aufgrund unterschiedlicher
Annahmen beziiglich der Kinematik oder Statik des Bruchmechanismus zum Teil je-
doch deutlichvoneinander abweichende Ergebnisse liefern. Herr Qarmout hat erstmals
die Kinematische Elemente Methode (KEM) zur Losung des Problems der Ortsbrust-
stabilitat eingesetzt. Wahrend die Anwendung der KEM bisher im Wesentlichen auf
ebene Probleme (2D) begrenzt war, handelt es sich bei der Untersuchung von Herrn
Qarmout um eine Erweiterung auf den 3D-Fall. Ziel der Arbeit ist es, kinematisch
mogliche 3D-Bruchmechanismen fiir das Problem der Ortsbruststabilitat mit Hilfe der
KEM zu untersuchen, die Ergebnisse mit anderen Losungen aus der Literatur zu ver-
gleichen und a fiir ausgewéhlte Randbedingungen a die KEM-Modelle durch den Ab-
gleich mit Messungen in Modellversuchen zu validieren. Herr Qarmout hat drei kine-
matisch mogliche Bruchmechanismen, jeweils bestehend aus mehreren Starrkorpern, mit
Hilfe der KEM untersucht. Hierfiir hat er die Gleichungen der KEM zur Losung der
Kinematik, Statik und Optimierung der Geometrie der Bruchkorper in ein Matlab-Skript
mit graphischer Benutzeroberflache implementiert. Die Visualisierung der Kinematik ist
dabei besonders hilfreich, um eine Vorstellung von den Verschiebungsvorgingen in den
komplexen 3D-Mehrkorpermodellen zu bekommen. Die Ergebnisse der eigenen KEM-
Simulationen fiir den erforderlichen Stiitzdruck vergleicht Herr Qarmout mit den Prog-
nosen anderer Ansitze aus der Literatur. Hierfiir gibt er zunachst einen ausfiithrlichen
Uberblick iiber die verschiedenen existierenden Ansitze, bevor er die Unterschiede der
mit seinen und mit den verschiedenen vorhandenen Ansétzen berechneten Stiitzdriicke
in Abhangigkeit der Bodenparameter und der Geometrie herausarbeitet. Fiir ausge-
suchte Randbedingungen validiert er die KEM-Modelle anhand der Nachrechnung von
1g- bzw. ng-Modellversuchen. Auf Basis von Parameterstudien unter Einsatz der KEM-
Modelle leitet Herr Qarmout einfache Bemessungsansétze fiir die praktische Anwendung
ab. Beim maschinellen Tunnelvortrieb mit Fliissigkeitsstiitzung unterhalb des Grund-
wasserspiegels treten in Abhangigkeit der verwendeten Stiitzsuspension und der Boden-
verhaltnisse Porenwasseriiberdriicke vor der Ortsbrust auf. Herr Qarmout hat seine KEM-

Modelle dahingehend erweitert, dass er solche Porenwasseriiberdriicke beriicksichtigen

il



kann und zeigt deren Einfluss auf die Ortsbruststabilitat auf. Fiir einfache Randbedin-
gungen, z.B. einen in Hohe der Geldndeoberkante stehenden Grundwasserspiegel, leitet
er auch hier Bemessungsanséitze fiir die praktische Anwendung ab. Herr Qarmout hat
mit dieser Arbeit einen sehr kompletten Satz anBemessungshilfen fiir das Problem der
Ortsbruststabilitiat geschaffen.

Bochum, November 2019

Prof. Dr.-Ing. habil. Torsten Wichtmann
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Abstract

The determination of adequate tunnel face support pressure is one of the fundamental
issues in tunnel excavation using a tunnel boring machine, which ensures the safety of
the excavation and prevents the collapse of the tunnel face. In this research, using KEM
(Kinematical Element Method), a new calculation procedure is introduced to investigate
the stability of a circular tunnel face. Three KEM models (M), (M1) and (M2) have
been developed with different 3D failure mechanisms. KEM models (M1) and (M2) are
developed based on KEM model M. In KEM models (M) and (M1), the cross section of
the tunnel face is assumed to be a triangle, whereas, it is assumed to be a square in KEM
model (M2). In order to incorporate the contribution of the 3D arching in predicting the
minimum support pressure, a 3D active earth pressure acting on the vertical slip surfaces

from the adjoining soil is presumed for the three KEM models.

To evaluate the validity of the KEM models, a comparison between the results of KEM
models M and M2 with the results of analytical models, based either on the limit equilib-
rium method or the limit analysis method (upper bound solution), and numerical models
using the finite element method has been undertaken. Also, a parametric analysis has
been carried out on KEM models (M) and (M2) to study the influence of cover depth to
tunnel diameter ratio (C/D), internal friction angle of the soil (¢) and soil cohesion (c)
on the normalized support pressure (p,/(7D)). The results of the parametric study are

provided in form of design equations and stability charts for convenient use in practice.

In case of open face tunneling, KEM models (M) and (M2) have been applied to estimate
the factor of safety of the tunnel face using the Strength Reduction Method (SRM). The
computed factors of safety have been compared to the results of other existing approaches.
In addition, using KEM model (M2), the influence of hydrostatic and excess pore pressure

on the stability of the tunnel face during tunnel excavation has been investigated.

Finally, general conclusions regarding the results of KEM models (M), (M1) and (M2)

are drawn and further suggestions for future studies are presented.
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Zusammenfassung

Das Festlegen des geeigneten Stiitzdrucks an der Ortsbrust ist eine wichtige Aufgabe beim
maschinellen Tunnelvortrieb, um ein Versagen der Ortsbrust zu vermeiden und die Sicher-
heit des Vortriebs zu gewéhrleisten. In dieser Arbeit werden auf Basis der Kinematischen
Element Methode (KEM) drei neue Ansétze zur Berechnung der Stabilitét der Ortsbrust
eines Tunnels mit Kreisquerschnitt entwickelt (M, M1 und M2). Ausgangspunkt der En-
twicklung ist das Modell M, in dem ebenso wie bei Model M1 die kreisformige Ortsbrust
durch eine Dreiecksfliche ersetzt wird. Im Modell M2 wird die kreisformige Ortsbrust
durch ein Quadrat abgebildet. In allen drei Modellen wird die Gewdlbebildung im Bo-
den oberhalb des Tunnels beriicksichtigt. Hierzu wird angenommen, dass ein raumlicher

aktiver Erddruck auf die vertikalen Seitenflachen des Bruchmechanismus wirkt.

Die Ergebnisse der Modelle M und M2 werden mit den Ergebnissen existierender ana-
lytischer Ansatze, welche entweder auf der Limit Equilibrium Method oder auf der Limit
Analyses Method (obere Schranke) beruhen, und mit Ergebnissen von numerischen Sim-
ulationen verglichen. Parameterstudien zeigen den Einfluss der Uberdeckungshdhe, des
Reibungswinkels und der Kohasion des Bodens auf den erforderlichen Stiitzdruck. Die
Ergebnisse der Parameterstudien werden in Form praktisch anwendbarer Bestimmungs-

gleichungen und Bemessungsdiagrammen aufbereitet.

Fiir den Fall des Tunnelvortriebs mit nicht gestiitzter Ortsbrust wird mit den Modellen M
und M2 die Standsicherheit der Ortsbrust mit der Methode der ¢ - ¢ Reduktion ermittelt.
Die Ergebnisse werden mit denen vorhandener Methoden verglichen. Zusatzlich wird mit
dem Model M2 der Einfluss des Grundwassers und von Porenwasseriiberdriicken auf die
Ortsbruststabilitat untersucht.

X1
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1 Introduction

1.1 Motivation and objectives

1.1.1 Motivation

In recent years, the expansion of cities and urban areas has resulted in a rising demand
for underground transportation systems. The construction of the transportation tunnels

represents a viable solution to minimize the volume of traffic on the ground surface.

The excavation of tunnels is frequently done with a mechanized Tunnel Boring Machine
(TBM). The stability problem of the tunnel face refers to the support pressure which is
applied at the face of the TBM as it moves forward. This support pressure must be large
enough to prevent the soil from failing into the tunnel (active collapse failure), but small
enough in order not to cause the soil to be pushed up from the excavated tunnel face,

which would lead to a heave of the soil at the ground surface (passive failure).

The adequate tunnel face pressure to avoid face instability depends on various factors
such as soil properties (e.g., shear strength, permeability, unit weight), tunnel geometry

(e.g., diameter, cover depth) and location of the ground water table.

As the tunnel excavation advances, the soil above the excavation face tends to move
downward. Meanwhile, the moving soil is resisted by stationary soil leading to the de-
velopment arching in the soil (vertical arching), see Fig. 1.1 (a). Furthermore, the soil
at the front of the tunnel face tends to yield towards the excavation face. However, this
tendency is resisted at the boundaries of the tunnel face. As a result, horizontal arching
is developed around the tunnel face, see Fig. 1.1 (b). This vertical and horizontal arching

has significant influence on the tunnel face support pressure.

Another important aspect requires more attention when evaluating a safe support pressure
in case that a slurry TBM is used to excavate the tunnel in a water-saturated soil. In
that case the support medium will flow out from the tunnel face into the surrounding soil

and will lead to an increase of pore water pressure at the front of the tunnel face.
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Figure 1.1: Vertical and horizontal arching during excavation of the tunnel: (a) vertical

arching above the tunnel face; (b) horizontal arching at the front of the tunnel face
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The increase of the pore water pressure at the front of the tunnel face is associated with
a hydraulic gradient between the mixing chamber of the TBM and the surrounding soil.
The hydraulic gradient results in seepage forces in the soil near the tunnel face leading
to a local reduction of effective stress and thus shear strength of the soil. The reduction
of shear strength is a consequence of the reduction of effective normal stress acting on
potential sliding planes. Nevertheless, only limited attention has been given to the effect
of the excess pore pressure distribution on the required support pressure in previous

investigations (e.g., Broere, 2001; Dias & Bezuijen, 2016).

Analytical approaches such as the Limit Equilibrium Method (LEM) (e.g., Horn, 1961;
Jancsecz & Steiner, 1994; Anagnostou & Kovari, 1994; Broere, 2001; Kirsch & Kolymbas,
2005) or the Limit Analysis Method (LAM) (e.g., Leca & Dormieux, 1990; Mollon et al.,
2010; Tang et al., 2014; Ibrahim et al., 2015) are used to assess the stability of the tunnel
face assuming various failure mechanisms. However, the results are quite different. The
Finite Element Method (FEM) (e.g., Peila, 1994; Ng & Lee, 2002; Mayer et al., 2003;
Sterpi & Cividini, 2004; Kim & Tonon, 2010), the Discrete Element Method (DEM) (e.g.,
Maynar & Rodriguez, 2005; Funatsu et al., 2008; Zhang et al., 2011) and the Finite
Difference Method (FDM) (e.g., Li et al., 2009; Dias, 2011; Senent & Jimenez, 2015)
may be effective tools for analyzing the stability of the tunnel face too, considering the
stress-strain relationship of the soil and thus incorporating soil behavior more realistically.
However, the simulation of the tunnel face failure using three dimensional DEM, FEM or

FDM model is very time consuming.

Inspite of the importance of a stable tunnel face, specific recommendations or technical
standard for calculating the support pressure are limited (e.g., DAUB, 2016). In practice,
the estimation of the support pressure to be applied at the tunnel face is based on the
experience acquired in the field. This support pressure is chosen in dependence of the soil

conditions and the working parameters of the tunnel boring machine.

On the other hand, on real projects the tunnel engineer needs to find a simple calculation
model in the literature, which can be transformed into a spread sheet or simple design
charts that can be used to quickly estimate the support pressure (for preliminary design

studies).

To enhance the state of the art of this topic, within this dissertation a new 3D approach is
developed to investigate the stability of the tunnel face. Using KEM (Kinematical Element
Method), different 3D failure mechanisms are studied. The proposed 3D KEM models are
initially developed for homogeneous soil and consider the effect of hydrostatic and excess

pore pressures. Consideration is given for different soil strength parameters (e.g. cohesion
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and friction angle) and the geometry of the tunnel that influence the stability of the tunnel
face. The investigation of the 3D failure mechanisms delivers minimum support pressure
(in case of closed face tunneling) or the factor of safety (in case of open face tunneling).
For quantifying the effect of 3D silo arching on the support pressure, a feasible approach
in calculating the three-dimensional lateral earth pressure coefficient (K3p) is proposed.
Within this approach, a 3D active earth pressure acting on the vertical silo slip surfaces

is assumed.

Based on the KEM models, design charts and equations are proposed to be used by
practical engineers in the preliminary stages of tunnel design. They deliver a safe operating

support pressure that should be applied to the excavation face by a tunnel boring machine.

1.1.2 Objectives

The overall aim of this research is to develop a new 3D model to investigate the stability of
the tunnel face which initially developed for deal with homogenous and incorporates the
effect of hydrostatic and excess pore water pressure on the minimum support pressures
to be applied at the tunnel face by a TBM. In particular, the following objectives are
addressed:

e Objective 1: To use the principle of KEM to investigate the stability of the tunnel

face in dry or water-saturated for homogeneous soil.

e Objective 2: To perform a systematic comparison between the results of the KEM
models and those of existing approaches in the literature, which have been developed

to investigate the stability of the tunnel face.

e Objective 3: To evaluate the safety factor for the tunnel face stability in open-face

tunneling.

e Objective 4: To investigate the influence of hydrostatic and excess water pore pres-

sures on the stability of the tunnel face during tunnel construction

e Objective 5: To develop design equations and stability charts, which can be used in
practice (for preliminary design studies) and enable a quick calculation for tunnel

engineers.

To achieve the previous objectives, the guiding methodology of the proposed research
is presented within Fig. 1.2 and Fig. 1.3. In Fig. 1.3, it should be clearly noted that

the minimum support pressure in dry soil condition has been obtained as described by
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Figure 1.2: Guiding methodology for the proposed research using KEM models
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original authors. Within this thesis some of these existing approaches have been extended
to investigate the stability of the tunnel face in two-layered soils and to evaluate the
factor of safety in open-face tunneling. Furthermore, the existing approaches have been
extended, to study the effect of hydrostatic and excess pore water pressure on the stability

of the tunnel face.

1.2 Contents of the thesis

This thesis consists of seven chapters, the content of each chapter can be briefly summa-

rized as:
e Chapter 1: Introduction
This chapter introduces the motivation, objectives and the organization of this the-
sis.
e Chapter 2: State of the art
In this chapter, an overview on various tunneling excavation methods is presented,

particularly on mechanized methods. Furthermore, this chapter contains a review

of the literature regarding previous investigations on the tunnel face stability.
e Chapter 3: Kinematical Element Method (KEM)

Within this chapter, the Kinematical Element Method (KEM), its main assumptions

and the necessary optimization method are described.
e Chapter 4: KEM model M for tunnel face stability stability

In this chapter, the fundamental assumptions of KEM model (M) and the fail-
ure mechanism for the stability analysis of the tunnel face are introduced. Also,
the calculation procedure for estimating the 3D lateral earth pressure coefficient is
explained. The results of KEM calculations are presented and discussed. A compar-
ison between the results of KEM model (M), existing approaches in the literature

and finite element limit analysis solutions is undertaken.
e Chapter 5: Modified KEM models (M1 and M2)

In this chapter, two modified failure mechanisms are studied using KEM to estimate
the minimum support pressure of the tunnel face. The results obtained with KEM

model (M2) are compared to other solutions available from the literature. For an
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open-face tunneling, the safety factor are calculated using the strength reduction

technique.
Chapter 6: Effect of excess pore pressure on the stability of the tunnel face

In this chapter, the influence of the excess pore pressure, generated in the soil
by a slurry shield TBM, on the effective and total support pressure during tunnel
excavation is discussed. As a result of the analysis, a number of design graphs that

can be used to evaluate the operational face support pressure is proposed.
Chapter 7: Conclusions and future work

This chapter provides a summary of the research, done within this thesis. The most
important findings of this study are addressed. Furthermore, an outlook on possible

future work is given.



2 State of the art

2.1 Introduction

The main key to a successful tunnel construction is the appropriate selection of the tunnel
excavation technique. The choice is based on the known or expected ground conditions as
well as the adaptability of the excavation technique to variability of the ground conditions.
There are many different tunnel excavation methods (e.g., cut and cover, conventional
and mechanized tunneling) to suit a range of different project conditions. In case of
mechanized tunneling, adequate support pressure (e.g., compressed air, slurry or earth
pressure support) at the tunnel face is required to counterbalance the pressure generated

by the soil, water and overlying infrastructures and thus stabilize the tunnel face.

Several analytical methods are used in evaluating the required support pressure which dif-
fer in their calculation assumptions, required computing time and calculation efficiency.
The analytical approaches can basically be divided into two groups, namely, Limit Equi-
librium Method (LEM) and Limit Analysis Method (LAM). The limit equilibrium method
has been widely used for analyzing the stability of the tunnel face (e.g., Horn, 1961; Janc-
secz & Steiner, 1994; Anagnostou & Kovari, 1994; Broere, 2001). In the limit equilibrium
method the static equilibrium between the forces acting on the soil masses involved in the

collapse mechanism is considered.

The second group of analytical methods is based on the so-called the upper bound theory
(e.g., Leca & Dormieux, 1990; Mollon et al., 2010; Tang et al., 2014; Ibrahim et al., 2015),
which states that the work done by external loads in an increment of displacements for a

kinematically admissible mechanism equals the energy dissipated by internal stresses.

The application of numerical methods with advanced constitutive models improved sub-
stantially the analysis of the tunnel face stability, considering the various 3D aspects.
The Finite Element Method (FEM), the Discrete Element Method (DEM) and the Finite
Difference Method (FDM) are useful tools in simulating the stability of the tunnel face
were performed (e.g., Peila, 1994; Ohta & Kiya, 2001; Vermeer et al., 2002; Kirsch, 2009).
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However, the simulation of the tunnel face failure using three dimensional DEM, FEM or

FDM models is very time consuming.

For investigating the soil deformations caused by tunneling, various physical model tests
were conducted. Either centrifuge (ng) model tests or small scale (1g) model tests were
performed (e.g., Chambon & Corte, 1994; Takano et al., 2006; Kirsch, 2009; Idinger
et al., 2011). The physical models provide a beneficial information about ground surface
settlement, the required face support and insight into the 3D arching at the front of the
tunnel face. Moreover, the results of the physical model tests can be used to validate the

numerical and the analytical models.

2.2 QOverview on various tunnel excavation methods

A tunnel construction consists of three main processes, namely excavation, mucking and
primary support. Tunnel excavation is the procedure of removing soil from the tunnel
face. Mucking is the process of removing the spoil from the tunnel. Throughout the
years, many different techniques for tunnel face excavation have been developed. The
appropriate method of tunnel excavation depends on many factors such as geological
soil conditions, the impact of the excavation on the surrounding environment, time/cost
considerations, the ground water conditions, the length and diameter of the tunnel, the
depth of the tunnel and the final use of the tunnel (Chapman et al., 2017).

Basically, two types of tunnel excavation methods are used:

e Conventional method

e Mechanized method

2.2.1 The conventional method

Conventional tunneling is a method for excavating a tunnel using conventional machin-
ery (e.g., tracked loaders, excavators, locomotives, dump trucks) without removing the
buildings or interrupting the possible activities (e.g., transportation) at the ground sur-
face. The excavation is preliminarily supported by ground improvement (e.g., grouting,
jet grouting, soil freezing) or permanent support system (e.g., reinforcement, steel pipes,
forepole). The conventional method is basically composed of three main construction
(ITA, 2009) steps, that are continuously repeated 1) excavation, 2) mucking, 3) instal-

lation of temporary and permanent support systems. The conventional tunneling is a
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Figure 2.1: Tunnel San Fedele, Switzerland (tunnelingonline, 2019)

flexible excavation process in which many changes can be easily applied during tunnel

construction (e.g., change the diameter of the tunnel, ground improvement).

As an example of the application of the conventional excavation method, the tunnel San
Fedele (Roveredo Bypass Project) in Switzerland with a maximum of 25 m overburden is

shown in Fig. 2.1.

2.2.2 Mechanized method

Mechanized tunneling summarizes all techniques where excavation is performed mechan-
ically by means of teeths, picks or disks (ITA, 2009). The first attempt to utilize the
mechanized tunneling was made by an American engineer Charles Wilson in 1851, which
is considered as a successful continuous borer for the rock. Wilson’s machine was trialled
on the East portal of the Hoosac tunnel in Massachusetts. The general idea was that
the machine would cut into the rock and then that cut rock could be blasted out. Since
then, the technological development for mechanized tunneling has made a great progress.
Mechanized tunneling is performed by Tunnel Boring Machines (TBM). These machines
do not only carry out the excavation of the ground, but they also provide a support

against the surrounding soils. Fig. 2.2 shows a typical Earth Pressure Balance TBM.

The mechanized tunneling is mainly divided into two types, namely open face tunneling
and closed face tunneling. In open face tunneling, the tunnels are constructed without

applying permanent support to the tunnel face. Whereas, in closed face tunneling, the
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face support is continuously applied e.g. by a pressurized slurry, earth pressure balance

or compressed air.

2.2.2.1 Open face tunneling

In open face tunneling, there is no permanent support pressure applied at the tunnel face
during the excavation process. The stability of the tunnel face must be guaranteed by
the shear strength of the soil or by a temporary support e.g. by means of shortcrete and
anchors. The open face tunneling is widely used for tunnel construction in soils with high
shear strength (Moller, 2006).

Regarding the process of excavation in case of open face tunneling two techniques can be
distinguished: conventional open face tunneling, and open face shield tunneling. In con-
ventional open face tunneling, the tunnel is excavated using the typical digging machines
and the excavation is preliminarily supported by ground improvement or reinforcement.
The conventional open face tunneling allows either full-face or partial excavation of the
tunnel cross section, while in open face shield tunneling, fully mechanized heading ma-
chines are used to create a cavity and then segmental lining is inserted to secure the
cavity. The choice of one of these techniques depends on several factors including tunnel

sizes, structural analysis and geotechnical aspects (Moller, 2006).

2.2.2.2 Closed face tunneling

The principle of closed face tunneling is that an active pressure is continuously applied
at the tunnel face in order to reduce the ground deformation and control the tunnel face
stability. This method is used when the geological conditions are so unfavorable that the

tunnel face becomes unstable without instant application of support pressure.

The concept of using a closed face shield was introduced by Marc Brunel in 1825 during
construction of the underpass river Thames in London (Beaver, 1972). Also, at that
time Lord Cochrane suggested to use compressed air to stabilize soft or loose soil for the
tunneling excavation. In 1874, James Greathead designed a compressed air shield that
was intended for the construction of the Woolwich Tunnel in Great Britain (Hemphill,
2012).

There are four typical shield tunnel machines with different types of support that are
widely used; mechanical support, compressed air, earth pressure balance and slurry sup-

port. In the following each type of shield tunnel machine will be described briefly:
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. Mechanical support TBM

Mechanical support TBM has a full face cutterhead which provides face support
by constantly pushing the excavated material ahead of the cutterhead against the

surrounding ground.

. Compressed air TBM

Compressed air TBM is a tunnel boring machine where compressed air is used to
counteract the hydrostatic and pressure exerted on the tunnel face. The compressed
air pressure is practically uniform over the full height of the tunnel face. However,
the distribution of pressure due to water and earth pressure along depth of the
excavated tunnel face is trapezoidal, which means there are differences in the bal-
ancing of pressure at the tunnel face. This problem is solved by compressing the
air to balance the water and earth pressures at the lowest point of the tunnel face.
A compressed air TBM is specially suited for an excavation in stable soils of low
permeability with the presence of water (AFTES, 2000).

. Slurry shield TBM

A slurry shield TBM has a full face cutterhead. The cutterhead acts as the means of
excavation, whereas face support is provided by slurry counter pressure. The slurry
is a suspension composed of bentonite clay and water. The bentonite suspension
penetrates into the soil, forming a thin impermeable film (filter cake) which guar-
antees the transfer of counter pressure to the excavation face. This type of TBM
is particularly suitable for use in soils with low permeability (e.g., clayey soil, silt)
and heterogeneous soft ground (AFTES, 2000).

. Earth Pressure Balance shield (EPB)

The Earth Pressure Balance shield (EPB) has a full face cutterhead. The confine-
ment is achieved by pressurizing the excavated material in the cutterhead chamber.
Muck is extracted from the chamber continuously by a pressure discharge system.
The excavated soil is removed from the cutterhead chamber with its increased pres-
sure towards the tunnel where the ambient pressure is acting. The face support
counterbalances the ground water and the earth pressure is obtained by means of
the material excavated by the cutting wheel, which serves as support medium itself.
EPB is particularly suitable for soils which are capable to transmit the pressure
in the cutterhead chamber (e.g., silt, fine clayey sand, soft chalk, marl) (AFTES,
2000).
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Figure 2.3: 3D Horn’s model, Horn (1961): (a) Horn’s failure mechanism; (b) forces acting

on the wedge
2.3 Overview on tunnel face stability analysis models

As mentioned before, a variety of modeling strategies have been introduced by researchers
for simulating the stability of the tunnel face. Analytical approaches, numerical methods
and experimental model tests have been applied for that purpose. The research activities

for each method are briefly summarized in the following subsections.

2.3.1 Tunnel face stability analysis in case of frictional or

frictional-cohesive soil
2.3.1.1 Limit Equilibrium Method (LEM)

The limit equilibrium method is widely used as analysis technique for the stability of
geotechnical problems. It applies the static equilibrium between the acting forces on the

soil mass for the assumed collapse mechanism.

Based on the limit equilibrium method, various tunnel face stability models have been

established. The most popular one is the wedge-silo model.

The first systematic study for the 3D stability of the tunnel face was performed by Horn

in 1961. Horn (1961) presented a 3D failure mechanism replacing the circular shape of
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the tunnel face with a square shape as shown in Fig. 2.3. Horn’s failure mechanism
consists of a triangular prism wedge and a vertical rectangular prism above the wedge.
The triangular prismatic wedge is loaded by a vertical force resulting from the full weight
of the rectangular prism, i.e. no arching effect at the rectangular prism is taken into
account when calculating the vertical stress (o,(C') = C - ) acting on the top of the
wedge. In Horn’s failure mechanism no shear forces are taken into account between the
surfaces of the rectangular prism and the adjoining soil, as well as no shear force on the

horizontal plane between the rectangular prism and the wedge.

Horn (1961) presumed a linear distribution of vertical stress along the sides of the wedge,
see Fig. 2.5. Furthermore, the horizontal stress o is assumed to be linearly dependent
on the vertical stress o, by the coefficient of lateral earth pressure for the wedge Kedge-
Horn (1961) used Kyeqge = Ko with Ky = 1 — sin¢, according to Jaky (1944). The

vertical stress along the sides of the wedge is calculated as follows:
Ovnpedye (V) = (D —2) v+ C v (0<2< D) (2.1)

where z is the distance from the bottom of the tunnel, see Fig. 2.5. The shear stress

(Twedge) acting on the sides of the wedge is obtained as follows:
Tuetge () = ¢+ on(2) - tan g (2:2)

The shear forces (7) acting on the sides of the wedge (Fig. 2.6) can be determined as

follows: 5
T, =2 / rredge(2) - b(2) dz (2.3)
0

where b(z)dz denotes the width of the wedge at elevation z. Eq. (2.3) leads to

1 2
T5:D2-tan9-[0+K0-tangp-(g-w-D%—g-C-y)} (2.4)

According to the Mohr-Coulomb criterion, the shear force acting on the inclined sliding

surface is obtained as follows:

. D?
T:N-tangp—i—c

(2.5)

sin
By equilibrating the static forces on the wedge, the equations of equilibrium can be written

as:
ZFI:O’ P+T-cosO+Ts -cos — N -sinfl =0 (2.6)

ZFZIO, Gs+Gy—T-sinf —Ty-sinf) — N -cosf =0 (2.7)
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Figure 2.6: (a) Circular tunnel face approximated by a square and the force equilibrium

on wedge; (b) forces acting on the wedge; (c¢) force polygon

where the weight of the wedge is

Guw=05-7-D? cosf (2.8)
and the vertical force on the top of the wedge is

Gy=C-~-D*-cotd (2.9)

By combining Eq. (2.6) and Eq. (2.7) and eliminating the forces N and T, the required

support force P can be calculated from the following equation:

G, + G T, + ¢ (ip)
_ — sin (2.10)
cot(f + ) sinf - (cot 8 + tan )
The critical inclination angle # is determined by maximizing the support force P:
dP
— =0 2.11
=0 (2.11)

where 0° < 0 < 90°

The minimum support pressure is assumed to be uniformly distributed across the tunnel
face and thus given by

Latterly, Horn’s failure mechanism is called wedge-silo model. Using Horn’s failure mech-
anism, different approaches for the distribution of vertical stress with depth have been
proposed. The wedge-silo model has been used by several researchers as a basis for further

development.
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Based on Limit Equilibrium Method, Anagnostou & Kovari (1994), Jancsecz & Steiner
(1994), Broere (2001) and Anagnostou (2012) proposed 3D tunnel face stability models
based on Horn’s failure mechanism including the effect of soil arching in the silo by using

Janssen’s silo theory (1895), see Fig. 2.4.

The silo theory leads to the following equation for the vertical stress acting on the base
of the silo:
a-v—-c — 2. Kgilo-tan
Op., (2) = (1 — e~ a Peilod0¥ 2.13
szlo( ) Ksilo . tan(p( ) ( )
where v is the unit weight of the soil, ¢ is the friction angle, ¢ is cohesion of the soil,
a is the ratio of the area over circumference of horizontal plane of the silo, K, is the

coefficient of lateral pressure and z is the soil depth measured from the ground surface.

Two assumptions are adopted in the wedge-silo model based on Janssen’s analysis of soil
arching. The first assumption is that the lateral earth pressure coefficient of the soil in
the silo is assumed in advance, and that it is constant over the tunnel depth. The second
assumption is that the vertical stresses are uniformly distributed across any horizontal
section of the silo as well at the base of the silo. In addition to the previous assumptions,
the shear force on the horizontal plane between the silo and the wedge is omitted in the

equilibrium of forces.

Different assumptions have been made by various researchers for K;,. Anagnostou &
Kovari (1994) assumed Ky, = 0.8. Jancsecz & Steiner (1994) used a 2D active earth
pressure coefficient for the silo, Ky, = K, with K, = tan?(45 — ¢/2), Broere (2001) used
the lateral earth pressure coefficient at rest (Kj) proposed by Jaky (1944). Anagnostou
(2012) suggested Ky, = 1.0.

Fig. 2.7 shows the values of K, and Kyeqqe proposed by different researchers as functions
of different friction angles. Kyeqge is further discussed below. According to Jancsecz &
Steiner (1994) and Broere (2001) models, the Ky, and Kyeqqe values decrease with an
increase in friction angle. In contrast, in the models of Anagnostou & Kovari (1994) and
Anagnostou (2012), Ky, and Kyeqge are assumed to be constant, that means independent
of friction angle. As evident in Fig. 2.7 (a), the value of K;, obtained from Anagnostou
(2012) model is larger than the other models for the same friction angle. Whereas, the
value of K, obtained from Jancsecz & Steiner (1994) model is lower than the other

models.

Once the vertical stress on the top of the wedge is calculated using the silo theory, the next

step is to assume the distribution of vertical stresses and the accompanying horizontal
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Figure 2.7: K, and K4 assumed by various approaches: (a) variation of K, with

friction angle; (b) variation of K44 With friction angle

stresses acting on the wedge. Two possible options for estimating the distribution of

vertical stresses along the sides of the wedge are as follows:

1. Assuming a linear vertical stress distribution along the depth of the tunnel, where
Tveage = D7

2. Using the infinitesimal slices method in the wedge which is consistent with silo
theory.

Following the first option for estimating the distribution of vertical stress, Anagnostou
& Kovari (1994) and Jancsecz & Steiner (1994) assumed linear proportionality between
the horizontal stress oj,(z) and the vertical stress 0,(z) along the sides of the wedge, see

Fig. 2.5. The vertical stress along the sides of the wedge is calculated as follows:
O-vwedge (Z) - ('D - Z) ’ /7 + O-'l)silo (C> (O S < S D) (214)

where o,_, (C) is calculated based on the silo theory (Eq. (2.13)).

The shear force (7s) acting on both sides of the wedge is determined as follows:

1 2
Ts:D2~tan9‘[c+K0~tang0~(§~7~D+§'C-7>} (2.15)

where the weight of the wedge is

Gw=05-v-D?* cosf (2.16)
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and the vertical force on the top of the wedge is
Gy =0,,,,(C)  D* cotf (2.17)

The required support force P is calculated from the following equation:

G.+ Gy Ty +c- (22)

P = — 2.1
cot(6 +¢) sinf - (cot 6 + tan @) (2.18)

The critical inclination angle # is determined by maximizing the support force P:

dP
@ _ 2.1
75 =0 (2.19)

where 0° < 0 < 90°

The minimum support pressure is assumed to be uniformly distributed along the tunnel

face and thus given by
p=— (2.20)

A number of authors have suggested different values for K45 based on practical expe-
rience. Anagnostou & Kovari (1994) assumed Kyeqge = 0.4. Jancsecz & Steiner (1994)
suggested the lateral earth pressure coefficient for the wedge as the average of K, and K|
with Ky = 1 — sing according to Jaky (1944), Kyeqge = (Kot Ko)/2, see Fig. 2.7 (b)).
Jancsecz & Steiner (1994) described the relation between horizontal and vertical stress at
the tunnel axis by a 3D earth pressure coefficient. The minimum support pressure (p) at
the tunnel axis is calculated as:

p= Ksp-0,(D) (2.21)

The 3D earth pressure coefficient K3p is expressed by Eq. (2.22).

Sinﬁ-cose—cos2¢9-tan<p—lf—'5°‘-cos@-tangp
3D = : S (2.22)
sin@ - cos @ + sin” 0 - tan ¢
where 204 .
1 —sinp + ta o— %
K=Y 5 n'(45 - 3) (2.23)
and .
1+3-%
o=—"-= (2.24)
1+2-3

Broere (2001) and Anagnostou (2012) used the infinitesimally small slices method in
the wedge, described by Walz & Prager (1978) for slurry-filled trenches. The wedge is

subdivided into small horizontal slices i (i is the number of each slice), possibly enabling
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Figure 2.8: Forces acting on infinitesimally small slices on the wedge

the consideration of different soil conditions, see Fig. 2.8. The force equilibrium on each
horizontal slice is formulated. The minimum support pressure is calculated based on
integrating the horizontal and vertical forces over the whole wedge for each horizontal
slice. The method of slices assumes a linearly proportional relationship between the

horizontal stress o, and the vertical stress oy, (?.

() = Klaye - (2) (2.25)
Broere (2001) proposed Kggdge =Ky. Anagnostou (2012) assumed Kgidge = 0.5. The

vertical stress distribution and the failure mechanism for different arching implementations
are shown in Fig. 2.9, the results in Fig. 2.9 are obtained for the maximum value of the

minimum support pressure.

Chen et al. (2015) improved the 3D wedge-silo model by considering the height of the
silo on the basis of physical model test results (Fig. 2.10). The effective height (H,) is

calculated as:

2D
H, =mi — 2.2
» = min {C, tan&} (2.26)

They proposed a new analytical method for calculating the lateral earth pressure coeffi-
cient in silo by considering the rotation of the maximum principle stress which occurs in
the arching zone above the wedge:

cos? 0y + K, - sin? 6,
1-(1-K,)-sin*by + K,
where 0y = § + £ and K, = tan®(45 — ¢/2).

Ksilo -

(2.27)

Liu et al. (2019) proposed a new 3D model for face stability analysis with a dual failure

mechanism, see Fig. 2.11. The failure mechanism consists of two parts: a rotational failure
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Figure 2.9: Vertical stress distribution for different approaches, either considering arching
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Figure 2.10: Improved wedge-silo model, Chen et al. (2015)

zone (lower zone) and a gravitational failure zone (upper zone). The rotational failure
zone is bounded by a log spiral shaped slip surface and tends to rotate to the tunnel face.
The vertical distributed force loads acting on the top (wedge) of the rotational failure
zone is obtained from an analysis of the gravitational failure zone using the silo theory
with K, = K.

The wedge-silo model has been investigated by several researchers considering the excess
pore pressure at the tunnel face (Broere, 2001; Bezuijen, 2002) and the influence of slurry
infiltration process (Broere & van Tol, 2000; Bezuijen, 2002). The effect of excess pore
pressure and slurry infiltration on the minimum support pressure will be discussed in

more detail in Chapter 6.

Unlike the wedge-silo models, Krause (1987) established three models considering the
internal stability of the soil at the front of the tunnel face. The 3D failure mechanisms
are respectively a half cylinder, a quarter of a circle and a half sphere, see Fig. 2.12. The
shear and cohesion forces along the sliding surface set up the resistance against a collapse.
Based on the equilibrium of forces of the 3D failure mechanisms, Krause (1987) derived

the following expressions for the minimum support pressure p.

1. Half cylinder

1 1
= A\=-D-y=05-7- 2.28
e IR L (229)
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Figure 2.12: Failure mechanisms at the front of tunnel face, Krause (1987): (a) half
cylinder; (b) quarter circle; (c) half sphere

2. Quarter circle

1 1
= (=D v-05 7" 2.29
P=05 + tanp (3 7 g C) ( )
3. Half sphere
1 1
= “\=-D-v—=05-7- 2.30
P ano (9 v m C) (2.30)

2.3.1.2 Limit Analysis Method (LAM)

The limit analysis theorem is applied to materials which can be idealized as perfectly
plastic with associated plastic flow rule. The concept of limit analysis is based on the
theorems of plasticity developed by Drucker et al. (1951), namely the lower and upper
bound theorem. By using the lower and upper bound theorems, the range in which true

collapse load is expected, can be found.

The upper bound theorem states that the work done by external load in an increment of
displacement for a kinematically admissible mechanism equals the energy dissipated by
internal stresses. These external loads are not lower than the true collapse loads. For
that reason these loads represent an upper bound on the actual solution. The lowest pos-
sible upper bound solution is determined with an optimization scheme by trying various

possible kinematically admissible failure mechanisms.

The lower bound theorem states that if an internal stress field is in equilibrium with
external loads without overcoming the yield criterion in the soil mass. These external
loads are not higher than the true collapse loads. The highest possible lower bound

solution can be determined by trying different possible statically admissible stress fields.
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Figure 2.13: Upper bound failure mechanisms, Leca & Dormieux (1990): (a) one conical

failure mechanism; (b) two conical failure mechanisms; (c) cross section of the tunnel face
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Many researchers have also used the upper bound method to examine the stability of the
tunnel face. A number of authors has assumed different shapes of the failure mechanism

to obtain the upper bound solution for calculating the minimum support pressure.

Leca & Dormieux (1990) proposed two mechanisms for the failure zone at the front of
the tunnel face; one consists of a single conical block and the other is composed of two
solid conical wedges with elliptic cross sections at the intersection with the tunnel face,
see Fig. 2.13. Both failure mechanisms are characterized by only one parameter, namely,

the angle o between the axis of the cone and the horizontal tunnel axis.

Leca & Dormieux (1990) assumed the velocity of each rigid block to be collinear with
the axis of each linked cone. This implies that the plastic energy dissipation along the
discontinuities obeys the associated flow rule. Also, the two-blocks mechanism given by
Leca & Dormieux (1990) is constrained by the normality condition required by plasticity
theory. However, this condition does not allow the three-dimensional slip surfaces to

develop more freely.

The minimum support pressure at the tunnel axis is expressed by the following equation:
p=Ns-qs+Ny-v-D (2.31)

where Ny and N, are the non-dimensional coefficients and ¢, is the surcharge pressure.
Leca & Dormieux (1990) present two sets of graphs for the coefficients Ny and N, with

respect to friction angle.

An improved failure mechanism composed of several rigid conical blocks was proposed by
Mollon et al. (2010). This failure mechanism is an extension of the 3D failure mechanism
developed by Leca & Dormieux (1990), see Fig. 2.14. Mollon et al. (2010) found that the
total number of five block is sufficient to calculate the minimum support pressure. The
improvement of the solution by Mollon et al. (2010) is due to the increase in the degree of
freedom of the failure mechanism. Moreover, the failure mechanism proposed by Mollon

et al. (2010) is able to account the whole circular tunnel face.

The results obtained by Leca & Dormieux (1990) and Mollon et al. (2010) indicated that
for a cohesionless or a frictional-cohesive soil with a friction angle greater than or equal

to 20°, the minimum support pressure is independent of the tunnel cover depth.

More recently, the upper bound model used by Leca & Dormieux (1990) was evolved
for investigating the effect of layered soil on the minimum support pressure. Tang et al.
(2014) amended the solution of Leca & Dormieux (1990) to be applicable in a layered
soil. Tang et al. (2014) studied the influence of soil properties of the crossed layered soil
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Figure 2.14: Conical multiblocks failure mechanism, Mollon et al. (2010)
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and the cover layered soil on the minimum support pressure. Their results indicated that
the minimum support pressure is highly influenced by the shear strength of crossed soil,

while the shear strength of the cover soil is less important.

Ibrahim et al. (2015) improved the 3D failure mechanism of Mollon et al. (2010) to
compute the minimum support pressure in dry multilayered purely frictional soil. The

improved 3D failure mechanism can consider two or three soil layers.

Senent & Jimenez (2015) extended the solution of Mollon et al. (2010) to study the
possibility of partial collapse in layered soils. The proposed model by Senent & Jimenez
(2015) examined the influence of soil properties of the crossed soil and the cover soil on

the minimum support pressure.

Khezri et al. (2015) investigated the effect of linear variation of cohesion with depth from
the ground surface to the base of the tunnel face (C' + D) on the minimum support
pressure. Their results show that adopting the mean value of soil cohesion as a cohesion
that does not vary with depth, would lead to conservative predictions for the tunnel face
support pressure. However, adopting the cohesion determined for the centreline of the

tunnel underestimate the tunnel face support pressure and leads to an unsafe design.

Han et al. (2016) proposed a 3D multiblocks failure mechanism for multilayered cohesive-
frictional soils, see Fig. 2.15. Their failure mechanism combines the silo theory (upper
part) with the upper bound solution (lower part). The failure mechanism is composed of
five truncated cones in the wedge. The distributed load acting on top of the truncated
cone is calculated using silo theory with K, = Ky. The minimum support pressure is

obtained as an upper bound solution in failure of the wedge.

Lee & Nam, 2004 included the effect of seepage forces emerging from the groundwater
flow in the upper bound solution. They found that the minimum support pressure for
the face stability is equal to the sum of the effective support pressure obtained from the

upper bound solution and the seepage pressure acting on the tunnel face.

2.3.1.3 Finite Element Limit Analysis (FELA)

The Finite Element Limit Analysis (FELA) was developed at the university of Newcastle
and was first established by Sloan (1988). FELA couples the lower and upper bound
theorems of plasticity theory (Drucker et al., 1951) with the concept of finite element
method to provide rigorous bounds on collapse load. FELA utilizes the capabilities of the
finite element method to discretize the soil mass and the boundary conditions in combi-

nation with the plastic bound theorem to limit the true load by upper bound and lower
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Figure 2.16: Comparison of rigid block mechanism with finite element limit analysis,

Yamamoto et al. (2011): (a) rigid block mechanism; (b) power dissipation; (c¢) deformed

mesh

bound solutions. The computational efficiency is achieved by an optimization technique

in mathematical programming (e.g., linear programming).

To date, no intensive studies have been published for the 3D tunnel face stability problem
have used FELA. Most recent researches are developed on two-dimensional FELA | leading

to a number of research papers have been subsequently published.

Lyamin & Sloan (2000) investigated the stability of a plane strain circular model of a
tunnel in frictional-cohesive soil using FELA with the nonlinear programming technique.

The results are presented in the form of dimensionless stability charts.

Yamamoto et al. (2011) investigated the stability of a single shallow tunnel in frictional-
cohesive soils subjected to surcharge loading. Rigorous lower and upper bound solutions
for the ultimate surcharge loading are obtained from the simulations. The upper and
lower bound results obtained through the finite element limit analysis were compared to
results obtained by upper bound rigid block mechanisms, see Fig. 2.16. It was found that
the upper and lower bound results from the finite element limit analysis were in very good

agreement with the upper bound solution results.

Yamamoto et al. (2013) studied the stability of dual circular tunnel in frictional-cohesive
soils subjected to surcharge loading. For a series of tunnel cover to diameter ratios and

material properties (¢, ¢ and ) lower and upper bound solutions for the ultimate sur-
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finite element simulations of Vermeer et al. (2002) )

charge loading are obtained, see Fig. 2.17. Their results indicated that the center to center
distance between the dual circular tunnel appears as a new problem parameter and plays

a key role in tunnel face stability.

2.3.1.4 Numerical methods

Using numerical analysis and computer modeling, many studies have been made to es-
timate the necessary support pressure and evaluate the tunnel face stability. Numerical
modeling can be used to study complex scenarios such as unsaturated soil conditions,
layered soil and seepage flow. For numerical modeling, a suitable constitutive model for
the soil must be chosen (e.g. elastoplasticity with Mohr-Coulomb yield condition, hy-
poplasticity or hardening soil model). However, a verification of the numerical models

with physical model tests or simulation results of other authors is always necessary.

Based on 3D calculations with the finite element method (FEM), Vermeer et al. (2002)
investigated the effect of friction angle and cohesion on the minimum support pressure
(Fig. 2.18). The soil was modeled with elastic-perfectly plastic Mohr-Coulomb constitutive
model. The FEM models were established for homogeneous dry/drained soil conditions.
The results of FEM calculations indicated that for ¢ = 0 kPa, ¢ > 20° and C'/D > 1,
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(a) (b)

Figure 2.19: Numerical results of incremental displacements for C'/D = 1, Kirsch (20105):
(a) Mohr-Coulomb model; (b) hypoplastic model

the minimum support pressure only depends on the friction angle and not on the cover
depth of the tunnel. Besides, for frictional-cohesive soil and C'/D > 2, the cover depth
has no influence of the minimum support pressure. The results of Vermeer et al. (2002)

are expressed by the following formula for the minimum support pressure:
pu=77-D-N,—c-N, (2.32)

where the non-dimensional coefficients IV, and NN, are formulated as function of friction

angle of the soil

1

1= 93 (p >20°,C/D >1) (2.33)
c t - ) = :

A numerical study with FEM was performed by Kirsch (2010b6), who studied the sta-
bility of the tunnel face in sand. He compared the numerical results with the results
of physical model tests. In his simulations Kirsch (20100) two different material mod-
els is used: elastoplasticity with Mohr-Coulomb failure criterion and the hypoplastic
model (Fig. 2.19). The results of both the simulations with the Mohr-Coulomb and the
hypoplastic model showed good agreement with the support pressures measured in the
tests. Kirsch (20100) also found that the cover to diameter ratio has a marginal influence

on the minimum support pressure.
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Figure 2.20: Approximated extension of soil arching zone around a tunnel, Lin et al. (2018)

Ohta & Kiya (2001) used the Finite Difference Method (FDM) to examine the influence
of the soil properties and groundwater level on the stability of the tunnel face. Ohta
& Kiya (2001) established a relationship between the minimum support pressure at the

tunnel face and the ground water level for different values of Young’s modulus of the soil.

Lin et al. (2018) investigated the development of soil arching during tunnel excavation with
earth-pressure balanced shield (EPBS) in dry sand using FEM. Their results indicated
that the area ahead of the tunnel face forms a loosened zone due to the lack of the
support pressure. The vertical stress is significantly reduced in the loosened zone. Due
to the influence of the support pressure, the volume loss and the grouting pressure on the
soil surrounding the tunnel, the arching zone gradually develops upward until segments

are installed.

In addition to the aforementioned numerical studies, several numerical simulations of the
tunnel face stability problem were conducted by other researchers, through FEM (e.g.,
Peila, 1994; Ng & Lee, 2002; Mayer et al., 2003; Sterpi & Cividini, 2004; Kim & Tonon,
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2010), FDM (e.g., Li et al., 2009; Dias, 2011; Senent & Jimenez, 2015) and DEM (e.g.,
Maynar & Rodriguez, 2005; Funatsu et al., 2008; Zhang et al., 2011).

2.3.1.5 Physical model tests

To assess the required tunnel face support pressure, the failure mechanism and the evolu-
tion of soil arching resulting from tunnel excavation, physical models have been extensively
used in the laboratory. The physical model tests can be conducted under 1g conditions

or at increased g-level (ng) using a geotechnical centrifuge.

Chambon & Corte (1994) performed a series of ng-tests to determine the minimum support
pressure in dry sand. Their results indicated that the same failure geometry is observed
with different soil densities. The arching effect was found to occur in the upper part of
the failure zone, see Fig. 2.21 (a). On the other hand, the minimum support pressure was
reported to be affected by the changes in the cover depth ratio (e.g., C/D = 0.5, 1, 2 and
4) as well as by the density of the soil.

Takano et al. (2006) performed 1g tests using X-ray in order to evaluate the effect of
overburden on arching. They compared the three-dimensional failure zones for the differ-
ent heights of overburden (e.g., C'/D = 1, 2 and 4). They found that the arching effect
occurs at an overburden of 2D or more. Moreover, according to the tests of Takano et al.
(2006), a semicircular slip surface is generated behind the tunnel face, and the failure

zone extends straightly upward with an elliptic cross-sectional shape above the tunnel.

Messerli et al. (2010) carried out 1g-tests on the stability of a tunnel face in sand in order
to study the effects of cover depth and unsupported span on the support pressure. The
tunnel face was supported by either a rigid movable or a flexible face. The unsupported
span was introduced by a latex membrane with very low stiffness. It was found that the
value of the support pressure measured at the face agrees well with the results of limit
equilibrium calculations (Anagnostou & Kovari, 1994). Furthermore, the rigid face test

confirmed clearly the failure mechanism proposed by Horn (1961), see Fig. 2.21 (b).

Kirsch (2010b) studied the support pressure in dense and loose sands by using 1g-tests.
The results indicated that the minimum support pressure is independent of the initial
density of the soil. In dense sand the failure zone developed in the vicinity of the tunnel
face and propagated stepwise towards the ground surface. Furthermore, in dense sand a
chimney wedge type collapse mechanism could be observed. On the other hand, for loose

sand, the soil movements immediately reached up to the ground surface, see Fig. 2.21 (c).
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mechanism in dense sand, Messerli et al. (2010); (c) observed failure mechanism in loose

sand, Kirsch (2009); (d) observed failure mechanism in low-speed case, Liu et al. (2018)
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Idinger et al. (2011) performed ng-tests using dry sand. The influence of the overburden
was examined for three cover to diameter ratios (e.g., C/D = 0.5, 1, and 1.5). They
observed that the failure mechanism took the form of a narrow chimney extending from
the tunnel face to the ground surface. The slip surfaces arised from the bottom of the
tunnel face and propagated at an angle of about 45°+/2 to the horizontal until it turned

more or less vertical reaching the ground surface.

Chen et al. (2013) conducted a set of 1g-tests for various cover to diameter ratios to
investigate the evolution of soil arching during face failure in dry sand. Their results
indicated a chimney-like failure mechanism. The measured minimum support pressure

increased with the increase of the C/D ratio.

Liu et al. (2018) studied the stability of the tunnel face for shallow tunnels in dry sand
using 1g large scale model tests. They investigated the influence of moving face speed on
the support pressure and the geometry of the failure mechanisms. The test results showed
that when the moving speed is relatively high, the minimum support pressure is lower
than in the case with relatively low moving speed. In both cases of speed, the observed
failure zone was similar to that in the wedge-silo model. However, for the low-speed case
the inclination angle of the sliding surface with respect to the horizontal plane 6 was
much higher than 45°+¢/2 and close to 45°+¢, see Fig. 2.21 (d). Furthermore, for the
high-speed case the inclination angle (#) was slightly higher than 45°+¢/2. The effective
width of the failure zone was approximately 2D /3.

Date et al. (2008), Hisatake & Ohno (2008) and Juneja et al. (2010) performed series
of physical model tests to investigate the effect of a pre-supporting system (so-called
forepoling) on the stability of the tunnel face and the maximum possible unsupported

length during tunnel excavation.

Other physical model tests were reported by Lunardi et al. (1992), Al Hallak et al. (2000)
and Kamata and Mashimo (2003) to investigate the distribution and length of the vertical

face reinforcement on the stability of the tunnel face.

2.3.2 Tunnel face stability analysis in case of purely cohesive soils

The first study of the stability of tunnels in soft ground was conducted by Broms &
Bennermark (1967). This early work was performed on the stability of unsupported
circular vertical openings in an undrained cohesive soil, see Fig. 2.22. Their stability

solution was expressed in term of the stability number N. The stability number was
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Figure 2.22: Unsupported circular vertical opening, Broms & Bennermark (1967)

defined to be equal to the difference between the stress resulting from the weight of the
overburden including uniform surcharge pressure o, and the applied support pressure o,
divided by the undrained shear strength c,:

os+v-(C+D/2)— oy
Cy

N —

(2.35)

where C' is the cover depth and D is the tunnel diameter.

The support pressure at the axis of the tunnel face can be calculated with the following
expression:
op=7v-(C+DJ2)+0,—N -¢, (2.36)

According to the method of Broms & Bennermark (1967) method, the collapse of the

tunnel face occurs if the vertical pressure is higher than 6¢,.

The ranges of stability number corresponding to different states of ground surface defor-
mation are presented in Table 2.1. Following the concept of the stability number, a large
number of research papers have been subsequently published in the area of the tunnel

face stability.

Using the limit theorems of plasticity (lower and upper bound theorems), Davis et al.
(1980) investigated the stability of the tunnel face in cohesive soil. They considered three

different shapes of shallow underground opening using the lower bound solution.

The first solution referred to a plane strain unlined circular tunnel which represents an
infinitely long tunnel (Fig. 2.23 (a)). The second solution presented a plane strain heading
which approximates an infinitely long and unlined wide tunnel (Fig. 2.23 (b)). The third



40 2 State of the art

Table 2.1: Relation between the stability number and deformation, according to Broms
& Bennermark (1967)

N Deformation

<1 Negligible
1-2 Elastic
2—4 Elastic-plastic
4—-6 Plastic

> 6 Collapse

solution is that for a circular tunnel heading for fully lined tunnels where P/D = 0 (P is
the unlined length), see Fig. 2.23 (c).

The corresponding stability numbers are respectively:

N=2In <% + 1) (Fig. 2.23 (a)) (2.37)
N=2+2-In (% + 1) (Fig. 2.23 (b)) (2.38)
N =4 In (% + 1) (Fig. 2.23 (¢)) (2.39)

Also, Davis et al. (1980) introduced four upper bound solutions with different failure
mechanisms (mechanisms A-D) for the stability of a plane strain cylindrical cavity, as

shown in Fig. 2.24.

Mechanism A is composed of a single sliding block which is deduced from failure mecha-
nisms observed in centrifuge model tests (Cairncross, 1973; Mair, 1979). Mechanism B is
composed of two sliding blocks, with an isosceles triangle and a trapezoid on the longitu-
dinal tunnel cross section. Mechanism C consists of three sliding blocks with four variable
angles describing the failure planes. Mechanism C and includes mechanisms A and B as

special cases. Mechanism D is composed of five sliding blocks, with three variable angles.

Finally, Davis et al. (1980) assessed the possibility of a local failure of the tunnel face,

studying 3D circular heading at the front of the tunnel face where the support pressure is

not dependent on the cover of the tunnel. The tunnel face is stable against local collapse

for the following value of the undrained shear strength:
D -~
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Kimura & Mair (1981) conducted centrifuge model tests with clay. Their test results
suggested a wider range for the stability number between 5 and 10, depending on the ratio
of the cover depth to the tunnel diameter (C/D) and the unlined length of the tunnel.
They indicated that the stability number increases with increasing cover to diameter ratio

and decreases with the unsupported length of the tunnel head.

Osman et al. (2006) performed upper bound calculations of collapse loads in tunnels using
distributed shear deformation mechanism. Within the plastic deformation mechanism,
the soil is idealized as an elastic perfectly plastic material with cohesion equal to c,.
Outside this mechanism the soil is assumed to be rigid. This failure mechanism does not

incorporate slip surfaces and displacement discontinuities.

Sloan (1989), Sloan & Assadi (1993) and Sloan (1994) were the first who applied the Finite
Element Limit Analysis (FELA) to investigate the stability of a plane-strain circular
tunnel in cohesive soil using linear programming technique. In these research works a
wide range of geometrical tunnel profiles including circular, square, rectangular and twin
circular tunnel. Furthermore, these authors considered the shear strength of the soil
to vary linearly with depth. Their stability number is expressed as a function of two

parameters as follows:

N=T Ty (9 ﬂ) (2.41)

where % is the depth ratio and VC—D is the shear strength ratio.

Klar et al. (2007) suggested a new kinematical approach in limit analysis theory for the
2D and 3D stability analysis of circular tunnels in purely cohesive soil. They substituted
the plastic velocity field for the elastic displacement field to study the tunnel stability in

clay ground.

Mollon et al. (2012) established an upper bound solution for purely cohesive soils. Based
on the normality condition of the kinematical theorem of limit analysis, they introduced

three failure mechanisms involving multiple rigid-blocks motions, see Fig. 2.25.

The minimum support pressure is assessed by the following equation:
p=D-v-N,—c-N.+o0,- N, (2.42)

where N,, N, and N, are non-dimensional coefficients of purely cohesive soil and expressed
as follows:
N,=C/D+0.5 (2.43)
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N, =1 (2.44)
N,=N (2.45)

Mollon et al. (2012) proposed a set of graphs for the stability number N in Eq. (2.42).

2.4 Comments on the wedge-silo model

2.4.1 Failure mechanism and failure zone

Based on the results of the physical model tests (e.g., Kirsch, 20106; Chen et al., 2013; Liu
et al., 2018), it can be concluded that the cover to diameter ratio C'/D has a significant
effect on the geometry of the failure mechanism. If C/D is low (e.g., C/D = 0.5), the
failure zone reaches the ground surface leading to the development of a global failure zone,
see Fig. 2.26 (a and c). The global failure zone is divided into two sub-zones with different
mechanisms: the lower and the upper sub-zone. The soil in the lower sub-zone tends to
yield and rotate towards the tunnel face. This action is due to insufficient support and
weight of the soil (i.e. gravity). However, this tendency is resisted by friction forces at
the slip surface. The rotation trend was also observed by Kirsch (20100), Idinger et al.
(2011) and Chen et al. (2013). The upper sub-zone is shaped by soil gravity. The soil
arching action is the main factor that defines the shape of the upper sub-zone. If C/D
is high (e.g., C'/D = 1 or 2), a bulb-shaped failure zone consisting of a vertical chimney
above the tunnel crown and confined by a curved envelope forming a local failure zone,
see Fig. 2.26 (b and d).

According to the proposed failure mechanism of the wedge-silo model (e.g., Jancsecz &
Steiner, 1994; Anagnostou & Kovari, 1994; Broere, 2001), the height of the silo is assumed
to be identical to the whole cover depth above the tunnel crown. For different C'/D ratio,
the failure mechanism of wedge-silo model assumes a globe failure zone. Therefore, to
incorporate the arching effect on failure mechanism of the wedge-silo model, the weight
of the soil in the silo is reduced by activating the shear forces along the sliding surfaces
of the silo. This reduced vertical stress is applied at the top of the wedge. Furthermore,
the shear forces acting on the flanks of the prismatic wedge are taken into account in the

static equilibrium of the forces.

In the wedge-silo model, the equilibrium of the forces needs an estimation of the shear

forces acting at the slip surfaces. However, the value of shear forces/stresses depends on
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Figure 2.26: Comparison of failure geometries in physical model tests and wedge-silo model: (a)
wedge-silo model failure mechanism; (b) schematic diagram of failure mechanism, Local collapse;

(c) global collapse (C/D = 0.5), Idinger et al. (2011); (d) local collapse (C/D = 1.5), Idinger
et al. (2011)
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Table 2.2: Comparison of the failure geometry in wedge-silo model with physical model

tests

Models Author C/D Mode of failure L* W+t p,/(yv-D)

ng test Chambon & Corte (1994) 0.5 Global failure C 041D  0.044
2 Local failure 0.84D 0.60D  0.049

LEM  Anagnostou & Kovari (1994) 0.5  Global failure ~ C 0.38D  0.072

Anagnostou & Kovari (1994) 2 Global failure  C 04D  0.075
LEM  Horn (1961) 0.5 Global failure C 032D  0.084
Horn (1961) 0.5  Global failure C 030D  0.239

L* is the height of the silo
W+ is the width of the silo
LEM (Limit Equilibrium Method)

the horizontal stresses which cannot be calculated from equilibrium conditions (Anagnos-
tou, 2012). Thus, to overcome this statically indeterminate task, the horizontal stress
oy, is assumed proportionally dependent on the vertical stress o,. The ratio between the
horizontal stress to corresponding vertical stress represents the coefficient of lateral earth

pressure. This value of the lateral earth pressure coefficient must be assumed in advance.

As shown in Table 2.2, the comparison between the results of physical model tests with the
results of the wedge-silo model (Horn, 1961; Anagnostou & Kovari, 1994) indicate a larger
silo height and a smaller width of the silo in the failure mechanism of the wedge-silo model.
Also, Table 2.2 shows that Horn (1961) gives a higher value of support pressure compared
to the results of Anagnostou & Kovari (1994) and physical model tests (Chambon & Corte
(1994)). This can be expected as in the model of Horn (1961), the vertical force acting
on the top of the wedge is the full weight of the silo (no arching).

2.4.2 Shape of tunnel cross section

In the wedge-silo model, the circular tunnel cross section A. can be approximated in three
different ways. In the first case, the tunnel face is approximated by a square A, having
the same area as the tunnel face (e.g., Horn, 1961; Anagnostou & Kovari, 1996; Kirsch &
Kolymbas, 2005), as illustrated in Fig. 2.27 (a). However, to achieve a coincidence of the
location of the centers of gravity of the circular and the square area, the cover depth C'

and the diameter D must be modified to the equivalent cover-depth C, and the equivalent
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Table 2.3: Calculated support pressure using different tunnel cross-sections

Support pressure (kPa) Decreasing percentage (%)
¢ A.=As A< A, (Reference) A, = A, A.= A, A, = A,
15°  100.36 106.84 102.99 6.45 3.63
20° 70.93 76.89 72.86 8.34 5.24
25° 49.57 54.55 50.66 10.04 7.13
30° 34.2 38.08 34.52 11.34 9.30
35° 22.99 26.09 23,037 12.19 10.04

tunnel diameter D, as follows:

C, = C +0.057D (2.46)
D, = gp (2.47)

It is important to mention that Anagnostou & Kovari (1996) and Kirsch & Kolymbas
(2005) neglected the portion 0.057D in Eq. (2.46) and assumed C, = C for calculating

the support pressure.

Within the second case, the tunnel face is assumed to be a square area, as shown in
Fig. 2.27 (b). In that case the height H and the width W of the wedge are equal to the
diameter D of the tunnel face (e.g., Anagnostou & Kovari, 1994; Broere, 2001), leading

to a square area which is about 21.5 % larger than the area of the circular tunnel face.

In the third case, a rectangular area A, is assumed which has the same sectional area as
the circular tunnel face. In that case the height H of the wedge is equal to the diameter
D of the tunnel face, whereas the width is smaller than the diameter D, as shown in
Fig. 2.27 (c¢). The width W of the wedge is calculated as follows:

W =0.785D (2.48)

To address the effect of the three possible case of the assumed area on the support pressure,
the minimum support pressure for the face of the tunnel in dry cohesionless soil (7 = 18
kN/m?, ¢ = 0 kPa, D = 10 m and C' = 10 m) has been calculated for all three cases using
Anagnostou & Kovari (1994). The results are compared in Table 2.3. The minimum
support pressure calculated from the second case (A. < Aj) is taken as reference value,
see Table 2.3.

From Table 2.3, it can be seen that the second case (A. < A;) which replaces the circular

tunnel face by an equivalent square leads to a higher support pressure than the other



2.4 Comments on the wedge-silo model 49

o, [kPa
0 30 60 90 120 150 180 210 240 270 300
0 ‘ | | | ‘K%‘lo = 687 K;!edge :‘ 0.4
51 .\‘ N N = = Rgilo = Kowaedge =047
10 1 \\ — Bysilo = Ka7 Kwedge =04
\
151 v
H \
20 1 ; “
E251 ;
e |
£ 30 !
[} |
a3 \
40 1 :
D=10
45 : o
50 ! ¢=30
5 : c=0kPa |
: 5 = 20 kN/m®
60 T T T T

Figure 2.28: Vertical stress distribution with different values of K,

two choices. In addition, the differences are more significant for larger friction angles.
However, the differences between the support pressures calculated with the three different

assumptions do not exceed 15%.

Therefore, it can be concluded that in calculations with the wedge-silo model, the assumed

shape of the tunnel cross-section has little influence on the minimum support pressure.

2.4.3 Effect of K;, on the vertical stress

Based on Janssen’s silo theory (1895), the vertical stress at the base of the silo increases
exponentially with silo depth and reaches asymptotically to a constant value. The rate of
approach to the asymptotic value of the vertical stress depends on the value of Ky, (if
all other parameters and dimensions are identical). This can be seen clearly in Eq. (2.13),
where Ky, is the variable of the natural exponential function. Meanwhile, the asymptotic
value of the vertical stress is dependent on the value of Kg;,, where K, is placed in the

denominator of the first term in Eq. (2.13).

To study the effect of K, on the vertical stress, the vertical stress distribution is il-
lustrated in Fig. 2.28 for three possible choices of K, (Kg1o = Kay Keto = Ko, and
K1, = 0.8) in Eq. (2.13). The soil is assumed to be homogeneous. The dry unit weight
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is set to v = 20 kN/m?, the friction angle is ¢ = 30°, the cohesion ¢ = 0 kPa and the
tunnel diameter D = 10 m. For simplicity, the surcharge is neglected (¢ = 0 kPa).

It is obvious from Fig. 2.28 that the vertical stress decreases with increasing value of
Ko, from Ky, = K, (K, = 0.33) to K, = Ko = 0.5 by about 32 % and from K, =
0.33 to K, = 0.8 by about 55 %. Meanwhile, the asymptotic value is reached at lower
depth with increasing value of Kg;, = 0.8. For K, = 0.8, the vertical stress reaches
its asymptotic value by a depth of about one times the diameter. For K;, = Ky, the
corresponding depth is about two times of the diameter, while it is four times the diameter
for Ky, = K,.

Therefore, it can be inferred that the value of vertical stress and the depth of arching
is significantly influenced by the choice of K;,, which means that the value of support

pressure is significantly affected by the choice of K.

2.5 Conclusions

This chapter presents a review on analytical and numerical models as well as physical
model tests which have been used to analyze the stability of the tunnel face for dry
frictional, frictional-cohesive and pure cohesive soil. The following main conclusions can

be drawn:

1. Due to the assumed failure mechanism of the wedge-silo model, the stability of
tunnel face using the limit equilibrium method (LEM) is a statically indeterminate
problem. In order to solve this problem, some assumptions have to be made re-
garding the distribution of the vertical stress. Furthermore, the horizontal stress o},
is assumed to be linearly dependent on the vertical stress o, by the coefficient of
lateral earth pressure (e.g., Jancsecz & Steiner, 1994; Anagnostou & Kovari, 1994;
Anagnostou & Kovari, 1996; Broere, 2001; Kirsch & Kolymbas, 2005).

2. To use Janssen’s solution, it is required to choose an explicit value for the lateral
earth pressure coefficient of the silo. However, the values of K, used in the liter-
ature vary in a wide range. Thus, the choice of an appropriate value for both the
lateral earth pressure coefficient of the silo K;, and the wedge Keqqe Temains an

open question for further research.

3. For shallow tunnels, the observed failure mechanisms in the physical model tests are

similar to the wedge-silo type failure mechanism described by Horn (1961). However,
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the slip surface arising from the bottom of the tunnel face observed in the model
tests is curved instead of a straight sloped line assumed in the models (e.g., Idinger
et al., 2011; Kirsch, 2010a).

4. As the tunnel excavation proceeds, the soil at the front of the tunnel face tends
to yield towards the excavation face. However, this tendency is resisted by shear
stresses in the soil near the tunnel face. As a result, horizontal soil arching develops
around the tunnel face. This soil arching must be considered in a similar way as

that of the silo response over the face of the tunnel.

5. Using the limit theorems of plasticity a series of stability models has been proposed
for purely cohesive soil. Thes minimum support pressure predicted by these models
depends solely on the undrained shear strength c,. These model are based on the

stability number and the corresponding states of deformation of the soil.

Although many researchers have proposed different approaches for the analysis of the
tunnel face stability, there are still considerable efforts for calculating the support pres-
sure more accurately. Within this thesis, the tunnel face stability is analyzed with the
Kinematical Element Method (KEM) models are presented. The KEM models provide a
convenient estimation of the required support pressure for tunnels with a circular face in
frictional-cohesive soils. In addition, the KEM models overcomes the assumptions that
have been adopted in previous studies presented in the literature. A feasible method for
calculating the lateral earth pressure acting on the silo (K;,) based on a KEM model is
proposed, which can be easily applied to the failure mechanism and does not need any
further assumptions. The proposed KEM models are able to consider the effect of hori-
zontal arching action at the front of the tunnel face. The KEM failure mechanisms can
be easily adapted to take into account pore water pressures either under hydrostatic or

seepage conditions.






3 Kinematical Element Method (KEM)

3.1 General

The Kinematical Element Method (KEM) was presented for the first time by Gussmann
(1982). KEM is an advanced and computationally straightforward procedure to determine
the collapse loads in geotechnical stability problems, i.e. the loads that lead to the failure

of the soil mass.

In KEM, slip surfaces (shear bands) divide the soil mass into rigid blocks (kinematic
elements). Each element i moves with displacement v;. A set of a specific number of
kinematic elements is called failure mechanism. By assuming a displacement vy for one
of the kinematic elements, it is possible to determine the displacement of all remaining
kinematic elements with the aid of kinematic compatibility conditions. Only tangential
translations between the kinematic elements are allowed. A rotation is not allowed and a

possible dilatancy in the shear band is not taken into account.

The forces acting between the elements are found by including an external unknown force
S in the static equilibrium analysis, which is interpreted as reserved load causing the
failure of the rigid blocks. At the failure state, the soil resistance is fully mobilized along
the slip surfaces. Plastic deformations occur only within the shear bands, whereas the
blocks are considered to be rigid. Within the shear bands the shear stress 7 and the

normal stress o satisfy the Mohr-Coulomb failure yield criterion.

To determine the direction of the shear force along the edge of each kinematic element, the
relative displacements between the kinematic elements are calculated with the condition
S vy > 0. The external unknown force is a function of the chosen failure mechanism,
which will be varied using an optimization technique until the external unknown force S is
found. The optimization can involve a maximization or minimization process depending

on the geotechnical stability problem.

A KEM calculation is composed of three types of analysis, namely the kinematic analysis,

the static analysis and the optimization process.

93
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(c)

Figure 3.1: KEM models for different geotechnical stability problems, Gussmann et al.
(2016): (a) bearing capacity of footing; (b) trapdoor problem; (c) vertical anchor plate

3.2 Application of KEM in geotechnical problems

KEM provides a computer implemented solution for rigid body failure mechanisms in-
cluding optimization tools to determine the most relevant failure mechanism. KEM can
be applied to analyze the bearing capacity of footings (Fig. 3.1 (a)), the active and passive
earth pressure, as well as the slope stability in 2D and 3D model analysis. This method
has been also applied to more complex geotechnical problems such as the trap door prob-
lem (Fig. 3.1 (b)) or to determine the ultimate load of plate anchors (Fig. 3.1 (c¢)) and
soil nails. In addition, KEM can be used to study more complex soil conditions such as
soil with pore water pressure, either hydrostatic or due to seepage flow, with drained or

undrained conditions as well as unsaturated soil conditions.



3.2 Application of KEM in geotechnical problems 55)

KEM node KEM node

KEM edge

N

KEM edge

N

KEM element
KEM element

(a) (b)
Figure 3.2: Basic element of KEM 2D model: a) triangle element; b) irregular polygon
element
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Figure 3.3: Basic element of KEM 3D model: (a) tetrahedron element; (b) pyramid ele-

ment; (c) triangular prism
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3.3 Geometry

In KEM 2D or 3D analysis, the chosen failure mechanism consists of a number of rigid
blocks with a certain shape and plane boundaries, as shown in Fig 3.1. In case of two-
dimensional elements blocks, the soil mass is divided into convex polygons which are
bounded by straight line segments. These segments are called the edges or the bound-
aries. Triangles and quadrilaterals are examples of polygons which can be considered as

appropriate 2D rigid blocks (Fig. 3.2).

For three dimensional blocks, all convex polyhedrons whose faces are perfectly planar
polygons (e.g., tetrahedron, pyramid and triangular prism) can be used (Fig. 3.3). Each
3D block has its faces, edges (boundaries) and vertices. The vertices of the polygons or
the polyhedron are called kinematic nodes (Fig. 3.4), which can be either fixed or free
nodes. The sliding edges (2D) or surfaces (3D) of the mechanism are separated by contact
joint edges (2D) or surfaces (3D).

There are four plane boundary conditions in KEM (Figs. 3.5):
1. Inner boundary: boundary between two rigid blocks being in contact.
2. Flexible boundary: boundary with pre-known displacement.
3. Outer boundary: boundary between the rigid block and the soil at the rest.
4. Free boundary: boundary with no constraints.

In the case of a 3D KEM model, the method of vector analysis provides relatively simple
formulations to determine all the relevant features of each block including its volume,
the area of the faces and the positions of its vertices. The Cartesian coordinate system

x, y, and z is selected as global coordinate system and defined by the orthonormal unit

vectors {e,, ey, e.} with e, = [1,0,0],e, = [0,1,0] and e, = [0, 0, 1]. The failure surfaces
are represented by m vertices [Py, Py, ....., P;] and n surfaces, [Fy, Fy, ....., ] with the
coordinates of the nodes [(z1,y1, 21), (T2, Y2, 22); --e, (T, Ym, 2m)], see Fig. 3.4.

The vector from point P;(z1,y1, 21) to point Ps(a, ys, 22) is determined as follows:
PPy = (21 —x3)e; + (1 — Ya2)ey + (21 — 22)e. (3.1)

The matrix of direction cosine on the surface of the element spanned by the two vectors
(P Py, P, P3) expressed by

PlPQXPQPg

_ 3.2
‘P1P2XP2P3’ ( )

[cos A, cos 3, cos a =
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Figure 3.4: KEM model for 3D passive earth pressure (modified from Gussmann (1986))
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Figure 3.5: Boundary conditions and kinematics for KEM 2D passive earth pressure prob-

lem
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The distance from point P, (%, Ym, 2m) to point Pi1(Zmi1, Ym+1, 2me1) is calculated as

follows:

dEiZt;)m) =V (@m+1 — Tm)2 + W1 — Ym)? + (Zmt1 — 2m)? (3.3)

where

T((m+1),m) = Tm+1 — Tm
Y(m+1),m) = Ym+1 — Ym
Z((m+1);m) = Zm+1 — Zm

In order to determine the volume of the polyhedron blocks (e.g. pyramid element, tri-
angular prism) and the areas of its faces, a subdivision of the polyhedron block into a

number of tetrahedron blocks is applied.

The volume of a tetrahedron block can be computed from:

1 Y1 21
T2 Yz <2
T3 Y3 Zz3

Ty Ys 24

(3.4)

| 1
olume = —
v 6

—_ = = =

where x;, y; and z; (i=1, 2, 3, 4) are the coordinate of the corner points of the tetrahedron
block.

The area of triangular face of a block in a 3D space is

2 2 2
] oz 1 z1 w1 1 oy 1

area = o || ys 2 1| 4+ 2 @0 1| +| a0 9o 1 (3.5)
yz 23 1 23 x3 1 x3 yz 1

where z;, y; and z; (1 = 1, 2, 3) are the coordinates of the corner points.

3.4 Kinematic analysis

Based on KEM assumptions, the rigid blocks can only slide tangentially along inner and
outer contact surfaces, and the rotation is not allowed. The outer contact surfaces are
located between the blocks and the surrounding soil, while the inner contact surfaces

are lying between the blocks. The kinematic process starts by initiating a pre-known
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displacement v (virtual displacement) on a flexible boundary, V= ve;, as shown in Fig. 3.4.
The flexible boundary is chosen based on the direction of the external (unknown) force
which causes the failure of the mechanism. The given virtual displacement induces a
displacement of each block i (i is the number of blocks). Each block moves along the shear
band with a global displacement V; = [V, Vi, Vi.]. The soil at the rest O is considered
as fixed rigid block with a zero displacement Vi = [0, 0, 0].

By considering the compatibility conditions for the movable rigid blocks, a linear set of

equations for the kinematic system of the blocks can be written as follows:

[Kv]jm : [V]nxl + [V}jxl =0 (3'6)

~

Vi = =Kol - [Vl (3.7)

where n denotes the number of contact surfaces and j the number of degrees of freedom of
the rigid blocks, in which j = 3 - i (i is the number of blocks), j should be equal to n for a
normal condition. [K,] is the kinematics matrix which contains the direction cosine of the
unit normal vectors of each surface with respect to the global coordinates system, [V] is
the vector of unknown (virtual) displacements values of each block and [V] is the vector
of the pre-known displacement on the flexible boundary, which causes the displacements

of the kinematic system.

By solving Eq. (3.7), the global displacements of each block are obtained and the relative

tangential displacements between any adjacent blocks can be determined.

The directions of the relative tangential displacements between any adjacent blocks and

between the blocks with the surrounding soil are calculated as follows:

AV T =V Vi (3.8)

vy = [ -va) () (v -vg)) e
AVED =VE L =VE (3.10)

v = [ -0)- (70 -0). (4 0] o

It must be noted that v is a virtual displacement and not a real displacement. The values
of the relative displacements do not influence the results. They are only necessary to define

the shear forces directions, which are determined by the sign of the displacements.
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Figure 3.6: Forces acting on the edge of 2D KEM element
3.5 Static analysis

By including an external normal force (unknown) in the equilibrium equations of the
forces, it is possible to find the normal forces acting between the blocks. Within the
shear bands the shear stress 7 and the normal stress o satisfy the Mohr-Coulomb failure
criterion.

T=o0-tanp+c (3.12)

The normal forces acting on each contact surface (see Fig. 3.6) are the effective nor-
mal force N’,, and the pore water pressure force U,. The total normal force N, can be

calculated as follows:
N,=N',+U, (3.13)

The frictional shear forces R,, and the total shear forces T,, along each sliding surfaces are

calculated as follows:
R, = N, -tanp, (3.14)

T,=R,+C, (3.15)
where C,, is the cohesion force.

The direction of the shear forces is opposite to the relative tangential movement of the

blocks, which have been determined in the preceding analysis of the kinematics.
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The force equilibrium equations for each rigid block along the x, y and z-axis and the

resultant (5;) of all forces are given by

S; = (; Sia, Zl Sy, Zl S;) (3.16)

By assembling the force equilibrium equations over all rigid blocks taking the normal
forces acting at the contact surfaces and the virtual force at the flexible boundary as

unknowns, the equilibrium equations are represented in matrix form as follows:
[KS]an ' [N]nxl + [F}jxl =0 (317)

where [K] is the static coefficient matrix, [N] is the normal vector of unknown forces and
[F] is the vector of known forces containing inertia forces, surface loads, cohesion forces

etc.

3.6 Optimization process

The aim of the optimization process in KEM is to find the critical geometry of the fail-
ure mechanism with respect to specific boundary conditions. The geometry of the block
system is expressed by contact surfaces which are defined by the nodes. Therefore, the op-
timization process for the geometry is can be done in terms of the coordinates of the nodes.
The coordinates of the free kinematic nodes will be varied until the critical failure mech-
anism is found. To do so, the algorithm of particle swarm optimization (PSO) (Kennedy

& Eberhart, 1995) is applied for finding a proper geometry of the failure mechanism.

Particle Swarm Optimization (PSO) is a computational method that can be used to solve
different kinds of engineering optimization problems. In 1995, Kennedy and Eberhart
were introduced PSO as a new metaheuristic search method. It was inspired by the social
behavior of individuals living together in groups such as bird flocking, and swarm of
insects. The population of particles occurs in the n-dimensional searching space. Each
particle will move about the searching space according to a certain amount of knowledge.
Each particle has some inertia and will continue to have a component of motion in the
direction in which it is moving. It also keeps track of the best solution for all the particles
achieved so far, as well as the best solution achieved so far by each particle. After each
iteration, every particle will modify its direction such that it has additional components
towards its own best position and towards the overall best position. The flowchart for the
PSO algorithm is shown in Fig. 3.7.
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Figure 3.7: Flowchart for PSO algorithm
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Table 3.1: PSO parameters
PSO parameter Symbol Parameter value
No. of particles Pii.e 25
Maximum velocity Vinaz 0.2
Minimum velocity Vinin -0.2
First acceleration parameter c1 0.50
Diversity of the population maintenance Co 1.25
Maximum number of iterations T 250
The velocity of each particle is updated using the following equation:
vid(t +1) = woia(t) + cir1 (pia(t) — wia(t)) + cora(t) (pgalt) — pia(t)) (3.18)
R,—/ . ~ / N ~ ’,
momentum cognitive component social component
w = [T — G) - (0.9 —0.4)/T4:] + 0.4 (3.19)
The position of particle z; is then updated according to the following equation:

where ¢ is current step time, z;4(t) is the current position of each particle at site d, v;q(t)

is the current velocity at site d, p;4(t) is the best position found so far at a certain site d,

Pga(t) is the neighborhood best state found so far at site d, r; and ry are two independent

random numbers in the range [0:1] and ¢; and ¢y are cognitive and social parameters,

respectively, w is an inertia weight parameter and G is the current iteration number. The

PSO parameters are used in the simulations of this thesis listed in Table 3.1.

PSO reaches its objective if it meets the termination criteria. The termination criteria

can be set as follows:
1. Reaching the maximum number of iterations.
2. Finding the best solution.

3. Achieving a constant fitness for a certain number of iterations.






4 KEM model (M) for tunnel face
stability

4.1 Introduction

One of the major aspects for the mechanized tunneling process is to adequately support
the soil at the tunnel face during tunnel construction. To prevent the tunnel face from

collapse a minimum pressure at the tunnel face is required.

Within this chapter the Kinematical element method (KEM) will be applied to analyze the
stability of a circular tunnel face. The 3D KEM model (M) is introduced. The KEM model
(M) consists of two rigid blocks, a tetrahedron wedge block (lower part) and triangular
prism block (upper part). The results obtained with KEM model (M) are compared with
the results of analytical and numerical approaches as well as physical model tests available
in the literature. To further validate KEM model (M), numerical simulations using the
Finite Element Limit Analysis (FELA) have been performed and compared with the
results of KEM model (M).

4.2 KEM model (M) for tunnel face stability

4.2.1 Geometry of the failure mechanism

The failure mechanism consists of two parts (see Fig. 4.1). The soil wedge block (lower
part) is enclosed by four surfaces: The tunnel face, two outer contact surfaces and the
inner contact surface with the upper silo block. The silo block (upper part) raises from the
crown of the tunnel to the ground surface enclosed by five surfaces: the ground surface,
the inner contact surface with the wedge block, and three vertical outer contact surfaces
to the adjacent soil. The positions of the nodes (P1, P2, P3, P6, P7) in the Cartesian

coordinate system depends on chosen cover height (C') and diameter (D) of the tunnel.

65
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Figure 4.1: Geometry of the failure mechanism

Based on the results of physical model tests (Chambon & Corte, 1994; Kirsch, 2010b; Chen
et al., 2013) and numerical calculations (Kirsch, 2010b; Lin et al., 2018), the failure zone
for the tunnel face collapse consists of two failure zones. The first failure zone above the
tunnel crown occurs in a vertical band and ends at the ground surface. The second failure
zone at the front of the tunnel face occurs with a semicircular slip surface. Therefore, the
degrees of freedom for each node of KEM model M during the optimization process to

find the relevant geometry of the failure mechanism is chosen as follows:

1. The nodes P1, P2, P3, P6 and P7 are fixed in z, y and z direction.

2. The node P4 is fixed in y and free in x and z direction.

3. The node P5 is fixed in y and z direction and is bounded to the node P4 in x

direction.
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Figure 4.2: Geometry of the triangle

4.2.2 Equivalent area of the tunnel face

The tunnel face is approximated by triangle with two equal sides (b) (see Fig. 4.2), the
area of triangle is same area as the tunnel face. The sides a and b of the equilateral triangle

are calculated as follows:

a=025-m-D (4.1)
b=+VD?+a? (4.2)
where D is the diameter of the tunnel.

The width B between the nodes (P1, P2) for the outer contact surface (P1, P2, P6, P7)

(see Fig. 4.2) is calculated as follows:
B=2a (4.3)
B=05-7-D (4.4)

4.2.3 Half of KEM model (M)

The KEM model (M) can be further simplified considering the symmetry of the failure
mechanism (see Fig. 4.3). The simplified model considers only one half of the problem.

The following assumptions are made:
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Figure 4.3: Geometry of the failure mechanism: (a) KEM model (M); (b) KEM model

(M) considering the symmetry of the failure mechanism

1. The circular tunnel face is modeled with the half area of an equilateral triangle, see
Fig. 4.4.

2. No displacement in y direction over the symmetric plane.
3. No shear forces along the symmetric plane.

4. The normal forces on the symmetric plane are taken into account.

4.2.4 Kinematic analysis

The kinematic process will start by initiating unit displacement v (virtual displacement)
on the face of the tunnel V' = -ve; (see Fig. 4.5). Each block i moves with a global
displacement V; = [Vi;, Viy, Vi.] with respect to the soil at rest O. The soil at rest is
considered as an element with zero displacement V, = [0,0,0]. The relative displacement

of each block is determined by a hodograph, as shown in Fig. 4.6.

The directions of the relative tangential displacements between any adjacent blocks and
between the blocks and the surrounding soil are determined according to Egs. (3.9) and
(3.11), respectively (Chapter 3).
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Figure 4.4: Approximated shape of the tunnel face: (a) KEM model (M); (b) half of KEM

model
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Figure 4.5: Kinematic of the blocks



70 4 KEM model (M) for tunnel face stability
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Figure 4.6: Displacement hodograph with respect to the soil at rest O

4.2.5 Acting forces

Fig. 4.7 presents the external and the internal forces acting on each block for the total

system and the symmetric half of KEM model (M). These forces are defined as follows:
1. For the total system of KEM model (M) (Fig. 4.7 (a))

a) Acting forces
i. W, : The weight of each block.
ii. @ : The surcharge load acting on the ground surface.
b) Reaction forces
i. N, : The normal forces on each of the slip surfaces (n = 2 .....7).

ii. R, = N,- tan ¢, : The frictional shear forces for each of the slip surfaces

(n is the number of slip surface).
iii. C), : The cohesion forces on each of the slip surfaces (n = 2 .....7).
c) P (Ny) : The support force on the tunnel face.
2. For symmetric half of KEM model (M) (Fig. 4.7 (b))
a) Acting forces
i. 0.5-W; : The weight of each block.
ii. 0.5-Q : The surcharge load acting on the ground surface.
b) Reaction forces
i. N, : The normal forces on each of the slip surfaces (n = 2, 4, 5, 6).

ii. N7*: The normal force on symmetric plane (silo).
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P5

Block 2

Figure 4.7: The free-body diagram: (a) KEM model (M); (b) half of KEM model (M)

iii. N3* : The normal force on symmetric plane (wedge).

iv. R, = N, tan ¢, : The shear forces for each of the slip surfaces (n = 2, 4,
5, 6).

v. R;" : The frictional shear force on the symmetric plane (silo), R;* = 0.
vi. R3"* : The shear force on the symmetric plane (wedge), R3* = 0.
vii. C), : The cohesion forces on each of the slip surfaces (n = 2, 4, 5, 6).
viii. C7* : The cohesion force on the symmetric plane, C;* = 0.
ix. C3* : The cohesion force on the symmetric plane (wedge), C5* = 0.

¢) 0.5-P (0.5:Ny) : The support force on the tunnel face.
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4.2.6 Problem of indeterminacy

The static system-matrix for the half of KEM model (M) is formulated as follows:

[Klox7 - [N]7x1 + [Flex1 = 0 (4.5)

From Eq. (4.5), it is obvious that the system is statically indeterminate: the number of
unknowns is greater than the number of available equations. Hence, equilibrium equations
alone are insufficient for obtaining a solution. In order to solve the problem, using the
physical model tests and the numerical results, one can estimate the lateral stresses im-
posed on the silo delivering the one unknown force of the system. The problem is discussed

more detail in the following section.

4.2.7 Setting up the static system

According to the observations from physical model tests (Chambon & Corte, 1994; Messerli
et al., 2010; Chen et al., 2013), for low cover to diameter ratios (e.g., C'/D = 0.5) silo
mechanism forms directly above the tunnel face and sinkhole develops at the ground sur-
face (global failure), see Fig. 4.8 (a). However at larger values of cover depth (e.g., C'/D
= 2) a bulb-shaped failure zone is observed above the tunnel face (local failure), while

there is no obvious settlement on the ground surface.

The outcomes of the physical model tests demonstrate that the soil mass bounding the
silo mechanism moves slightly in the direction to the silo, allowing the soil mass to ex-
pand horizontally. This small movement of the surrounding soil allows a reduction in the
horizontal stress acting on the silo. This reduction of horizontal stress in the soil sur-
rounding the silo is observed in the physical model tests (Chen et al., 2013, Fig. 4.8 (b))
and numerical results (Chen et al., 2011), as shown in Fig. 4.8 (c, d).

Clearly, the moving soil mass inside the silo must support the surrounding soil mass by a
minimum pressure to avoid extending the collapse. With the relaxation in the surrounding
soil mass, the horizontal stress around the silo is less than at rest (Chen et al., 2011; Chen
et al., 2013). Besides, the horizontal stresses around the silo cannot drop below their active

values.

Based on the earth pressures and failure patterns of tunnel face observed in physical model
tests, Chen et al. (2013) concluded that the surrounding soil mass is brought into active

state.
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Figure 4.8: Shape of the failure mechanism observed in physical model tests and numerical
simulations: (a) observed failure mechanism for different C'/D ratios, Chambon & Corte
(1994); (b) distribution of stress concentration, Chen et al. (2013); (c) failure zone from
DEM simulations, Chen et al. (2011) (A: limited displacement of tunnel face displace-
ment /diameter = 0.043, B: elevated displacement of tunnel face displacement/diameter
= 0.269); (d) variation of horizontal stress, Chen et al. (2011) (A: limited displacement
of tunnel face displacement/diameter = 0.043, B: elevated displacement of tunnel face

displacement /diameter = 0.269)
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From the previous discussion two assumptions can be made to solve the problem of inde-

terminacy as follows:

1. Tt is assumed that 3D active earth pressure acts on the outer contact surface Fg (P1,
P2, P6, P7) (see Fig. 4.1) of the silo which is located above the tunnel face. Since
only half of the KEM model (M) is used in calculating the support force, only half
of 3D active earth pressure is assumed to act on the half of outer contact surface Fj
(P1, P7, P8, P9) (see Figs. 4.3 and 4.9).

2. The pre-given normal virtual displacement differs from zero for the 3D KEM model
active earth pressure. However, the displacements of the outer sides of the silo are
assumed zero when coupling the 3D KEM model for active earth pressure (half of
the model) with the half of the outer contact surface Fyz (P1, P7, P8, P9) in KEM
model (M).

The influence of two previous assumptions for the forces acting on the two other outer
contact surfaces F5 (P1, P4, P5, P7) and F; (P2, P4, P5, P6) will be discussed later.

Since the process of finding a minimum support pressure (maximum force) at the tunnel
face is linked to a technique for finding the minimum factor of safety, it could consider

the process as an optimization problem.

4.3 3D lateral earth pressure coefficient

Within this section, the procedure for calculating the 3D lateral earth pressure coefficient
(K3p) using KEM is described and validated. In the following part, the results of the
KEM model (Fig. 4.10) for 3D active earth pressure are presented and discussed.

The horizontal normal force of the 3D KEM model for the active earth pressure problem
is defined by:
N¢=0.5-Ksp-v-C*-B (4.6)

Therefore, the calculated 3D active earth pressure coefficient (Ksp) is

Ng

Kyp=— 0
P 05.4-C2- B

(4.7)

Fig. 4.11 shows the comparison of the present solution with the methods of Huder (1972)
derived from the silo theory, Walz & Prager (1978) based on the theory of element slices
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Figure 4.12: Comparison of experimental and numerical results with results from KEM
model (M), ¢ = 31.7°

and Washbourne (1984), who modified the shape of the sliding wedge, assuming the wedge
as triangular prism sliced by plane. Walz & Prager (1978) suggested the value of earth
pressure coefficient (K) to lie within the range K, < K, < K, where K; = 1 —sin ¢ and
K. = cos? p. Fig. 4.11 represents the value of the K3p/Ksp ratio as a function of C'/B
ratio (see Fig. 4.10). Where the 2D active earth pressure coefficient (Ksp) is calculated
as follows:

1 —singp (4.8)

Kap = m
The results indicate that the Ks3p/Ksp ratio decreases with increasing C'/B ratio. It
can also be observed that the Kjp/Ksp ratio for a specific C/B ratio decreases with
increasing friction angle of the soil. Furthermore, the KEM model (3D active) gives almost
identical or slightly smaller K3p/Ksp values than the theory of Walz & Prager (1978)
(K, = cos? ), which again are lie below the values obtained by Huder (1972) and Walz
& Prager (1978) with K, = 1 —sinyp. The K3p/Ksp values of Washbourne (1984) are

significantly lower than those of all other approaches.

In Fig. 4.12, the small scale test results and the numerical results given by tom Worden &
Achmus (2013) are used for the validation of KEM (3D active) model. The best agreement
with the numerical and experimental results of tom Worden & Achmus (2013) is obtained
with KEM model (3D active earth pressure) and the approach of Walz & Prager (1978)
using K, = cos? p.
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The values of the 3D lateral earth pressure coefficient K5p obtained from the KEM model
are given as a function of C'/ B ratio for different values of the friction angles are presented
in Fig. 4.13. An equation for calculating K3p as a function of C//B ratio and ¢ has been

developed as follows:
2. 6—0.054-<p

K pu—
P75+ C/B = (0.025 - )

(4.9)

The 3D lateral earth pressure coefficients obtained from the KEM model or from Eq. (4.9),

respectively, are presented in Fig. 4.14.

4.4 Optimization procedure

Searching for critical failure mechanism is a problem of maximization. Fig. 4.15 presents
the flow chart for optimization algorithm of calculating minimum support pressure. The
iterative optimization algorithm is started by specifying input data for the soil parameters
(¢, v and ¢), the diameter of the tunnel (D), the cover depth (C) and also by defining
the surcharge load acting on the ground surface (@), see Figs 4.1 and 4.7.

After setting up initial input data, the cover depth (C') and the half length between nodes
(P1, P2) (0.5B) are switched from the subroutine ”tunnel face stability” to the subroutine
73D active earth pressure”, as shown in Fig. 4.9. Thereafter, randomly selected values for
the z-coordinate of the nodes P10 and P11 as well as for y-coordinate of node P10 are
initiated. An iterative procedure using PSO is implemented to the subroutine ”3D active
earth pressure” to find the maximum normal force (0.5Ng) for 3D active earth pressure

failure.

The value of maximum normal force (0.5Ng) is transferred to the subroutine ”tunnel
face stability”. This force acts at the slip surface between the nodes (P1, P7, P8, P9).
Subsequently, in the subroutine ”"tunnel face stability”, the value of the shear force at
the slip surface between the nodes (P1, P7, P8, P9) is computed as 0.5Ng - tanp. Then,
from the static equilibrium equations, the support pressure is calculated using Eq. (4.5).
To continue searching for the maximum support force in the subroutine ”tunnel face
stability”, new coordinates for free nodes (P4, P5) are chosen based on their current
position finding the most adequate failure mechanism described by the x-coordinate of
the nodes P4 and P5 and by the z-coordinate of the node P4. The optimization procedure
is terminated, when PSO in the subroutine "tunnel face stability” reaches a termination

criteria, that can be either when a predefined maximum number of iterations is reached



80

4 KEM model (M) for tunnel face stability

’ Input soil parameters ]

l

KEM model (M) for tunnel face stability

1 (See Fig. 2)

Defining the geometry of
the failure mechanism.

—>!

Free nodes (P4, P5)

'

3D active earth pressure acting on rigid wall

Sharing the
node location

>

Fixed nodes (P1, P2,

P3,P6 , P7)

Initiating pre-known displacement on tunnel face
and solving kinematics

{

Setting up static system matrix

Transforming
0.5Ns

{

Calculating the support force (P)

No

Update the free
nodes location

No. of iteration
reached ?

Calculate the required support pressure

Defining the geometry of the
failure mechanism. See Fig. 4.9

| I
Free nodes (P10, P11) Fixed nodes (P1°,
1— P7", P8’ P9
L 2 L4

Height (C) equal to

nodes (P1", P7")

length between |

1

width (0.5B) equal to
length between nodes
(P1", P4")

{

Setting up static system matrix

!

Calculate the active earth pressure force

¥

No. of iteration
reached ?

Initiating pre-known displacement on rigid wall i

Update the free
nodes location

Figure 4.15: Flow chart for the procedure of calculating the support pressure in KEM

model (M)



4.5 Development of failure mechanism by optimization process 81

Table 4.1: Selected physical model tests for verification of KEM model (M)

Author Model Tested material ¢ [°] ¢ [kPa] C/D [-]
Chen et al.(2013) lg test  Yangtze River sand 37 0.5 0.5,1,2
Chambon and Corte (1994) ng test  Fontainebleau sand 38 —42 0-5 0.5,1,2,4
Kirsch (2009) 1g test Ottendorf-Okrilla sand ~ 32.5 0 0.5,0.75, 1, 1.5, 2

or when a constant value of support pressure for a certain number of iterations. Finally,

minimum support pressure is calculated based on the support force.

4.5 Development of failure mechanism by optimization

process

The development of the geometry of the failure mechanism, the minimum support pres-
sure, and the lateral earth pressure coefficient at surface F5 (P1, P4, P5, P7) during the
iterations of the optimization process is shown in Fig. 4.16. In this, the final value of the
inclination of the bottom surface (3) of the wedge is about § = 55°, which is close to the
slip surface angle for the 2D active state (6, = 45° + ¢/2) Rankine’s theory (Rankine,
1857). The final value of the lateral earth pressure coefficient acting on the surface Fy (P1,
P4, P5, P7) of the silo part is about 0.39, which is close to the 3D active earth pressure
value calculated by KEM model (3D active) for the surface Fy (P1, P2, P6, P7) which is
0.37. For all geometrical parameters as well as for the support pressure the final values
have been reached after about 50 iterations, starting from specific initial geometries. Of
course the shape of the curves and the number of iterations to reach final values depends

on the initial geometry.

4.6 Verification by physical model tests

Three series of physical model tests from literature have been chosen to verify the accuracy
of KEM model (M) for predicting the minimum support pressure. The specifications of

the physical model tests are summarized in Table 4.1.

Fig. 4.17 presents the comparison of normalized support pressure (p,/(yD)) calculated
by the KEM model (M) with the results from Chambon & Corte (1994), Kirsch (2009)
and Chen et al. (2013).
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From Fig. 4.17, it can be seen that the normalized minimum support pressure obtained
from the ng tests of Chambon & Corte (1994), Chen et al. (2013) and the 1g tests of
Kirsch (2009) increases slightly with the increase in the C/D ratio. This tendency is
reproduced by KEM model (M). This dependency of the minimum support pressure on
the C'/D ratio was also detected by Anagnostou & Kovari (1994), Anagnostoul994 and
Chen et al. (2011).

The values of normalized support pressure calculated by KEM model (M) show a good
agreement with the results obtained by Kirsch (2009). Furthermore, when the results of
KEM model (M) are compared with normalized support pressures obtained from Chen
et al. (2013), the difference between the p, /(vD) values vary between 6.5 % and 16.4 %
only.

The soil used in the ng tests of Chambon & Corte (1994) is reported to have a little
cohesion, which is given as the range ¢ = 0 - 5 kPa. The values of p,/(7D) obtained from
the ng tests of Chambon & Corte (1994) are less than those predicted by KEM model
(M) if a cohesionless soil (¢ = 0 kPa) is assumed. However, if a cohesion ¢ = 5 kPa is
considered, the KEM model (M) predicts a minimum support pressure much closer to the

ng test results.

As a conclusion, it can be inferred that the minimum support pressure calculated by KEM

model (M) approximates the physical model test results very well.

4.7 Comparison of the KEM model (M) results with

other approaches

Analogous to the method proposed by Terzaghi (1943) for bearing capacity analysis, the
minimum support pressure (p,,) is often represented by the following form in the literature
(Vermeer et al., 2002; Mollon et al., 2010; Anagnostou, 2012):

pu=7-D-Ny—c-N.+q-N, (4.10)

where the contribution of different loads and soil parameters including self-weight (),
cohesion (¢) and surface surcharge (¢q) are expressed by sum of three terms incorporating
the the non-dimensional bearing capacity coefficients IV, N, and N, which are functions
of the internal friction angle ¢ of the soil. Due to the active conditions around the tunnel

face the cohesion is reducing the necessary support pressure.
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Within this section, Eq. (4.10) is adopted to express the minimum support pressure. In
KEM calculations with ¢ = 0 kPa and ¢ = 0 kPa, the soil unit weight coefficient (V) is
obtained. Furthermore, setting v = 0 kN/m? and ¢ = 0 kPa, the cohesion coefficient N, is
calculated. In addition, with v = 0 kN/m? and ¢ = 0 kPa, the surcharge load coefficient

N, can also be obtained.

The minimum support pressure computed from Terzaghi’s bearing capacity formula (Eq.
4.10), which is based on the superposition principle is not a rigorous solution. It delivers
an approximate solution of the minimum support pressure and it includes an error due
to the superposition effect. However, Mollon et al. (2010) reported that this error is quite

small and can be neglected.

To validate the results of the KEM model (M), the non-dimensional coefficients N, and
N, were examined individually in simulations with KEM model (M) and compared with
the results of other available approaches in literature. Also, an additional check is made
by comparing the KEM model (M) results with finite element limit analysis (upper and

lower bound solutions) results.

4.7.1 Comparison of the KEM model (M) results with the existing

approaches

Fig. 4.18 compares the value of the non-dimensional coefficient IV, calculated by the KEM
model (M) with those given by the approaches of other researchers as a function of friction

angle, for a C'/D ratio equal to 1.

It can be seen from Fig. 4.18 that the results of Vermeer et al. (2002) obtained by FEM
calculations and Anagnostou (2012) derived from a modified wedge model based on the
infinitesimally thin slices method and Mollon et al. (2010) using the upper bound method
give N, values lying close to the results of KEM model (M), while the differences are
larger for the other models. The method of Anagnostou (2012) and the KEM model (M)
are taking into account the contribution of horizontal arching action over the tunnel face,

which leads to similar results calculated by both methods.

The results given by Krause (1987) lie above those of KEM model (M). In that model the
soil conditions above the tunnel face are not taken into account in calculating the support
pressure. The solution of Anagnostou & Kovari (1994) using limit equilibrium method
significantly overestimates the value of N, compared to the other solutions. This is due

to the simplified way of considering the vertical stress distribution (linear distribution)
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which disregards the arching effect in the calculation of the horizontal stress at the sides

of the wedge.

The non-dimensional coefficients N, obtained from Leca & Dormieux (1990) using the
upper bound method are clearly lower than the results given by the others approaches.
This is due to that the shape of the tunnel face is considered as an elliptic cross section
inscribed to the circular face (the elliptic cross section and the circular tunnel face do not
have the same area). Furthermore, the two-blocks mechanism given by Leca & Dormieux
(1990) is constrained by the normality condition, required by plasticity theory. The ve-
locity vector must enclose an angle ¢ with the discontinuity surfaces along the sliding
surfaces. However, this condition restricts the development of the three-dimensional slip

surfaces.

As can be seen in Fig. 4.19, where C/D ratio is 2, the results of Vermeer et al. (2002) and
Anagnostou (2012) for N, are the same. The non-dimensional coefficients N, obtained by
KEM model (M) are slightly lower than those of Vermeer et al. (2002), Anagnostou (2012)

and Mollon et al. (2010). However, Krause’s results for N, are extremely conservative.

As shown in Figs. 4.18 and 4.19, the minimum support pressure predicted by KEM model
(M), replacing the circular shape of the tunnel face by a isosceles triangle of equivalent
area, is very close to the minimum support pressure given by Anagnostou (2012), who
substituted the circular shape of the tunnel face with a square area. Also the solution of
Vermeer et al. (2002) and Mollon et al. (2010), who used a circular shape of the equivalent
area, are very close to the KEM results. Therefore, it can be concluded that the shape
of the equivalent area of the tunnel face has little influence on the calculated minimum
support pressure. In addition, the data in Figs. 4.18 and 4.19 reveal that, the values of N,
and NN, obtained from KEM model (M) as well as all other approaches from the literature

increase strongly with a decrease in friction angle.

4.7.2 Comparison of KEM model (M) with Finite Element Limit
Analysis (FELA) results

4.7.2.1 Modeling of tunnel face stability in OptumG3

In this section, Finite Element Limit analysis (FELA) using the commercial software
(Krabbenhoft et al., 2015) OptumG3 ware employed to investigate the stability of the
tunnel face. Due to the symmetry of the problem, the numerical model encompasses

only half of the domain as shown in Fig. 4.20. A circular tunnel with diameter (D) was
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Table 4.2: Soil parameters and tunnel geometry

Parameter Value  Unit
Tunnel diameter (D) 10 m|
Cover depth (C) 5-20 m|

Friction angle (¢) 15 —45

Dry unit weight(~y) 18 kN /m?]
Cohesion (c) 0 kPaj
Surcharge (q) 0 kPa

modeled by a half cylinder. Any effect of the tunneling process was neglected. The tunnel
has a cover depth (C') measured from the ground surface. In order to investigate the
stability of the tunnel face in frictional-cohesive soil, the stress-strain behavior of the soil
was modeled as perfectly plastic Mohr-Coulomb material with associated flow rule and a

dilatancy angle (1) equal to the friction angle (¢) of the soil.

The boundary conditions of the symmetric plane were defined such that the normal dis-
placements at the plane were zero, while the displacements in the other remaining direc-
tions were free allowed. The nodes of the bottom plane were fixed in all directions, while
displacement conditions at the vertical boundary planes were the same as those of the
symmetric plane. The soil was assumed to be homogeneous in dry condition. The geome-
try of the tunnel and the soil strength parameters are summarized in Table 4.2. The size

of the model was chosen so that these restraints had very little effect on the results.

4.7.2.2 Results and discussion

Five adaptive steps were selected to obtain an accurate solution, where an initial mesh
with 2000 elements was automatically adapted to a final mesh with about 20000 elements.
It can be seen from Fig. 4.21 that little mesh refinement occurs in the vicinity of the model
boundaries, meaning that the boundaries have no noticeable impact on the results. The
shear strains for the collapse failure mechanism obtained with OptumG3 are shown in
Fig. 4.22.

The results obtained using the OptumG3 are rigorous upper and lower bounds solutions.
An approximate estimation of the collapse load can be simply calculated as the mean
value (p,,) of the upper and lower bound solutions as follows:

_ pup + Plw

5 (4.11)

Pm
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Figure 4.20: Geometry the boundary conditions of tunnel for the 3D model

Figure 4.21: Finite element mesh with mesh adaptivity
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Figure 4.22: Upper bound results of 3D FELA model showing shear strain

Table 4.3: Comparison of the minimum support pressures obtained from KEM model (M)
and FELA for C/D =1

¢ FELA (LB) FELA (UB) FELA (Mean value) KEM model (M)

15° 76.07 74.03 75.05 74.52
20° 51.10 49.51 50.30 49.68
25° 36.19 34.81 35.50 34.38
30° 26.57 25.45 26.01 25.02
357 19.89 18.99 19.44 18.36
40° 14.98 14.12 14.55 13.14

45° 10.50 10.27 10.38 9.36
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Figure 4.23: Comparison of normalized support pressure as a function of C'/D ratio ob-

tained from KEM model (M), FELA (lower and upper bound solutions) and different

approaches from the literature

where p,, is the upper bound solution of the collapse support pressure, while py, is its
lower bound solution. Table 4.3 shows a comparison between the results of KEM model
(M) and those of FELA for C'/D = 1 and various values of friction angles. The results
of FELA were obtained with the final adaptive meshes. The comparison indicates a good
agreement of the KEM results with the mean values of the upper and lower bounds

solutions.

From Fig. 4.23, it can be seen that the KEM model (M) results show a slight increase
of p,/(yD) with an increase of C'/D. Similar trends are observed in different types of
wedge-silo models (Anagnostou & Kovari, 1994; Chen et al., 2015) and DEM simulations
(Chen et al., 2011). Meanwhile, the results of the FELA simulations and the upper bound
solution Mollon et al. (2010) show that C'/D has almost no effect on p,/(vD).
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Figure 4.24: Influence of friction angle on normalized support pressure for two different
values of cohesion and different values of C'/D ratio; results obtained with KEM model

(M): (a) ¢ = 4 kPa; (b) ¢ = 8 kPa

4.8 Parametric studies with the KEM model (M)

4.8.1 Influence of friction angle

For two different values of cohesion (¢ = 4 and 8 kPa), the influence of friction angle (¢)
on normalized support pressure (p,/(yD)) for different C/D ratios is shown in Fig. 4.24.
It is obvious that the normalized support pressure for the same C'/D ratio is decreasing
non-linearly with the increase of the friction angle approaching to 0 (no support pressure
is needed) for higher friction angles ¢ > 50°. It is interesting to note that the effect of
C'/D ratio on normalized support pressure is more pronounced at lower friction angles
p < 35°.

4.8.2 Influence of the cohesion

The influence of cohesion on normalized support pressure is further studied based on
the simulation results presented in Fig. 4.25. C'//D ratio was assumed to be either 1 or
2. The friction angle was set to ¢ = 20°, 25°, 30°, 35° and 40°, while the cohesion was
varied from 0 kPa to 10 kPa. Examining the trend of the curves in Fig. 4.25, it appears
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Figure 4.25: Influence of cohesion on normalized support pressure for two different values
of cohesion and different values of C'/ D ratio; results obtained with KEM model (M): (a)
C/D =1, (b)C/D =2

that the normalized support pressure is decreasing linearly with increasing cohesion. The
smaller ¢, large is the rate of support pressure decrease. Thus, it can be concluded that
the cohesion affects the normalized support pressure more significantly for lower friction
angles. This applies to both studied with different C'/D ratios.

4.8.3 Influence of cover depth to diameter ratio (C/D)

The analysis of influence of the C'/ D ratio on the normalized support pressure is conducted
for cohesion (¢ = 4 kPa and ¢ = 8 kPa) within a common range of C'/D ratios (0.5 - 2.5).
The results in Fig. 4.26 illustrate that for the friction angles ¢ = 20° and ¢ = 25°, the
normalized support pressure is significantly influenced by the C/D ratio and grows non-
linearly with increasing the C'/D. For higher friction angle ¢ = 30°, the normalized support
pressure increases almost linearly with increasing C'/ D ratio. It is evident in Fig. 4.26 that

the influence of C'/D becomes less pronounced with increasing friction angle.
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Figure 4.26: Influence of cover to diameter ratio C'/D on normalized support pressure for
two different values of cohesion and different friction angles for the results obtained with
KEM model (M): (a) ¢ = 4 kPa; (b) ¢ = 8 kPa

4.9 Development of design equations

Figs. 4.27 and 4.28 show the non-dimensional coefficients N, and N, obtained with the
KEM model as functions of friction angles and C'/ D ratios. As the friction angle decreases,
the effect of C'/ D ratio becomes more prominent and the inclination of the N,-¢ and N.-¢

curves higher.

The N, - ¢ curves in Fig. 4.29 and the values in Table 4.4 demonstrate that N, becomes
zero for C'/ D ratios greater than or equal to 1.5 for ¢ > 15°. The same applies to friction
angles ¢ = 40° at C'/D = 0.5 as well as for ¢ = 30° at C/D = 1.

Based on a fitting of the results of Figs. 4.27, 4.28 and 4.29 the following equations
approximating the N,, N, and NV, values have been developed for ¢ > 15°:

N, = a, - (tan ) ™" (4.12)
a; = 0.055 4 0.007 - C/D (4.13)
by =1.50- (C/D —0.37)"%* (4.14)

N, ~ (tan )" (4.15)
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Figure 4.27: N, as function of the soil friction angle, KEM model (M)
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Figure 4.28: N, as function of the soil friction angle, KEM model (M)
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Table 4.4: Values of N,, N, and N, for various internal friction angles and C/D ratios;

-C/D =05
—+-C/D = 1.0

Figure 4.29: N, as function of the soil friction angle, KEM model (M)

results obtained with KEM model (M)
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Figure 4.31: Design charts for the minimum support pressure, KEM model (M) (¢ = 0
kPa): (a) C/D = 0.5; (b) C/D =1; (¢) C/D = 1.5; (d) C/D = 2
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by =0.77+0.17-C/D (4.16)

N, =~ ay - bs™9  (C/D < 1.0) (4.17)
ay = 1.04 — 0.56 - C/D (4.18)

bs = 0.0022 — 0.0019 - C/D (4.19)

These equations can be applied in combination with Eq. (4.10) to predict the minimum
support pressure Fig. 4.30 shows the comparison between the N, N, and N, and values
obtained from the KEM simulations (circles) for different friction angles and C'/D ratios,

confirming a good agreement.

For a practical application Table 4.4 provides the values of N, N. and N, for different
values of friction angle and C/D ratio. Furthermore, a design charts giving the normalized
support pressure p,/(vD) as a function of the normalized cohesion ¢/(yD) for different

friction angles and C'/D ratios.

4.10 Limitations of KEM model (M)

The comparison between the KEM model (M) and the other existing approaches indicates
that the KEM solution gives reasonable results for tunnel face stability calculations in
frictional and frictional-cohesive soil under simple conditions. A ground water table and
seepage flow around the tunnel face have not been studied yet. However, based on the

investigations done so far the limitations of this KEM model can be noted as follows.

1. KEM model (M) simplifies the geometry of the tunnel face by replacing the circular
shape of the tunnel with an equivalent triangle having the same cross-sectional
area. However, the location of the centroid of the circular area does not coincide
with centroid of the triangle (see Fig 4.32). Therefore, if KEM model (M) is applied
to saturated soil conditions, the hydrostatic pore pressure at the centroid of the

triangle will be lower than the that at the centroid of the circular tunnel face.

2. In the case of the hypothetic case ¢ = 0, ¢ = 0 kPa (material properties of water)
and for C'/D = 0.5, in wedge silo model the normalized support pressure p,/(vD)
converges to 1, while in KEM model (M) it approaches to 0.833. This is due to
the shape of the tetrahedron wedge block (lower part) in KEM model (M), which
leads to a reduction of the volume of the "wedge” block by 0.167 compared to the
wedge-silo model, see Fig 4.33.
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Figure 4.32: Geometry of the tunnel face in KEM model (M)
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Figure 4.33: Shape of the wedge in wedge-silo model and KEM model (M): (a) wedge-silo
model; (b) KEM model (M)
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Figure 4.34: Tunnel face collapse in undrained clays, Schofield (1980)

3. Based on the centrifuge tests performed by Schofield (1980) and Kimura & Mair
(1981), the collapse of the tunnel face in undrained clays does not involve the motion
of rigid blocks, but a continuous deformation of the soil (see Fig 4.34). The soil
mass tends to yield and rotate towards the tunnel face. In that case, a significant
discrepancy exists between the failure mechanism assumed in KEM model (M) and
those obtained from centrifuge tests. To consider such failure mechanism, KEM
model (M) needs to be modified by increasing the number of elements in the wedge.

Therefore, the slip surface of the wedge will become curved.

Due to these limitations or shortcomings of the KEM model (M), the modifications de-
scribed in Chapter 5 were undertaken.

4.11 KEM 3D tunnel face stability software (KEM-3D-T)

Based on the Kinematical Element Method (KEM), a software for calculating the min-
imum support force necessary for the tunnel face stability has been developed, named
KEM-3D-T. The computer program is written using Matlab language with graphical user

interface which can be easily applied by non expert users. When the program is opened

by the user, a screen similar to the one shown in Fig. 4.35 is presented.

Three different KEM models have been implemented in KEM-3D-T, namely the models
(M), (M1) and (M2). Models (M1) and (M2) will be presented in Chapter 5.

In KEM-3D-T, the first step is to model the geometry of the tunnel. The geometry tab

contains a number of options such as the coordinate of the ground level, the overburden
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Figure 4.35: KEM-3D-T opening screen

and the diameter of the tunnel. Once the model geometry has been established, the soil

properties can be specified.

The next step is to run the analysis. The results of the analysis are presented by the

maximum support force on the tunnel face and the relative displacements of each block.

Some useful tools have been added to the software. For example, the button in the fore-
ground gives the user the ability to select zoom in or out. The drop-down box is used to
select the type of the KEM models (M), (M1) or (M2). The check boxes on the left side
can be used to display the color of the face of the blocks, the number of the node and the

number of each face.

Figs 4.36 to 4.43 demonstrate the input of the model geometry and the results of different
KEM models using different tools.
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Figure 4.36: KEM-3D-T shows the failure mechanism for KEM Model (M)
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Figure 4.37: KEM-3D-T shows the support force for KEM Model (M)
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Figure 4.38: KEM-3D-T shows the support force for KEM Model (M) without displaying
the color and the number of the nodes
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Figure 4.39: KEM-3D-T shows the virtual displacements for KEM Model (M)
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Figure 4.40: KEM-3D-T shows the virtual displacements for KEM Model (M1) with three
elements
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Figure 4.41: KEM-3D-T shows the virtual displacements for KEM Model (M1) with four
elements
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Figure 4.42: KEM-3D-T shows the failure mechanism of KEM Model (M2)
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4.12 Summary

In this chapter the KEM is applied to estimate the minimum support pressure being
necessary for stabilizing the tunnel face in dry frictional and frictional-cohesive soil. 3D
KEM model (M) is developed which consists of two rigid blocks, the tetrahedron wedge
block (lower part) and the triangular prism block (upper part, silo part). In order to
incorporate the influence of 3D soil arching in the silo part a 3D active earth pressure
acting on the vertical slip surfaces of the prism from the surrounding soil is presumed.
The results for the minimum support pressure obtained with the KEM model (M) are
compared with the results of numerical simulations and analytical approaches, as well
as physical model tests available in the literature. Similar to Terzaghi’s superposition
method commonly used in bearing capacity analysis, the minimum support pressure is
expressed as the sum of cohesion (c), surcharge load (q) and weight of the soil along
the tunnel diameter D (- D) multiplied by non-dimensional coefficients N., N, and N.,.
Simple formulas have been developed for calculating the non-dimensional coefficients as a
function of cover depth to tunnel diameter ratio (C'/D) and internal friction angle of the
soil (). To further validate the proposed KEM model (M), numerical simulations using
Finite Element Limit Analysis (FELA) have been performed The upper and lower bound
solutions obtained from the FELA simulations were compared with the KEM model (M)
results. The KEM model (M) gives good results in terms of minimum support pressure
compared to physical model test results, various analytical and numerical solutions as
well as FELA for the tunnel face stability analysis in homogenous soils. The results of the
simulations with KEM model (M) are presented in design charts using the normalized

support pressure (p,/(vD)) and normalized cohesion (¢/(yD)) on the axes.






5 Modified KEM models (M1 and M2)

5.1 Introduction

In geotechnical engineering, the result of a stability analysis is significantly dependent on
the chosen failure mechanism. The selection of a proper failure mechanism is thus of great

importance in estimating the collapse load.

Michalowski (1997) proposed a multi-wedge discretization system for estimating the bear-
ing capacity of a strip footing. He concluded that the multiblock mechanism significantly
improves the solutions given by the two-blocks failure mechanism. This is due to the
increase in the number of degrees of freedom offered by the multiblock mechanism to

compered to two-blocks mechanism.

Latterly, the multiblock failure mechanism was applied for the analysis of three-dimensional
passive earth pressure (Soubra & Regenass, 2000) and bearing capacity of square and rect-

angular footings (Michalowski, 2001).

Based on the upper bound method, a number of authors has also applied the multiblock
failure mechanism to investigate the stability of the tunnel face. Mollon et al. (2010),
Zhang et al. (2015) and Han et al. (2016) improved the two solid conical failure mechanism
proposed by Leca & Dormieux (1990) using 3D failure mechanisms composed of several
rigid blocks.

In Chapter 4, the proposed failure mechanism consists of two rigid blocks (KEM model
(M)) offering two degrees of freedom for the wedge (see Figs. 4.1 and 4.3). In order to im-
prove the solution efforts are undertaken within this chapter to refinement the two-blocks
mechanism by increasing the number of blocks in the failure mechanism of KEM model
(M). To verify the accuracy of the modified KEM models (M1 and M2), a comparative
calculations are carried out between KEM models (M1 and M2) and different approaches i
literature. The results are presented in charts demonstrating the influence of internal fric-

tion angle of the soil (¢) and cohesion (¢) on the normalized support pressure (p,/(7D)).

113
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Furthermore, the strength reduction method is used to calculate the safety factor of the

tunnel face, as well as the maximum diameter in open-face tunneling.

5.2 Multiblocks failure mechanism (M1)

5.2.1 Geometry

The M1 failure mechanism is an extension of two-blocks failure mechanism. Fig. 5.1 shows
the failure mechanism (M1) using KEM 3D tunnel face stability software (KEM-3D-T).
The first modified model (M1) is multiblocks composed of five rigid blocks in which
the wedge block is divided into a sequence of four blocks. In general, the geometrical
construction of this mechanism is similar to that of the two-blocks failure mechanism i.e.,
the silo block is a triangular prism block ranging from the crown of the tunnel to the
ground surface. The tunnel face is approximated by a equilateral triangle with the same

area as the tunnel face as shown in Fig. 5.2.

5.2.2 Kinematic analysis

The stationary soil mass outside the failure mechanism is identified as region O with a zero
displacement Vo = [0, 0,0]. To start the kinematic process a unit displacement is initiated
on the face of the tunnel with displacement V; = [1,0, 0]. In this model all elements move
as rigid blocks in the downward direction (see Fig. 5.3). The directions of the relative
tangential displacements between any adjacent blocks are determined according to Eq.
(3.9) (Chapter 3).

5.2.3 Static analysis

The static system-matrix for one half of KEM model (M1) is written as follows :

[Kslisx16 - [N]ix1 + [Flisx1 = 0 (5.1)

From Eq. (5.1), the system has 16 unknown reaction normal forces, while there are only
15 equations of equilibrium. To solve the system of equations an additional equation or

one reaction force is needed.

As discussed in Chapter 4, the load acting from the adjoining soil of the silo is considered

as a 3D active earth pressure exerting on the vertical slip surface of the silo. The 3D lateral
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3 3

Figure 5.1: Geometry of the failure mechanism, KEM model (M1) using KEM-3D-T

P9 P10
* RO S
C
A
a |, a
P2 ‘””’::::’i"_’:; ””” ’P1%E y
D
4‘\
Tunnel face.

P3

Figure 5.2: Geometry of equilateral triangle for KEM model (M1)
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Figure 5.3: Kinematic of the blocks for KEM model (M1) using KEM-3D-T

earth pressure coefficient between the silo and the adjoining soil is calculated according

Eq. (4.9) (Chapter 4) leading to an estimate of one unknown force of the system.

5.2.4 Discussion and comments on KEM model (M1)

Beside the failure mechanism with five rigid blocks, also the failure mechanisms with two,
three and four elements shown in Figs 5.4 and 5.5 have been included in the analysis.
Table 5.1 presents the values of the minimum support pressure for different the numbers
of the rigid blocks, varying from two to five, considering both cohesionless and frictional-
cohesive soils. The percent of improvement in the support pressure corresponding to a
given number of blocks is calculated with reference to the failure mechanism (M) composed
of two blocks.

From Table 5.1, it can be seen that the improvement in the minimum support pressure
increases with the increase in the number of blocks. However, this increase of accuracy
is rather small. For instance as shown in Fig. 5.6, when using five instead of two rigid
blocks, an improvement of 4.34 % is achieved for a cohesionless soil with a friction angle
of 25°. The variation of the inclination angle (#) for the silo and the width of the silo (z)
with the number of blocks is shown in Fig. 5.7. When the number of blocks increases, the

inclination angle of the surface at the bottom of the silo decreases, while, the the width
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Figure 5.4: Failure mechanism for different numbers of elements for KEM model (M1)
using KEM-3D-T with ¢ = 25°, ¢ = 0 kPa: (a) 2 elements; (b) 3 elements; (c) 4 elements;
(d) 5 elements
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Figure 5.5: Kinematics for different numbers of elements using KEM-3D-T with ¢ = 25°,
¢ = 0 kPa: (a) 2 elements; (b) 3 elements; (c) 4 elements; (d) 5 elements
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Table 5.1: Influence of the number of blocks on the minimum support (C/D = 1 and ~
= 18 kN/m?)

Cohesionless soils

=25 c=0kPa ©=235% c=0kPa
Number Minimum support pressure Improvement Minimum support Improvement
of blocks pressure (kPa) (%) pressure (kPa) (%)
2 34.53 18.35
3 35.38 2.41 18.48 0.65
4 35.80 3.54 18.57 1.13
) 36.10 4.34 18.71 1.87

Frictional-cohesive soils

=25 c=5kPa © =235% c=2kPa
Number Minimum support pressure Improvement Minimum support pressure Improvement
of blocks pressure (kPa) (%) pressure (kPa) (%)
2 24.04 14.26
3 24.10 0.23 14.291 0.20
4 24.23 0.77 14.37 0.76
5 24.40 1.47 14.42 1.10
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Figure 5.6: Improvement of support pressure versus number of blocks for model (M1)
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Figure 5.7: Variation of the inclination angle 6 of the surface at the bottom of the silo:
(a) inclination angle for the silo (¢) with the number of blocks; (b) width of the silo (z)
with the number of blocks

of the silo increases. By using KEM model (M1), the approximation of the geometry of
the failure mechanism within the wedge comes closer to reality. With increasing number
of blocks the slip surface of the wedge approaches a curved surface (see Figs. 5.4 and 5.5)
which is similar to the semicircular slip surfaces observed in physical model tests (e.g.,
Idinger et al., 2011; Kirsch, 2010a).

5.3 Multiblocks failure mechanism (M2)

5.3.1 Geometry

The modified KEM model (M2) consists of two domains (see Fig. 5.8), the wedge (lower
part) and the silo (upper part). The wedge is divided into three rigid blocks. Two outer
tetrahedron blocks have scalene triangles at each of its faces. The inner rigid block is a
three-dimensional rectangle-based pyramid having one square face (tunnel face), while the
other faces are triangles with a common vertex. The silo is divided into three triangular
prisms, each of them with two triangular faces at the top and the bottom and three
rectangular faces at the sides. In this model the circular tunnel face is approximated by a

square area (A,) with side length equal to the diameter (D) of the tunnel face as shown
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in Fig. 5.8 (b).

5.3.2 Kinematic analysis

By initiating a unit displacement v (virtual displacement) on the face of the tunnel V
= -vey, the rectangle-based pyramid wedge moves downward with displacement vector
Vi = [1,0,V,,]. The downward movement of the square pyramid wedge (Py, Pz, Ps, P14,
Pj5) is accommodated by the movement of adjacent and above tetrahedron blocks. The
two triangular prisms of the silo are translating vertically with different displacements.
The left-hand side wedge moves with displacements V; = [V;;, 0, V;.]. In general, the direc-
tions of the relative tangential displacements between any adjacent blocks are determined
according to Eq. (3.9) (Chapter 2).

5.3.3 Static analysis

The static system-matrix for one half of KEM model (M2) is written as follows:

[Kli2x13 - [N]isx1 + [Fliax1 =0 (5.3)

From Eq. (5.3), it becomes clear that the system has 13 unknown reaction normal forces,
while there are only 12 equations of equilibrium (statics), indicating that the number of

unknown reaction normal forces exceeds the number of in equilibrium equations by one.

In order to solve this statically indeterminate problem a 3D active earth pressure acting
on the vertical slip surface (P2, P12, P13, P14) of the prism is assumed. The value of
maximum normal (0.5N;3) and shear (0.5R;3) force is transferred from the subroutine
”3D active earth pressure” to the subroutine ”tunnel face stability”, see Fig. 5.9. Based
on the results of the calculations shown in Fig. 5.10 the following equation for calculating
K3p as a function of C/B ratio and friction angle ¢ has been developed for cohesionless

soils:
2.47 - ¢70062¢

K pu—
P 70,78 = (0.0375 - ¢) + (0.00039 - ©?) + C/B

(5.4)

The good approximation of the numerical K3p data by Eq. (5.4) is demonstrated by the

curves in Fig. 5.11.
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Figure 5.8: KEM model (M2): (a) geometry of the failure mechanism; (b) geometry of the
tunnel face; (c) half of the model
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Figure 5.10: 3D lateral earth pressure coefficient (K3p) as a function of C'/D different
friction angles (¢) used for KEM model (M2)
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Figure 5.11: 3D lateral earth pressure coefficient (K3p) obtained from the KEM simula-
tions fitted by Eq. (5.4)
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5.4 Comparison of KEM model (M) with KEM model
(M2)

Fig. 5.12 presents a comparison between the results of KEM model (M) and KEM model
(M2) results for frictional and frictional-cohesive soil. It can be concluded that KEM
model (M2) delivers a larger in minimum support pressure. The increase of the minimum
support pressure of KEM model (M2) with respect to KEM model (M) lies in the range

12 - 23 % in case of cohesionless soil and 14 - 25 % for frictional-cohesive soil.

5.5 Comparison with other existing approaches

5.5.1 Homogeneous soil

To evaluate the validity of KEM models (M and M2), the effect of friction angle () and
cohesion (c¢) on normalized support pressure (p,/(vD)) is investigated by these two models
and compared with five models from the literature covering two different approaches, Limit
Equilibrium Method (LEM) and Limit Analysis Method (LAM). The soil is assumed to
be homogeneous. The dry unit weight is set to v = 18 kN/m?, the tunnel diameter D =
10 m and C/D ratio is assumed to be 1. The surcharge is neglected (¢ = 0 kPa).

Fig. 5.13 presents the relationship between the normalized support pressure (p,/(vD))
and normalized cohesion (¢/(yD)) for two different values of friction angle, ¢ = 20° and
40°.

Fig. 5.13 shows that for ¢ = 20° and ¢ = 40°, the slope of the line representing the solution
of Krause (1987) is higher than that of the other solutions, indicating that cohesion has
much more effect on the support pressure compared to the other approaches. In contrast,
the slopes of the lines resulting from the solutions of Broere (2001), Anagnostou & Kovari
(1994), Anagnostou (2012), KEM model (M) and KEM model (M2) are quite similar.
Therefore, the effect of cohesion on the minimum support pressure is described in a

similar way by all these models.

It can be seen in Fig. 5.13 that for ¢ = 20°, the solution of Anagnostou & Kovari (1994)
using limit equilibrium method predicts higher values p, /(vD) than the other approaches.
However, at ¢ = 40°, the solution of Broere (2001) exceeds the solution of Anagnostou
& Kovari (1994). This can be attributed to two reasons; firstly, the simplified way of

considering the vertical stress distribution along the sides of the wedge, i.e. linear vertical
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Figure 5.13: Normalized support pressure (p,/(vD)) as function of normalized cohesion
(¢/(yD)), comparison of results of KEM models (M1) and (M2) with other approaches
from the literature: (a) ¢ = 20° and C/D = 1; (b) ¢ = 40° and C/D =1

stress distribution in the model of Anagnostou & Kovari (1994). Secondly, for ¢ > 35°
Anagnostou & Kovari (1994) assumed Keqpe = 0.4 which is higher than the value of set
into approach by Broere (2001) (Kyeqge = Ko). Consequently, in Anagnostou & Kovari
(1994) model, the vertical stress and the frictional resistance acting on the wedge are con-
siderably higher than the corresponding values used in the Broere (2001) model. Finally,
at ¢ = 40°, the combination of the two previous reasons leads to lower the minimum sup-
port pressures prediction by Anagnostou & Kovari (1994) model compared to the model
of Broere (2001).

For ¢ = 20°, the values of p,/(7D) obtained from KEM model (M2) are close to the
prediction by Broere (2001) model. The difference in p, /(7D) between these two methods
is less than 5 %. Meanwhile, for ¢ = 40°, the values of p,/(vD) obtained from the model
of Anagnostou & Kovari (1994) and KEM model (M2) are almost identical.

According to Fig. 5.13, for both studied two friction angles (¢ = 20° and 40°), the results
of Anagnostou (2012) which are based on the infinitesimally thin slices method and the
results of KEM model (M) using a two-blocks mechanism are located between the results
of KEM model (M2) and the upper bound solution of Leca & Dormieux (1990).

For both friction angles (¢ = 20° and 40°), the values of p, /(D) obtained from Leca &
Dormieux (1990) using the upper bound method are clearly below the results given by
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Cover layer ¢

Cross layer

D

Figure 5.14: Model considering two layers of soil

the other approaches. This is due to that the shape of the tunnel face is considered as
an ellipse inscribed to the circular tunnel face. Furthermore, the two-blocks mechanism
given by Leca & Dormieux (1990) is constrained by the normality condition, required by
plasticity theory. The velocity vector must enclose an angle ¢ with discontinuity surfaces
along the sliding surfaces. However, this condition prevents the three-dimensional slip

surfaces from developing more freely.

5.5.2 Layered soil

In this section, the tunnel face stability in layered soils is investigated using different
approaches, the model considers two layers (cover and cross layer) of the soil is shown in
Fig. 5.14. The cover and the cross layer are assumed to be located above the groundwater

table. The soil strength parameters and geometry of the tunnel are described in Table 5.2.

The effect of the soil parameters of the cover layer on the minimum support pressure is
investigated by varying the friction angle of the cover layer, while the soil properties of the
cross layer are kept constant. The variation of the normalized minimum support pressure

with the friction angle of the cover layer is shown in Fig. 5.15.

It is clear from Fig. 5.15 that the results obtained from the different approaches are
quite different. It can be noticed that the wedge-silo models (Jancsecz & Steiner, 1994;
Anagnostou & Kovari, 1994; Broere, 2001) give much larger support pressures than the
KEM models (M and M2), the limit analysis models and the FELA models. The results of
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Table 5.2: Soil parameters and tunnel geometry (soil with two layers)

Model description Parameter Value Unit
Cover layer Cover depth (C) 9 [m]
Friction angle (¢) 15-45 [
Unit weight () 18 kN /m?]
Cohesion (c) 2.5 kPal

‘]
kN /m3]
kPal

Friction angle (¢) 20
Unit weight(7) 18

[
[
[
Cross layer Tunnel diameter (D) 6 [m]
[
[
Cohesion (c) 2.5 [

Han et al. (2016) are slightly below the upper and lower bound results of FELA. This can
be attributed to the fact that the 3D failure mechanism of Han et al. (2016) is composed
of five truncated cones which offers much more degrees of freedom. However, in the failure
mechanism assumed by Han et al. (2016), the shape of the tunnel face is considered as
an ellipse. This ellipse and the circular tunnel face do not have the same cross-sectional
area. Furthermore, the soil arching effect above the cones is considered by a vertical force
according to Janssen’s silo theory. The results of KEM model (M2) are above the results of
KEM model (M). In addition, the results obtained using KEM model (M) slightly exceed
the results obtained using FELA upper and lower bound solutions. The upper bound
solution of Tang et al. (2014) gives significantly smaller values than the other approaches.
This can be explained by the fact that the upper bound solution of Tang et al. (2014) is
based on the mechanism composed of two cones proposed by Leca & Dormieux (1990),

which is restricted in the number of the degrees of freedom.

Furthermore, it can be seen from Fig. 5.15 that the minimum support pressure decreases
with increasing friction angle in case of the upper bound solution of Han et al. (2016), both
KEM models, the FELA results and the Anagnostou & Kovari (1994) model. The steepest
trend is predicted by the model of Anagnostou & Kovari (1994). Surprisingly, applying
the solution of Broere (2001), the minimum support pressure decreases up to a minimum
value at ¢ = 40° before increasing again with further increase of ¢. A similar trend is
obtained from the approach of Jancsecz & Steiner (1994). In that case the minimum
support pressure decreases slightly to the minimum value at ¢ = 30°, while it increases

subsequently.

The trends of the support pressure predicted by the wedge-silo models (Jancsecz & Steiner,
1994; Anagnostou & Kovari, 1994; Broere, 2001) can be explained as follows. From silo
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theory (Eq. (2.13), Chapter 2), the value of vertical stress above the tunnel crown is mainly
dependent on the value of K, tany (for the same soil strength parameters). For the
model of Anagnostou & Kovari (1994) model this value will be 0.8 - tan ¢, for the Broere
(2001) solution it will be (1-sing)-tang, and for the Jancsecz & Steiner (1994) solution
(tan?(45 — /2))-tanp. As shown in Fig. 5.16, the value of K, - tan in the solution
of Anagnostou & Kovari (1994) increases exponentially. According to the approach of
Broere (2001), the value of Ky, tang increases up to a maximum value at ¢ = 40°
before it decreases again. The same trend is obtained for the equations of Jancsecz &

Steiner (1994), where the maximum value is reached at ¢ = 30°.

The effect of K, -tan ¢ on the vertical stress distribution in the different model is shown
in Fig. 5.17. From those diagrams one it conclude that in the models of Jancsecz & Steiner
(1994) and Broere (2001), the vertical stress for ¢ = 45° is close or slightly higher than
that for ¢ = 35° at any depth. In contrast, in the approach of Anagnostou & Kovari
(1994), the vertical stress for ¢ = 35° is always higher than that for ¢ = 45°.

Based on the previous results it can be concluded that for the set of soil parameters and
geometry of the tunnel used in this study (see in Table 5.2) the approaches of Jancsecz
& Steiner (1994) and Broere (2001) predict a trend of the minimum support pressure
with friction angle which contradicts practical experience. The discrepancies between the

support pressure predicted by the different approaches are obvious in Fig. 5.15.

5.6 Development of design equations based on KEM

model (M2) simulations

Figs. 5.18 to 5.20 give the non-dimensional coefficients IV, N, and N, derived from simu-
lations with the KEM model (M2) for different friction angles and C'/D ratios. The results
reflect the expected the decrease in N,, N, and N, values as friction angle increases for a
constant C'/D ratio. Table 5.3 provides the values of N,,, N, and N, for different ranges
of friction angle and C/D ratio. The results of N, in fig 5.20and Table 5.3 show that the
value of IV, becomes equal to zero for C'/D ratios greater than or equal to 1.5 for any

friction angle.

Based on a fitting of the data shown in Fig. 5.21, simple relationships for calculating N,

N, and N, have been developed as follows:

N, = a3 - (bs)™% (p > 15 (5.5)
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Figure 5.18: N, as function of the soil friction angle, KEM model (M2)

as = 0.628 + 0.366 - C/D
by = 0.066 — 0.009 - C/D
N, ~ a4 - (tan )" (p > 15
as = 1.198 4+ 0.077-C/D
bs = 0.715+0.104 - C/D

(
N, ~ a5 -e 6 @) (For C/D < 1.5) (
as = 0.8265 — 0.4525 - C/D (

(

b = 2.557+0.575- C/D

Fig. 5.21 shows the comparison between the values of N,, N. and N, obtained from
the KEM simulations with those calculated from Egs. (5.5) to (5.13), confirming the
good agreement. For a practical application, the normalized support pressure (p,/(vD))
is plotted as a function of normalized cohesion (¢/(yD)) for different friction angles in
Fig. 5.22.

5.7 Open-face tunneling

The conventional methods in tunnel construction can be categorized as closed face-

tunneling and open face-tunneling (Chapman et al., 2017). In closed face-tunneling, a
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Figure 5.19: N, as function of the soil friction angle, KEM model (M2)
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Figure 5.20: N, as function of the soil friction angle, KEM model (M2)
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Figure 5.22: Design charts for the minimum support pressure for KEM model (M2) (¢ =
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Table 5.3: N,, N. and N, for various internal friction angles and C'/D ratios for KEM
model (M2)

N, N, N,

C/D
%) 0.5 1 1.5 2 25 0.5 1 1.5 2 25 0.5 1 1.5 2 2.5
152 0.386 0.475 0.557 0.633 0.698 3.239 3.633 3.967 4.401 4.901 0.292 0.147 0.058 0.000 0.000
20° 0.289 0.345 0.396 0.443 0.488 2.701 2.988 3.192 3.448 3.782 0.224 0.113 0.045 0.000 0.000
25% 0.221 0.257 0.289 0.320 0.348 2.256 2.460 2.601 2.754 2.954 0.165 0.083 0.032 0.000 0.000
30° 0.164 0.188 0.210 0.230 0.248 1.892 2.043 2.130 2.229 3.367 0.120 0.057 0.020 0.000 0.000
35° 0.119 0.136 0.151 0.165 0.177 1.593 1.694 1.757 1.840 1.926 0.090 0.036 0.014 0.000 0.000
40° 0.085 0.097 0.106 0.114 0.124 1.323 1.410 1.462 1.529 1.612 0.059 0.018 0.006 0.000 0.000
45° 0.06 0.068 0.073 0.081 0.085 1.099 1.168 1.207 1.262 1.333 0.034 0.003 0.000 0.000 0.000
509 0.042 0.046 0.048 0.051 0.057 0.900 0.960 1.010 106 1.130 0.000 0.000 0.000 0.000 0.000

face support pressure is needed to stabilize the tunnel face (non-stable condition). For
open face-tunneling, no face support pressure is needed (stable condition) because the

soil shear strength is high enough to ensure stability of the tunnel face.

5.7.1 Factor of safety for open-face tunneling

In this section, the Strength Reduction Method (SRM) (Bishop, 1955) is adopted to
calculate safety factor (F's) in open-face tunneling. The safety factor is defined as the
ratio of actual shear strength (c and ¢) to the reduced or increased shear strength (c. and

©e) at failure. The material strength parameters are simultaneously reduced or increased
according to Egs. (5.14) and (5.15).

ce =c/Fs (5.14)

t
e = arctan ( i:lgp) (5.15)

s
where, F's is the strength reduction coefficient, which is identical to the safety factor.

The strength reduction coefficient or safety factor, respectively, can be obtained by updat-
ing ¢, and ¢, until the minimum support pressure is equal to zero. The stable condition

(zero support pressure) is represented by the following equation:

v-D-Ny,—c-N.+q-N,=0 (5.16)
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For the stable tunnel face condition, Eq. (5.16) is obtained from Eq. (5.16):

N.
\ = # = (5.17)

Generally, the non-dimensional coefficients N, and N, are dependent on friction angle ¢
tango)

Therefore, A can be reformulated to be a function of arctan(

_ tan ¢ _ &
A= f (arctan( s )) ~Fs D5 (5.18)

As an example, Krause (1987), Vermeer et al. (2002) and Anagnostou (2012) proposed

the following non-dimensional coefficients IV, and N.:

1 s
= N, = K , 1987) (5.19
79 tangp 2 tany (rause ) )
1 1
= —0.05 N, = (Vermeer et al., 2002) (5.20)
9 tany tan ¢
0.05 1
= —7% = (Anagnostou, 2012) (5.21)
tan o™ tan ¢

Using Eq. (5.15), the values of safety factor based on the models of Krause (1987), Vermeer
et al. (2002) and Anagnostou (2012) as well as KEM (M) and KEM (M2) models can be

obtained as follows:

9.c-
Fs= 5 lc) 7; For Krause (1987) model (5.22)
9
Fs=—C 1045 -tan ¢ For Vermeer et al. (2002) model (5.23)
e
- (& tangp " For Anagnostou (2012) model (5.24)
=\ om Do r Anagnostou m :
t (bl b2 (14+b1—bg)
_ (C an ¢ > i For KEM model (M) (5.25)
ar-D -~y
where
a; = 0.055 + 0.007 - C'/D (5.26)
by = 1.50- (C/D —0.37)"" (5.27)
by = 0.77+0.17-C/D (5.28)

Q4 - C- tansp( bs)

(1- b4)
Fs— - For KEM model (M2) (5.29)
ag- D -y -byUF)
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Figure 5.23: Safety factor (F) as function of normalized cohesion (¢/(vD)) Comparison
of different approaches for (a) ¢ = 20°, C/D = 1 and (b) ¢ = 40°, C/D =1

where
az = 0.628 4+ 0.366 - C'/D (5.30)
by = 0.066 — 0.009 - C'/D (5.31)
ags = 1.198 +0.077 - C/D (5.32)
bs = 0.715+0.104 - C/D (5.33)

For an unstable tunnel face F's < 1, for the critical state F's = 1 and for the stable tunnel
face F's > 1 holds.

Fig. 5.23 shows the safety factor as a function of the normalized cohesion (¢/vD) calculated
by different approaches. In Fig. 5.23, for the same C/D, the safety factor increases with
the increase of cohesion and friction angle with exception of the solution by Krause (1987).
In the model of Krause (1987), the friction angle has no effect on the safety factor. The

computed A takes the same value for any friction angle (see Eq. (5.22)).

By examining the trend of the data in Fig. 5.23, it appears that the safety factor increases
linearly with the normalized cohesion. At ¢ = 20°, the model of Krause (1987) provides
the highest values of safety factor for almost all values of the cohesion factor. In contrast,
the model of Anagnostou & Kovari (1994) gives lower safety factor than the other models.
The safety factor calculated by KEM model (M2) is in good agreement with the results
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Figure 5.24: Safety factor as function of normalized cohesion for different friction angles
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of Broere (2001) and close to the F's values obtained from the approach of Anagnostou
(2012).

At ¢ = 40°, the approach of Leca & Dormieux (1990) almost achieves stable tunnel face.
The relationships between safety factor and cohesion factor obtained from KEM model
(M2), KEM model (M) and the solution of Anagnostou & Kovari (1994) intersect at
about F's = 1. Beyond that point the KEM model (M) gives higher factor of safety than
KEM model (M2) and the approach of Anagnostou & Kovari (1994). The safety factors
according to Anagnostou (2012) are slightly larger than those from KEM model (M). For
¢/(vD) > 0.075, Anagnostou & Kovari (1994) and KEM model (M2) attain a factor of

safety of one or greater.

From the previous results, it can be concluded that as the friction angle increases, the
normalized cohesion (¢/(yD)) for achieving a stable tunnel face decreases. Generally, the

increase in friction angle of the soil results in an increase in the safety factor.

A comparison between KEM model (M2) and other existing approaches shows that the
factor of safety derived from KEM model (M2) is close to the values obtained from wedge-

silo model.

For practical purpose, design charts have been provided in Fig. 5.24, showing the safety
factor (Fs) as a function of the normalized cohesion (¢/~D) for different values of friction

angle ¢ and C'/D ratio.

5.7.2 Maximum tunnel diameter for open-face tunneling

Eq. 5.16 could be reformulated to calculate the maximum tunnel diameter for open-face
tunneling depending on the soil strength parameters and the surface load. The maximum

tunnel diameter (D,,4,) can be obtained as follows:

1. Forq =0
c N,
Doz = — - — 5.34
voNy ( )
2. Forqg >0
-N,—q-N
Dy = e~ 4" (5.35)
V'N’y

Egs. (5.34) and (5.35) demonstrate that the maximum diameter (D,,,,) in open face

tunneling is linearly related to the cohesion.
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Figure 5.25: Maximum diameter (D,,,,) in open face tunneling with q = 0 kPa

Using Eq. (5.34) for ¢ = 0 kPa, the maximum tunnel diameter (D,,,,) calculated by
Krause (1987), Vermeer et al. (2002), Anagnostou (2012) as well as KEM (M) and KEM

(M2) models are as follows:

4.5-¢c-m

Doz = —— For Krause (1987) model (5.36)
gl
Doz = )¢ For Vermeer et al. (2002) model (5.37)
Ty L1 — (0.45 - tan )] ' '
20 ¢ 0.75
Doz = 0-c-tang For Anagnostou (2012) model (5.38)
v
. (b1—b2)
Dypgy — St n For KEM model (M) (5.39)
ay -7
where
a; = 0.055 + 0.007 - C'/D (5.40)
by =150 (C/D —0.37)"°" (5.41)
by = 0.77+0.17- C/D (5.42)
.c- —bs
Dy = 1R For KEM model (M2)(5.43)
a3y b9
where

as = 0.628 + 0.366 - C/D (5.44)
by = 0.066 — 0.009 - C'/D (5.45)
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as = 1.198 + 0.077 - C/D (5.46)

bs = 0.715 + 0.104 - C/D (5.47)

To examine the validity of KEM model (M) and KEM model (M2) results, Fig. 5.25
shows a comparison of the values of the maximum tunnel diameter with the results given
by five different approaches for C'/D = 1 and friction angles ¢ varying from 15° to 45°.
The comparison shows that the results of KEM model (M2) are close to the results of
Broere (2001). In addition, the maximum difference between KEM model (M) and KEM
model (M2) does not exceed 5 % for ¢ > 20°. The maximum tunnel diameter given by
the solution of Anagnostou (2012) is larger than those predicted by the other approaches.
Meanwhile, the model of Krause (1987) predicts a maximum tunnel diameter which is

independent of the friction angles.

5.8 Practical examples

5.8.1 Closed-face tunneling
5.8.1.1 Determining the minimum support pressure

A tunnel boring machine (TBM) has a diameter D = 8 m and is buried at a cover depth
C = 12 m in dry frictional-cohesive soil with v = 18 kN/m?, ¢ = 25° and ¢ = 7 kPa.
No surcharge pressure has to be considered. The safety factor is assumed to be 1. The
following two steps can be used to determine the minimum support pressure for preventing

the collapse of the tunnel face.

1. Calculating the dimensionless ratios C/D =12/8 = 1.5and ¢/(yD) =7/(18 -8). C/D =
1.5, ¢ = 25° and ¢/(yD) = 0.049, Fig 5.22 (c) is applied. From Fig 5.22 (c), it is
found that p,/(yD) = 0.163. Then, the minimum support pressure can be computed
as p, = 8 - 0.163 - 18 = 23.5 kPa.

5.8.1.2 Determination of maximum cover depth

A tunnel with D = 10 m is proposed to be excavated in dry frictional-cohesive soil with
v =18 kN/m?, ¢ = 15° and ¢ = 5 kPa. The proposed TBM has the capacity to provide a

support pressure of 75 kPa, while the surface surcharge pressure is 0 kPa. The safety factor
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is assumed to be 1. The following procedures can be used for calculating the maximum

cover depth to maintain stability of the tunnel face.

1. Calculating dimensionless ratios p,/(yD) = 75/(18:10) = 0.417 and c¢/(yD) =
5/(18-10) = 0.028.

2. From Fig 5.22 (b and c) with p,/(vD) = 0.417, ¢/(yD) = 0.028 and ¢ = 15°, it
can be found that the maximum possible cover depth lies between C' = 1.5D = 1.5
m and C' = 1.0D = 10 m. Using Egs. (5.5) and (5.8) with trial and error method,
the maximum cover depth ratio (C'//D) is approximately calculated. The obtained
value C'/D = 1.23 corresponds to, C' = 12.3 m.

The previous example can be used in a similar manner with the same procedure to cal-

culate the maximum tunnel diameter (D) for a given cover depth (C).

5.8.2 Open-face tunneling
5.8.2.1 Determination of the safety factor

It is proposed to to excavate a shallow tunnel in dry homogenous frictional-cohesive soil.
The soil properties are v = 18 kN/m?, » = 30°, and ¢ = 6 kPa. No surcharge pressure has
to be taken into account. The cover above the tunnel is C' = 10 m and the diameter of
the tunnel is D = 5 m. The designer should determine the factor of safety for open-face
tunneling (no tunnel face support pressure). Referring to Eq. (5.29), the minimum factor
of safety (F's) is obtained as 1.2.

5.8.2.2 Determination of the maximum tunnel diameter

It is proposed to excavate a shallow tunnel through dry homogenous frictional-cohesive
soil. the soil properties are v = 18 kN/m?, ¢ = 35°, ¢ = 8 kPa, and ¢ = 0 kPa. The
cover above the tunnel (C') is 10 m thick. The designer should determine the maximum

diameter for open-face tunneling.

1. From Table 5.3 and Eq. (5.34), the maximum tunnel diameter can be calculated
for different C'/D (0.5, 1, 1.5, 2 and 2.5) with the known data, v = 18 kN/m3, ¢ =
35% and ¢ = 8 kPa.

2. For different C'/D, it is found that the maximum tunnel diameter D, is 4.95 m
when C'/D = 2.
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5.9 Summary

Based on the two-blocks failure mechanism considered in KEM model (M), two different
modified failure mechanisms are studied using KEM to estimate the minimum support
pressure of the tunnel face. The first modified KEM model (M1) is composed of five
blocks. The second modified KEM model (M2) consists of six blocks. The modified fail-
ure mechanism (M2) improves significantly the two-blocks mechanism (M) in terms of
the minimum support pressure. In addition, the modified model (M1) leads to a slight

improvement in the minimum support pressure for frictional and frictional-cohesive soil.

For the purpose of verification, the results proposed by KEM model (M2) are compared
with the results of KEM model (M) and other solutions available from the literature in the
form of dimensionless design charts. The results obtained by KEM model (M2) provide a
higher minimum support pressure than KEM model (M) and are close to the minimum
support pressure calculated by wedge-silo models (Anagnostou & Kovari, 1994; Broere,
2001).

KEM model (M2) has been also used to study the tunnel face stability in a ground
composed of two layers. Also in that case a comparative study was conducted in which
the results of KEM model (M2) were confronted with other models from literature, as
well as with the upper and lower bound solutions from FELA. The values of the minimum
support pressure predicted by KEM model (M2) were higher than those from FELA other

the upper bound solutions.

For an open-face tunneling, the factor of safety against a collapse of the tunnel face was
calculated using the strength reduction technique. A comparisons between the factor of

safety obtained from KEM model (M2) and other existing approaches is presented.

Furthermore, for open-face tunneling without applying the support pressure, a formula
for the maximum diameter of the tunnel is presented. The results for the maximum tunnel
diameter calculated with KEM model (M2) are verified against the results from different

approaches in the literature.

On the basis of the results taken from the performed parametric analysis with KEM
model (M2), a number of design charts and formulas have been proposed for a practical

application in tunnel face stability problems.



6 Effect of excess pore pressure on the

stability of the tunnel face

6.1 Introduction

Slurry tunnel boring machine are widely used for excavating and supporting the tunnel
face. In case of a slurry tunnel boring machine, the required support pressure is provided
by a pressurized mixture of bentonite and water. Because the pressure of the support-
ing mixture is higher than the hydrostatic pore pressure, the bentonite slurry tends to

infiltrate into the soil at the front of the tunnel face.

According to Maidl et al. (2012), two infiltration mechanisms are possible. Firstly, in high
permeability soils or when the shear resistance of the slurry is low, the slurry signifi-
cantly infiltrates into the soil and the bentonite does not form a filter cake (penetration
mechanism), see Fig. 6.1. Secondly, in a low permeability soil, the bentonite forms a thin
impermeable filter cake at the front of the tunnel face acting as an impermeable membrane

(membrane mechanism).

The penetration of the slurry into the soil can be distinguished into two processes (Talmon
et al., 2013): mud spurt and filter cake formation. When mud spurt starts, the slurry (water
with bentonite) penetrates into the soil. After some time, the water is squeezed out of the
slurry, leaving bentonite particles consolidated in pores of the soil and an external filter

cake is formed.

During the drilling phase of the slurry shield, the filter cake is continuously removed by
the cutting tools of the TBM. Within the excavation process, the pore water is displaced
leading to excess pore pressure at the front of the tunnel. When the slurry shield is in
stand-still phase, the cutter head rotation is stopped and the pressure in the excavation
chamber is constant resulting in the formation of a filter cake. This filter cake limits the
filtration and thus the pore pressure on the outer side of the filter cake decreases with

time until it becomes equal to the hydrostatic pore pressure.

145
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Figure 6.1: Infiltration mechanisms, Maidl et al. (2012): (a) penetration mechanism; (b)

membrane mechanism
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Figure 6.2: Pore pressure measured in the tunnel axis as a function of the distance to the

slurry shield, data from Heinenoord tunnel, Bezuijen (2002)
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The change of pore water pressure during excavation of 2nd Heinenoord-tunnel was pre-
sented by Bezuijen (2002), see Fig. 6.2. The pore pressure transducers (PPTs) were in-
stalled in the tunnel track and used until their destruction. Fig. 6.2 presents the support
pressure as a function of the actual distance between the position of the transducer an
the tunnel face. As it can be seen from the measurements, when the drilling phase starts,
the pore water pressure increases above the hydrostatic pore pressure, whereas during
the stand-still phase the pore water pressure decreases to the hydrostatic pore pressure.
The closer the tunnel face is to the pressure transducer, the larger is the increase of pore

pressure during the drilling phase.

To predict the development excess pore pressure at the front of the tunnel face in saturated

sand, some analytical solutions have been developed (e.g., Broere, 2001; Bezuijen, 2002).

The excess pore pressure at the front of the tunnel face is associated with a hydraulic gra-
dient between the mixing chamber and the surrounding soil of the tunnel. The hydraulic
gradient leads to a fluid flow from the the tunnel face. This fluid flow changes the effective

stress state resulting in lower effective stress and thus lower shear strength in the soil.

In this chapter, the influence of the increase or decrease of pore pressures on the minimum
support pressure during tunnel excavation will be discussed in terms of effective and total
support pressure. The calculation procedure will be elaborated by implementing the two
solutions proposed by Bezuijen et al. (2016) in KEM (M2) model as well as in the models
of Horn (1961), Anagnostou & Kovari (1994) and Broere (2001).

6.2 Stresses in soil under hydrostatic conditions

This section reviews briefly the key aspects related to the total stress, the pore water

pressure and the effective stress in soils, see Fig. 6.3.

In homogenous saturated soil, the vertical total stress o,(h) at depth z is obtained by
integrating the density o of the soil and water above the depth A multiplied by the

gravitational acceleration:
h
ou(h) :/ pgdz (6.1)
0
If pg remains constant throughout the soil, then
ou(h) = pgh = Ysath (6.2)

where 7,4 is the weight of the saturated soil per unit volume and h is the depth below

the ground surface.
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Figure 6.3: Distribution of total stress, pore water pressure and effective stress with depth:

(a) dry soil; (b) saturated soil

If ground water table is at the ground surface, the hydrostatic pore pressure u at depth

h below the free surface can be obtained as:

h
u= ’yw/ dz = yuh (6.3)
0

The effective vertical stress is the difference between the total vertical stress and the

hydrostatic pore pressure:
o'v(h) =, — u(h) = Ysath — Ywh =~'h (6.4)

where +/ is the buoyant unit weight of the soil.

6.3 Safety factors

The soil properties such as unit weight and shear strength are determined from laboratory
tests or using some empirical relationships which introduces uncertainties. The purpose of
safety factors is to take into account the uncertainties in the value of the design loads and
the soil properties. The safety factors for tunnels projects are regulated in German code

(ZTV, 2012) ” Technical contract terms and policies for civil engineering works, tunneling”.

By multiplying the support forces counteracting earth and pore pressures by partial safety
factors, the design value of the total force to be applied on the TBM face (P) is obtained
according to Eq. (6.5):

P=n.-P.+ny P, (6.5)

P, is the support force balancing the earth pressure, P, the support force counteracting

the pore pressure, 7. the safety factor for earth pressure and 7, the safety factor for water
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pressure. German code (ZTV, 2012) suggests 7. and 7,, to be 1.5 and 1.05, respectively. In
addition, German code (ZTV, 2012) recommends that for calculating the operational face
pressure using the slurry shield machine, a safety margin of 10 kPa above the pressure

obtained from Eq. (6.5) must be considered.

6.4 Blow out

When the support pressure is too high, the soil is heaved in front of the tunnel face.
Such failure is often classified as blow out. To avoid this, the maximum allowable support

pressure should be determined. The maximum support pressure (p,,q.) for the tunnel face
can be estimated as (DAUB, 2016):

Prmaz = C- Ysat 05-D- Vs (66)

where D is the tunnel diameter, C' is the cover depth, v, is the unit weight of saturated

soil and 74 is the unit weight of support medium.

6.5 Bezuijen models

Bezuijen et al. (2002, 2016) developed two approximated solutions to describe the change
of the pore pressure distribution in front of a TBM. The first solution is proposed to
predict the excess pore pressure distribution in homogenous saturated sand, when drilling
of tunnel occurs in an unconfined aquifer. The second solution is presented to predict the
decrease in pore pressure with time during stand-still phase assuming that the pressure
difference between the excess piezometric head in the mixing chamber and the piezometric
head at the maximum depth of infiltration is dependent on the flow resistance and shear

strength of the bentonite.

6.5.1 Bezuijen model for excess pore pressure distribution during

drilling phase

In the model of Bezuijen (2002), it is assumed that the drilling speed of the slurry TBM
is higher than the slurry penetration velocity and consequently no filter cake is formed.
Therefore, the pressure is transferred due to the flow of slurry into the soil skeleton and

the resulting shear stresses between slurry and soil without a distinct pressure drop at a
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Figure 6.4: Point source and equipotential surface

filter cake. The theory was developed based on measurements of the change of pore water

pressure in the front of the tunnel face at the 2nd Heinenoord as discussed before.

According to Bezuijen (2002), the increase of piezometric head at the tunnel face is caused
by a constant hydraulic source over the entire tunnel face. To calculate the excess of pore
pressure distribution, in the first step the increase in piezometric head caused by a point
source on the surface of a half space is discussed, see Fig. 6.4. The flow rate at the point
source on the surface of the half space is equal to the flow rate at a certain distance along
a surface which is called an equipotential surface. A simple sketch of the flow model is

shown in Fig. 6.5.

For a steady state flow, the discharge (@) across the equipotential surface is calculated

as follows:

Q=A-Fk-i (6.7)

where, A is the area of the hemispherical zone, k is coefficient of permeability of the soil

and i is the hydraulic gradient.

The hydraulic gradient between the point source and the equipotential surface can be

obtained as:

(6.8)

LRSS
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Figure 6.5: Tunnel face flow, Bezuijen (2002)

where ¢ is the piezometric head at the point source and s is the distance from point source
to the equipotential surface.
A=2.7.5 (6.9)

Eq. (6.7) can be reformulated to obtain the piezometric head as follows:

Q

¢:2~7r-k-s

(6.10)
From Eq. (6.10), in the second step, the piezometric head at a distance s resulting from

a fluid injection and over a small area drdd of the tunnel face can be defined as:

_q-rdr-df

do = 1= =7
¢ 2-m-k-s

(6.11)

To calculate piezometric head in a point A at the tunnel axis with distance x from the
tunnel face for the whole area of tunnel face, Eq. (6.11) is integrated over the circumference
and over the radius of the tunnel face, where s = v a2 + r2 and R is the radius of the

tunnel face. P
T rdrdf
¢—L// _rdrad_ (6.12)
2.7-k-s 0 0 ,/:L-2_|_7n2
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Tunnel face

Figure 6.6: Distribution of excess piezometric head ¢, with distance to the tunnel face

The distribution of piezometric head (Fig. 6.6) is obtained as:

o(z) = %(\/ 2+ R? — 1) (6.13)

where ¢ is the excess piezometric head above hydrostatic level at distance x from the
tunnel face and ¢, is the excess piezometric head at the tunnel face.

Taking the derivative of Eq. (6.13) at = 0, the hydraulic gradient (i) at the tunnel face

is obtained as:

. 9o
= 2 6.14

i=% (619
Using Darcy’s law, the penetration velocity (v,) at front of the tunnel can be formulated
as:

ki k-o¢,

= = 6.15
Up n n-R (6.15)

where n is the porosity of the soil.

6.5.2 Bezuijen model for decrease of pore pressure during stand-still

phase

When drilling stops, an external filter cakes forms in the soil. Bezuijen (2002) described
the pressure drop over the infiltrated zone (external filter cake and mud spurt) using
Darcy’s law for the flow of the slurry and the water flow. Based on Bezuijen (2002) the
difference between the excess piezometric head at the tunnel face ¢g and the piezometric
head at the far side of the mud spurt ¢,,, is described with Eq. (6.16).
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T - Qg
L

at the filter cake

¢0 - (bm:v =

T-q
e 6.16
T (6.16)

S~~~
at the mud spurt

where L is the maximum penetration depth after a long time, x is the penetration depth

at a certain time, ¢ is the discharge and k, is the coefficient of permeability of the slurry.

The piezometric head at the far side of the mud spurt ¢,,, can be described as

The discharge q is rewritten with Darcy’s law as q = (dx/dt)n leading to the following

equation

??‘ ‘
T

cbo:(n'RJrn'x)d—erx'% (6.18)

Eq. (6.18) can be reformulated as follows:

(6.19)

By solving Eq. (6.19), ¢, can be computed as a function of time, if the parameters R, n,

L, x and k, are known.

6.6 Implementation of excess pore pressures into

different models.

In the following subsections, the procedure of taking into account the excess pore pressure
in predicting the minimum tunnel face support pressure using wedge-silo (Horn, 1961;
Anagnostou & Kovari, 1994; Broere, 2001) and KEM model (M2) will be presented.

In order to obtain the distribution of excess pore pressure around the tunnel face generated
by tunnel excavation, the analytical model proposed by Bezuijen (2002) is integrated into

the tunnel face stability models, see Fig. 6.7.

Based on the assumptions of the model of Bezuijen (2002), Eq. (6.13) can be used to pre-
dict the excess pore pressure at any distance from the center of the tunnel face. However,

the flow of slurry from the TBM to the soil is a 3D flow, which would make the resulting
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excess pore water distribution more complex and its calculation time-consuming. To get
around this 3D flow problem, Bezuijen (2002) assumed that Eq. (6.13) can be used to
estimate the distribution of excess pore pressure along the distance x from the tunnel face

at every point on the tunnel face.

6.6.1 Implementing the excess pore pressure in wedge-silo model

The major steps to include the effect of excess pore pressure in predicting the minimum
tunnel face support pressure are as follows. Firstly, the the wedge is divided into horizontal
slices and the hydraulic head difference between the assumed failure surface and the tunnel
face is calculated in each slices. The effective weight of each slice including the hydrostatic
forces and the seepage forces is calculated. Finally, the maximum effective support force
in equilibrium condition is determined using the optimization process. The previous steps

are discussed in more details in the following.

To include the excess piezometric head in the static equilibrium analysis of the wedge, the
wedge is divided into several slices along the vertical direction. Each slice (i) is loaded by

the effective weight from the slice above it (i-1) and below (i+1), see Figs. 6.7 and 6.8.

By integrating Eq. (6.13) from x = 0 to x; and dividing the results by x;, the average

increment of excess pore pressure is obtained at each height from i to n:

™I = Z %(\/ 22+ R? —x)dx (Dias & Bezuijen, 2016) (6.20)

0

2

o0 = 6, {0.5 (Var i 8-+ &

QZEZ‘

In (\/xf TR x) - 21 R%(R)}

X

(Dias & Bezuijen, 2016) (6.21)

Considering the hydrostatic pore pressure, in the models of Anagnostou & Kovari (1994)
and Broere (2001), the vertical effective stress at the top of the wedge is computed based

on the silo theory (Janssen, 1895) as follows:

a-v’—c’

0" (C) = (1 — ¢ & Kouotan’y (6.22)

Ksilo - tan 30/

In the model of Horn (1961) model, the vertical effective stress at the top of the wedge is

computed as follows:
00,0, (C)=C -+ (6.23)
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If additionally also pore water pressure is considered, the vertical effective stress at the

top of the wedge is computed as follows:
* n () = 0 0a(C) = 6™(z1) - 7 (6.24)
The total vertical stress on each slice along the sides of the wedge is calculated as:
op(z) = (D —2z) v+ 0y, (C) (0<z<D) (6.25)

with v being the specific unit weight of the water-saturated soil and the vertical coordinate
z running from the bottom of the tunnel face. Considering the hydrostatic and excess pore

water pressures, the vertical effective stress along the sides of the wedge is calculated as:

U,vwedge(zi) = 0y(2i) — u(zi) — ¢*(21) - Y (6.26)

u(z;) is the hydrostatic pore pressure and ¢*9(z;) is the average excess piezometric head

at distance x; from the tunnel face.

The resisting shear force acting on both sides of the sliding wedge can be obtained as

follows:

n A - aly, + 0y,
T, = 2 Kyedye-tang’ -y (m + Tig1 | 7 Vhwedge 5 ““’“ge) (Dias & Bezuijen, 2016)

i=1 2
(6.27)
The effective weight G’,, of the wedge is calculated as follows:
n . - ady, +o .
G/w = D; (ZCZ +2xl+1 A wedge 5 + wedgs) (DiaS & BeZuijen, 2016) (628)
The vertical force G’ of the silo on the top of the wedge is calculated as follows:
G'y=0,,.(C) D* cotd (6.29)
The effective support force P’ needed to support the tunnel face is obtained from:
G,s G/w T/s + /. .D2
o et “ (o) (6.30)

T cot(@+¢)  sin-B(cot f + tan @)

The effective support force will vary with the sliding angle (6). The critical inclination

O.ri¢ is determined by maximizing the effective support force P’

dP’
o =0 (6.31)

where 0° < 0.+ < 90°

The minimum effective support pressure is assumed to be uniformly distributed over the

tunnel face and given by

(6.32)
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6.6.2 Implementing the excess pore pressure in KEM model (M2)

The proposed failure mechanism of KEM model (M2) consists of 6 elements. Due to
the symmetry of the failure mechanism, one half of KEM model (M2) is considered to
investigate the effect of excess pore pressure on the tunnel face support pressure, as shown
in Fig 5.8 (Chapter 5).

The hydrostatic forces on the contact and sliding surface are calculated as:

Uy = 7 - / dA (6.33)
Am

where m is the number of the faces under consideration and A,, is the area of the surfaces
Eq. (6.33) can be simplified to:

Uny = Yo - he - A (6.34)
with h. being the distance from the ground surface to the centroid of the area.

The wedges are divided into slices (Fig. 6.9). The average increment of excess pore pressure
in each surface is calculated using Eq. (6.23). Thereafter, the total average force caused

by excess pore pressure in each face of the wedge is calculated as follows:
Ui = 70 - 3 6794, (6.35)
i=1

A; is the area of the slice 7.

By assembling the force equilibrium equations over the whole KEM model (M2) and
representing them in matrix form, where the total support force and the normal forces on

each surface are unknowns, the following equilibrium equation can be written:
[KS]ij : [N]mxl + [F]jxl =0 (636)

where, [K] is the static coefficient matrix, [N] is the normal vector of unknown forces and
[F] is the vector of known forces, including inertia forces ([J]), hydrostatic forces ([U]) and

the forces caused by the excess pore pressure ([U]):

[Fljx1 = [J]jx1 + [Uljxa + [Ueljxa (6.37)

6.7 Problem definition

Based on the analysis methods presented in the previous section, the wedge-silo (Horn,
1961; Anagnostou & Kovari, 1994 and Broere, 2001) and KEM (M2) models are used to
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Figure 6.10: Schematic diagram for the applied pressure in TBM due to hydrostatic and

excess piezometric head

investigate the stability of a circular tunnel which is excavated under the water table. The
geometry of the problem and the considered pressures are shown in the schemes Fig. 6.10,
where D denotes the tunnel diameter, C' refers to the tunnel depth, h,, is the water table
elevation measured from the bottom of the tunnel to the ground surface and ¢, refers to
the excess piezometric head correlated to excess pore pressure in the soil at the tunnel
face. The soil is assumed to be fully saturated with the ground water table at the ground
surface. ¢’ and ¢ are the effective shear strength parameters of the soil, where ¢’ indicates
the effective friction angle, ¢ is the effective cohesion, and 7’ is the buoyant unit weight

of the soil. The soil parameters and the tunnel geometry are given in Table 6.1.

The soil has been assumed to be homogeneous and under drained condition. For simplicity,
the safety factors 7. and 7, are set to 1. Also, the surcharge is neglected (¢ = 0 kPa).
Fig. 6.11 presents the flow chart for the procedure of incorporating the excess pore pressure

in tunnel face stability models.

6.8 Results and discussion

6.8.1 Effect of hydrostatic pore pressure on the tunnel face stability

The key point in this section is to present the effect of hydrostatic pore pressure on the
tunnel face stability. In the following section the effect of excess pore pressure on the

tunnel face stability is addressed.
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Figure 6.11: Flow chart for the procedure of incorporating the excess pore pressure in

tunnel face stability models

Table 6.1: Soil parameters and tunnel geometry

Permeability of the soil for the slurry (k,) 107°

Parameter Value Unit
Tunnel diameter (D) 10 [m]
Cover depth (C) 10 [m]
Maximum penetration depth (L) 0.25 [m]
Unit weight of saturated soil (74q) 20 [kN/m?]
Unit weight of supported medium () 12 [kN/m?
Permeability of the soil (k) 107 [m/s]

[

[

Porosity of the soil (n)

0.4
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Figure 6.12: Minimum support pressure considering hydrostatic pore pressure: (a) total

support pressure; (b) effective support pressure

The conventional method for calculating the support pressure is simply to consider the
influence of hydrostatic pore pressure distribution around the tunnel face in the stability
analysis, i.e. the total support pressure at the tunnel face is obtained without considering

the excess pore pressure.

When the static equilibrium of forces is set up, the maximum effective support force can
be obtained using the optimization procedure. In that case, the total support pressure is

equal to the sum of effective and hydrostatic pore pressure.

Fig. 6.12 presents a comparison of the total and effective support pressures obtained from
KEM model (M2) and different wedge-silo models (Horn, 1961; Anagnostou & Kovari,
1994 and Broere, 2001).

As seen in Fig. 6.12, for cohesionless soil both the total and the effective support pressure
decrease with the increase in friction angle. From a comparison of the two diagrams in
Fig. 6.12, it can be concluded that the sum of the effective support pressure and the
hydrostatic pore pressure at the center-line of the tunnel face (150 kPa) is equal to the
total support pressure for the same friction angle. In addition, for ¢ < 35°, the results
of Broere (2001) are closer to the results of KEM model (M2) than the other models.
For ¢ > 35° however, the results of KEM model (M2) agree well with the results of

Anagnostou & Kovari (1994). The differences in the results between Anagnostou & Kovari
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Figure 6.13: Applied support pressure considering hydrostatic pore pressure: (a) opera-

tional support pressure; ( b) piezometric head
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Figure 6.14: Comparison of normalized minimum support pressure in dry condition and

effective support pressure in saturated condition: (a) normalized support pressure in dry

condition; (b) normalized effective support pressure in saturated condition
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(1994) and Broere (2001) are due to the different assumptions regarding the distribution

of vertical stress along the sides of the silo and the wedge.

From Fig. 6.12, it is clear that the total and the effective support pressure calculated
with the model of Horn (1961) (no arching is considered) is substantially higher than the

values obtained from the other models.

As mentioned before, the total support pressure is equal to the sum of the effective and

the hydrostatic support pressure.

The operational pressure is considered as the total support pressure increased by a safety
margin of 10 kPa (Fig. 6.13 (a)). This operational pressure must be verified against the

possibility of blowout as well.

From Fig. 6.13 (a), it can be noticed that the operational support pressures calculated
by different models are less than the maximum allowable support pressure. The pressure
corresponding to the piezometric head ¢, at the tunnel face is equal to the effective
pressure with a safety margin of 10 kPa (¢, = 5—; + 1 m). For purely frictional soil,
it can be deduced from the diagrams in Fig. 6.14 that the ratio between the minimum
support pressure (p,) in dry condition and the effective support pressure (p’) in saturated
condition is equal to the ratio between the dry and submerged unit weight of the soil (%)

Therefore, the following relationship can be concluded:

/
P =p.- L (6.38)
g
pu=DN,-v-D (6.39)
p'=N,-v-D (6.40)

where 7/ is the buoyant unit weight of the soil, v is the dry unit weight of the soil and
N.

2l
condition to the minimum tunnel face support pressure.

is the non-dimensional coefficient representing the contribution of soil weight in dry

In saturated soil, the total support pressure (psoe;) at the tunnel face can be calculated

as follows:
Protal = Ny 7'+ D + Yater - C (At the top of the tunnel face) (6.41)
Protal = Ny D+Yyater - (C+0.5D) (At the center of the tunnel face) (6.42)
Protat = Ny D+Ypater - (C+ D) (At the bottom of the tunnel face) (6.43)

where, 7, is the unit weight of water.
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Egs. (6.41) to 6.43 are useful for a direct computation of the total support pressure
(Protar) in saturated condition from the design graphs, which are given for the soil in dry
conditions (e.g., Fig 5.18, Chapter 5)

6.8.2 Effect of hydrostatic and excess pore pressures on the tunnel

face stability

When the tunnel is excavated under the water table, the stability analysis of the tunnel
face should generally consider both the hydrostatic and the excess pore pressures. As
explained above, beside the hydrostatic and the excess pore pressures leads to a further

reduction of the effective stress in the soil and thus affects the tunnel face support pressure.

From the model of Bezuijen (2002), the excess pore pressure distribution at the failure
surfaces can be obtained as described in Section 6.6. The forces arising from these excess

pore water pressures are added as external loads in the static equilibrium of the forces.

It is clear from Fig. 6.15 that the total and effective tunnel face support pressures decrease
as the effective friction angle ¢’ increases. Fig. 6.15 shows that the model of Horn (1961)
gives a higher value of operational support pressure compared to the other analytical
solutions, because soil arching is not considered. The results of KEM model (M2) lie
below the results of the other models. However, the differences in operational support
pressure between KEM model (M2) and the solutions of Anagnostou & Kovari (1994)
and Broere (2001) does not exceed 10 %. Moreover, the operational support pressures

calculated by different models are less than the maximum allowable support pressure.

Fig. 6.15 (b) shows the effective support pressure calculated by different models. Inter-
estingly, the results calculated by the different models show a similar trend as the results

of effective support pressure calculated by only considering the hydrostatic pore pressure

(see Fig. 6.15 (b)).

Fig. 6.15 (c) illustrates the relationship between the excess pore pressure and the friction
angle. From a comparison of all three diagrams in Fig. 6.15, it can be concluded that the
sum of the excess pore pressure and the hydrostatic pore pressure at the center-line of the

tunnel face (150 kPa) is equal to the total support pressure for the same friction angle.

It is expected that a consideration of the excess pore pressure in the tunnel face stability
analysis will increase the total support pressure. Fig. 6.16 presents the percentage of
increase in the operational support pressure by including the resulting and the excess

pore water pressures in the force equilibrium. As can be seen in Fig. 6.16, the increase in
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Figure 6.15: Required support pressures considering hydrostatic and excess pore pressures:

(a) operational support pressure; (b) effective support pressure; (c¢) piezometric head
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the minimum support pressure by considering the excess pore pressures is higher in case
of the wedge-silo models compared to KEM model (M2). In addition, the differences in
the percentage of increase between the different models gets smaller as the friction angle

decreases.

From the previous discussion it can be concluded that the hydraulic gradient during the
optimization process for computing the maximum effective support pressure is developed
slightly lower in KEM model (M2) compared to the models of Anagnostou & Kovari (1994)
and Broere (2001). This can be attributed to the increase in the number of elements in
the failure mechanism of KEM model (M2).

Fig. 6.17 shows the penetration velocity (v,) of the slurry calculated from Eq. (6.15) as a
function of the effective friction angle. Assuming that the average TBM drilling velocity
is 1 mm/s, it can be seen that the velocity of slurry penetration from the chamber to
the ground is less than the TBM drilling velocity. Therefore, the cutter wheel rotation
of TBM will continuously remove the bentonite, so that there is no possibility to form a
filter cake.

For the condition that the soil is fully water-saturated and the ground water table is lo-
cated at the ground surface, several design charts are provided in Fig. 6.18. In these design
charts, the normalized operational support pressure (p’,/(7'D)) is plotted as a function
of effective friction angle. The design charts consider the excess pore water pressures

generated by the drilling process.

6.9 Drops in piezometric head with time during

stand-still phase

When drilling stops, the bentonite penetrates to the soil and a filter cake will be built
up causing a reduction of piezometric head in the soil behind the filter cake. Using the
soil parameters summarized in Table 6.2, the decrease in piezometric head imposed to
the soil is obtained from time by applying Eq. (6.19), which was solved numerically with
increments of 5 second. For the different models, the drop of the piezometric head with
function of time is shown in Figs. 6.19 to 6.22 for different C/D and friction angles.
Furthermore, the corresponding relationships between the slurry penetration depth and
time calculated from Eq. (6.19) are shown in Figs. 6.23 to 6.26.
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Figure 6.21: Development of piezometric head imposed to the soil with time for Broere
(2001) model: (a) C/D = 1; (b) C/D = 1.5; (¢) C/D = 2; (d) C/D = 2.5
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Figure 6.24: Slurry penetration depth with time for Anagnostou & Kovari (1994) model:
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Figure 6.25: Slurry penetration depth with time for Broere (2001) model: (a) C/D = 1;
(b) C/D =1.5; (c) C/D =2; (d) C/D = 2.5
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Figure 6.26: Slurry penetration depth with time for KEM model (M2): (a) C'/D = 1; (b)
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Table 6.2: Soil parameters and tunnel geometry

Parameter Value Unit
Tunnel diameter (D) 10 [m]
Cover depth (C) 20 [m)]
Friction angle of the soil (¢') 25 7]
Cohesion of the soil (c) 0 [kPal
Maximum penetration depth (L) 0.25  [m]
Drilling velocity of the slurry TBM (vrpar) 1 [mm /]
Unit weight of saturated soil (7sq) 20 [kN/m?]
Unit weight of supported medium () 12 [kN/m3
Permeability of the soil (k) 107 [m/s]
Permeability of the soil for the slurry (k,)  107°  [m/s]
Porosity of the soil (n) 04 []

6.10 Practical example

The following example is provided for determining the operational support pressure and

the piezometric head at TBM in closed-face tunneling.

It is proposed to use a slurry the TBM to excavate a circular tunnel in homogenous purely
frictional soil. The soil is assumed to be fully saturated with the ground water table at
the ground surface. No surcharge surface pressure exists (¢ = 0 kPa). The soil parameters
and the tunnel geometry are shown in Table 6.2. The tunnel engineer should determine
the operational support pressure in the work chamber, so that the slurry TBM can be
operated safely. A safety margin of 10 kPa is considered in the analysis. The analysis
will be performed using four different models, KEM model (M2) and the models of Horn
(1961), Anagnostou & Kovari (1994) and Broere (2001) models.

The following two methods are used to determine the operational support pressure:

1. Determining the operational support pressure considering only hydrostatic pore

pressure.

2. Determining the operational support pressure considering hydrostatic and excess

pore pressures.

In this example, the operational support pressure is calculated with a simple procedure
using the design graphs which are given in this thesis or can be obtained from the published

data in literature.
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Figure 6.27: Operational support pressure considering hydrostatic pore pressure: (a) Horn
(1961) model; (b) Anagnostou & Kovari (1994) model; (c¢) Broere (2001) model; (d) KEM

model (M2)

Table 6.3: Operational support pressure for different models considering only hydrostatic

pore pressure

Operational support Horn (1961) Anagnostou & Broere (2001) KEM model (M2)

pressure (kPa)

Kovari (1994)

Crown 273.18 242.47
Center 323.18 292.47
Bottom 373.18 342.47

239.40 233.37
289.40 283.37
339.40 333.37
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Table 6.4: Piezometric head for different models considering only hydrostatic pore pres-

sures

Piezometric Horn (1961) Anagnostou & Broere (2001) KEM model (M2)
head (m) Kovari (1994)
Crown 7.32 4.25 3.94 3.34
Center 7.32 4.25 3.94 3.34
Bottom 7.32 4.25 3.94 3.34

200 kPa  128.82 kPa 200kPa  64.73 kPa

328.82 kPa 264.73 kPa >
428.82 kPa 364.73 kPa

Operational _ Hydrostatic = Pressure corresponding
pressure ~ pressure to piezometric head
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Figure 6.28: Operational support pressure considering hydrostatic and excess pore pres-
sures: (a) Horn (1961) model; (b) Anagnostou & Kovari (1994) model; (c¢) Broere (2001)
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Table 6.5: Operational support pressure for different models considering hydrostatic and
eXCess Pore pressures

Operational support Horn (1961) Anagnostou & Broere (2001) KEM model (M2)

pressure (kPa) Kovari (1994)

Crown 328.82 264.73 262.9 255.04
Center 378.82 314.73 312.90 305.04
Bottom 428.82 364.73 362.90 355.04

Table 6.6: Piezometric head for different models considering hydrostatic and excess pore

pressures
Piezometric Horn (1961) Anagnostou & Broere (2001) KEM model (M2)
head (m) Kovari (1994)
Crown 12.89 6.49 6.27 5.50
Center 12.89 6.49 6.27 5.50
Bottom 12.89 6.49 6.27 5.50

Table 6.7: Penetration velocity (v,) for different models
Horn (1961) Anagnostou & Broere (2001) KEM (M2)
Kovari (1994)
Pore velocity (mm/s) 0.64 0.32 0.31 0.27




6.10 Practical example 181
14 0.35 /E\ 14 0.35 =
=12} 10.3 %_ T12¢ 103 =
~— - *5_
g 10% 1025 3 D10} 1025 9
S ° S S
< 8y 102 9 < 8 .02 9
g 6l 0155 £ g
o O 10.16 5 o 64} 10.15 &
£ e £ 2
S 4t 101 8 2 ap 101 ¢
3] > k) L o
&2 o055 o2 10.05 £
0t—— Sihtzoerocodg O 0 —rtttrm==dy O
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Time (min.) Time (min.)
(a) (b)
14 0.35 ~ 14 035 ~
£ E
g12} 103 ¢ ng' 103 £
~ Q.
T 10f 1025 8 10| 10.25 @
Q (- ] C
< 8t 102 S < 8 102 9o
o 6} 10.15 & ® 6] 10.15 &
e | e £ | e
Q 4n 101 & Q 41 101 &
3 > & >
o 2 '.f.:" el 1 005 5 2 '::..:" el 10.05 §
O ¢ | S I et m~=- O n 0 i | N Ry theleldid st ==1 0 0
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Time (min.) Time (min.)
(c) (d)
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model; (b) Anagnostou & Kovari (1994) model; (¢) Broere (2001) model; (d) KEM model

(M2)



182 6 Effect of excess pore pressure on the stability of the tunnel face

6.10.1 Determination of operational support pressure considering

only hydrostatic pore pressure

Within this method, only the effect of hydrostatic pore pressure on the operational support
pressure is considered. The calculation results are presented in Tables 6.3 and 6.4. The
presented values for the operational support pressure are the sum of effective and the pore

pressure at the crown, axis or the bottom of the tunnel face.

The following four steps are used to determine the operational support pressure.

1. Calculating N, for dry soil which can be obtained from given graph in this thesis
(e.g., Fig 5.18, Chapter 5) or from publications on the applied wedge-silo models.
Then, use Egs. (6.41), (6.42) and (6.43) for calculating the effective and the total

support pressure.

2. Adding the safety margin of 10 kPa for the effective support pressure resulting in

the pressure corresponding to the piezometric head.

3. The operational support pressure p, is equal to the sum of the pressure corresponding

to the piezometric head and the hydrostatic pore pressure.

4. The maximum support pressure (pmnq.) is calculated using Eq. (6.6) resulting in
Pmaz = 460 kPa, for the given example, which is higher than the operational support

pressure for all stability models, see Table 6.3.

The calculated operational support pressures are graphically shown in Fig. 6.27.

6.10.2 Determination of operational support pressure considering

hydrostatic and excess pore pressures

In this method, both the effect of hydrostatic and excess pore pressures on the operational
support pressure p, is considered. The values of the operational support pressures are

presented in Table 6.5 at the crown, axis or the bottom of the tunnel face.

The following five steps are used to determine the operational support pressure.

1. Obtaining the value of p,/7'D from Fig. 6.18 (C/D = 2, ¢/ = 25°) for different
stability models. Thereafter, the operational support pressure p, is calculated. The

calculated operational support pressures are graphically shown in Fig. 6.28.



6.11 Summary 183

2. The maximum support pressure (Ppmqz) is 460 kPa, which is higher than the opera-

tional support pressure for all stability models, see Table 6.5

3. The pressure corresponding to piezometric head wg, is calculated by subtracting
the hydrostatic pore pressure from the operational support pressure (uy, = p, — u).
Thereafter, the piezometric head ¢, is calculcaltd by dividing u,s, with v, (¢, = %),
see Table 6.6

4. The penetration velocity (v,) is calculated for each stability model using Eq. (6.15).
Then, the penetration velocity is compared with drilling velocity of TBM (vrpgas).
As can be seen from Tables 6.2 and 6.7, the penetration velocity (v,) for every
stability model is less than the drilling velocity of TBM (vrpy = 1 mm/s) . This
means that the supporting fluid will not be able to penetrate further than the depth

that is scraped away during each cutterhead rotation.

5. Calculating the drop in piezometric head with time for each stability model during
the stand-still phase using Eq. (6.18) or using Figs. 6.19 to 6.22. The results for

each model are presented in Fig. 6.29.

6.11 Summary

Tunnels are often constructed below the water table. Therefore, the destabilizing effect
induced by the hydrostatic and excess pore pressure should be taken into account in
calculating the minimum support pressure. The traditional wedge-silo models and KEM

model (M2) have been extended to consider with the excess pore pressure.

The excess pore pressure distribution resulting from the model of Bezuijen (2002) has
been integrated into these stability models. After adding the external forces caused by
the excess pore pressure into the equations of static equilibrium, the total support pressure
for stabilizing the tunnel face is obtained. The results show a significant influence of excess

pore pressure on the calculated operational support pressure.

Numerous calculations were carried out and dimensionless graphs for the operational
support pressure were developed. These graphs allow a quick assessment of the tunnel face
stability in case of fully saturated soil. A practical example is provided, demonstrating

the potential use of the proposed design charts.






7 Conclusions and future work

7.1 Conclusions

The stability and safety of the excavation face has always been of great concern in tunnel
construction. The support pressure needed at the face of the tunnel can be determined
using various analytical and numerical methods. The main goal of this research is to
apply the principle of Kinematical Element Method (KEM) to investigate the stability
of the tunnel face in dry or saturated homogenous or layered soil. In order to achieve
this objective, three-dimensional (3D) stability KEM models (M, M1 and M2) have been
developed. Firstly, 3D KEM model (M) consists of two rigid blocks, a tetrahedron wedge
block and a triangular prism block. Thereafter, two different modified KEM models with
a failure mechanisms consisting of either five (model M1) or six (model M2) blocks are
proposed. The KEM models (M and M2) have been used to investigate the effect of cover to
diameter ratio (C'/ D), internal friction () and cohesion on minimum the support pressure
in dry soil. Furthermore, KEM model (M2) has been applied to study the influence of

hydrostatic and excess pore pressure on the stability of the tunnel face.

The conclusions derived from the simulations with the three different KEM models have
been grouped in three main subsections as follows: conclusions from the basic KEM model
(M), conclusions from modified KEM models (M1 and M2) and finally the conclusions

drawn regarding the effect of excess pore pressure on the stability of the tunnel face.

KEM model (M)

1. A computer program w with graphical user interface (KEM-3D-T) was developed.
Thereafter numerous calculations were carried out with this program. The results
were presented in terms of stability charts. These stability charts represent a tool
for a convenient estimation of the minimum support pressure on a circular face of

a tunnel in dry soil.
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. Based on earth pressure measured above the tunnel crown in physical model tests

(Chen et al., 2013), a 3D active earth pressure acting on the one of the surfaces of
the vertical prism (silo block) is assumed. The consideration of the 3D active earth
pressure on one of the vertical surfaces of the silo block arching in KEM model (M)

supersedes any further assumptions.

. The results of KEM model (M) for minimum support pressure are compared with the

results of analytical models, numerical simulations (FEM and DEM) and physical
model tests from the literature as well as with the results of own simulations using
the Finite Element Limit analysis (FELA). The results show a reasonable agreement
with the outcome of these methods for ¢ > 20°. Furthermore, the KEM simulations
have the advantage of reduced computation time when compared to FEM and FELA

models.

A formula for calculating the minimum support pressure is proposed in terms of the
sum of unit weight of the soil (), cohesion (¢) and surcharge load (¢) multiplied
by non-dimensional bearing capacity coefficients N,, N, and NN, respectively. The
parametric studies showed that N, N, and N, are decreasing with an increase in
the friction angle of the soil. The value of N, becomes equal to zero for C'/D ratios

greater than or equal to 1.5 at ¢ > 15°.

. The results of KEM model (M) revealed that the cover to diameter ratio C'/D has

a significant influence on the minimum support pressure. This effect is also deduced
from the solutions of other limit equilibrium methods (e.g., Jancsecz & Steiner, 1994;
Anagnostou & Kovari, 1994; Broere, 2001) and has been also observed in physical
model tests (Chambon & Corte, 1994; Chen et al., 2011).

. The results of the KEM simulations indicate that for all surfaces of the silo part

above the tunnel face, the values of the 3D lateral earth pressure coefficients (K3p)
are very close. A new equation for the determination of the 3D lateral earth pressure

coefficient (K3p) between the silo and the adjoining soil is proposed.

As a result of searching for the minimum support pressure in the optimizing process
of the failure mechanism, the sliding surface between the silo block (upper part)
and the wedge block (lower part) is found to be inclined instead of horizontal as
assumed by some of the analytical methods. The inclination of this internal failure

plane depends on the soil strength parameters, as well as the geometry of the tunnel.
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Modified KEM models (M1 and M2)

1. The increase in the number of blocks within the wedge in case of the modified fail-
ure mechanism (M1) slightly improves the value of the minimum support pressure,
meaning that this value slightly increases. The modified failure mechanism (M1)
with its curved failure zone in the soil in front of the tunnel face is more consistent

with the failure zones that were observed in physical model tests.

2. The minimum support pressure obtained from KEM model (M2) is higher than
that predicted by KEM model (M), which indicates that the solution of the modified
failure mechanism (M2) is conservative compared to the failure mechanism assumed
in model (M).

3. The results of KEM model (M2) are much closer to the results of Broere (2001) than
to those of Anagnostou & Kovari (1994) for ¢ < 30°. In contrast for ¢ > 30°, the
solution of KEM model (M2) agrees well with the results of Anagnostou & Kovari
(1994).

4. In case of a ground composed of two soil layers, the results of KEM model (M2)
predicted a higher minimum support pressure than KEM model (M), FELA and
other upper bound solutions. However, the simulations with KEM model (M2) gave

a lower minimum support pressure than wedge-silo models.

5. For open face tunneling, as expected the result of the KEM calculations indicate
that by increasing the friction angle and the cohesion of the soil, the safety factor
increases. The results also demonstrate that the ratio of cover to diameter (C/D)

has a significant effect on the safety factor.

6. On the basis of the results from simulations with KEM model (M2), a number of
design charts and fitting formulas have been established. These charts and formu-
las enable an assessment of the support pressure that needs to be applied on the
tunnel face to ensure the stability of the tunnel face. These charts can be used by

geotechnical engineers for preliminary design of closed face and open face tunneling.

Effect of excess pore pressure on the stability of the tunnel face

1. A tunnel excavation below the ground water table elevation exerts a significantly
unfavourable impact on stability of the tunnel face. In particular, the face pressure
required is increasing due to the hydrostatic pore pressure. A large amount of the

operational support pressure is needed to equilibrate the hydrostatic pore pressure.
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2. The excess pore pressure is incorporated into KEM model (M2) as external forces
acting on each face of the wedge. The model of Bezuijen (2002) is used to predict

the excess pore water pressures acting on of each face of the failure mechanism.

3. As expected the results of the KEM simulations show that under the influence of
hydrostatic and excess pore pressure, an increase of the friction angle of the soil

leads to a decrease of the operational support pressure as well as the piezometric
head in the TBM chamber.

4. A comparison between the results of different models considering the excess pore
pressure revealed that the KEM model (M2) gives lower operational support pres-
sures than the methods of Anagnostou & Kovari (1994) and Broere (2001). However,
the differences do not exceed 10%.

5. The excess pore pressure acting on the tunnel face should be considered for proper
design and consequently safe construction of a tunnel. Therefore, as a result of a
parametric study, a number of design graphs is proposed, in which the normalized
operational support pressure is plotted as a function of friction angle for different
C'/D ratios and for different models.

6. In order to demonstrate the influence of excess pore pressure on the operational

support pressure, a practical example is presented.

7.2 Future work

While, the objectives of this research have been achieved, there are some valuable exten-
sions that deserve further studies in future. The potential developments can be stated as

follows:

1. Although, KEM model (M2) is composed of six blocks in the failure mechanism
gives a good results in comparison to other approaches, a further modification can
be implemented to the failure mechanism of KEM model (M2) by increasing the

number of blocks in the wedge.

2. A further study can be carried out to investigate the stability of a circular tunnel
in purely cohesive soils where the undrained shear strength is either constant or

increases linearly with depth.

3. The present study does not take into account the heterogeneity of natural soil. The

stability of the tunnel face in multilayered soil with different geometrical soil profiles
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(plane, or sloping ground surface, and horizontal or inclined layers) could be further
investigated using KEM model (M2).

4. The coupling of KEM model (M2) with other numerical methods (e.g., FEM) can
be potentially implemented in suitable computer codes to investigate the effect of

excess pore pressure on the operational support pressure.
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