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Preface of the editor

Lignite opencast mines are often recultivated as lakes. The embankments of these lakes

are mainly composed of loose to medium dense artificial fills. If the lakes are located

in a region with earthquake risk, the proof of slope stability for the embankments has

to consider the seismic loading. During a seismic event shear waves propagate through

the soil. Under almost undrained conditions the shear waves can lead to a build-up of

excess pore water pressure, thus a reduction of effective stress. In the extreme case the

effective stress vanishes completely and the soil is said to have “liquefied”. The reduction

of effective stress means a reduction of the shear strength on potential failure surfaces.

The reduced shear strength and the inertia forces resulting from the acceleration of the

soil mass lead to a decreased slope stability compared to static conditions.

The methods for the proof of the seismic slope stability can be roughly divided into two

groups: The pseudo-static approaches consider the accelerations by inertia forces and

deliver a global factor of safety or degree of mobilization, respectively. However, accu-

mulated excess pore water pressures and spatial fluctuations of the accelerations being

particularly relevant for larger slope systems cannot be adequately taken into account by

the existing approaches or commercial programs. The second category comprises methods

which evaluate slope stability based on a deformation criterion. Deformations caused by

the seismic event are predicted, for example using dynamic finite element simulations,

and compared to tolerable values. However, the choice of these limit values is often rather

subjective. Furthermore, previous studies were mainly restricted to rather simple consti-

tutive models and neglected consolidation effects during and after the earthquake event.

In his dissertation Christoph Schmüdderich has combined both approaches. He has devel-

oped advanced numerical methods that allow to analyze the temporal development of the

stability of water-saturated slopes during seismic events, based on both the deformations

and a factor of safety. The methods allow to consider spatially fluctuating fields of ac-

cumulated excess pore water pressures and accelerations. These fields are obtained from

dynamic finite element simulations with advanced constitutive models and transferred to

the stability analyses. For the analysis of seismic slope stability Christoph Schmüdderich

has developed four different approaches, based on the
”
Limit equilibrium method“ (LEM),

the
”
Finite element limit analysis“ (FELA), the

”
Strength reduction finite element anal-

ysis“ (SRFEA) and the
”
Strain-dependent slope stability“ (SDSS). He has implemented

these approaches and successfully verified them by a comparison to commercial programs

or well-documented benchmarks from the literature, including parametric studies on ho-

mogeneous slopes and also more complex boundary conditions. The potential of the four
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approaches could be demonstrated based on an application to the synthetic example of an

embankment of a lake in a recultivated lignite opencast mine. The subsequent application

of the methods to two well-documented centrifuge model tests from the VELACS and the

LEAP projects, considering a water-saturated dam or a shallow embankment, respec-

tively, represents an important step towards the validation of the methods. Christoph

Schmüdderich clearly works out the differences, advantages and deficits of the various

approaches. Furthermore, he is able to demonstrate that the computational costs for

the SDSS, which involves the simulation of numerous element tests, can be significantly

reduced by applying Machine Learning algorithms, without losing much accuracy.

The dissertation of Christoph Schmüdderich represents an important step towards more

comprehensive and realistic numerical investigations of the behavior and stability of water-

saturated slopes under earthquake loading. The proposed approaches are of particular

interest for the proof of the stability of embankments of lakes in abandoned opencast

mines in seismic regions. In the framework of the dissertation a number of very powerful,

well-documented and verified numerical tools have been developed which are applicable

to such problems in future.

Torsten Wichtmann
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Abstract

Stability analyses are used to evaluate the level of safety for natural or man-made slopes

or other geotechnical structures in terms of a single scalar value – the factor of safety

(FoS). Considering slopes subjected to seismic loading, many simplifications are required

when adopting common stability approaches, whereby accurate incorporation of effective

stresses, excess pore water pressures or accelerations is mostly not possible. The current

thesis was motivated by the lack of sophisticated and holistic approaches for seismic slope

stability assessment. While this topic was assessed in preceding works based on simplified

stability approaches or with the focus on deformations and liquefaction susceptibility, the

present work focused on the development of seismic slope stability approaches performed

parallel or subsequent to dynamic finite element analyses (DFEA), which can provide

accurate spatial and temporal distributions of stresses, excess pore water pressures (∆pw)

and accelerations during a seismic event.

Four approaches based on limit equilibrium method (LEM), finite element limit analysis

(FELA), strain-dependent slope stability (SDSS) and strength reduction finite element

analysis (SRFEA) were developed or extended to enable a more rigorous assessment of the

seismic slope stability. In contrast to conventional approaches, the methods developed

in this work allow to investigate the evolution of the FoS during the dynamic loading

and account for the influence of excess pore water pressures that may accumulate during

dynamic loading. As commercial LEM and FEM codes do not meet the requirements

associated with the four previously mentioned approaches in a comprehensive manner,

a substantial part of this work was devoted to the development of a new software pack-

age for limit equilibrium analyses (geoSlice), the implementation of three elastoplastic

constitutive models and a strength reduction scheme in the finite element software pack-

age numgeo, as well as the exhaustive verification of the methods and models based on

comparative analyses with commercial codes and the study of benchmark problems.

The applicability of the approaches was shown for boundary value problems in different

scales, where DFEA and subsequent stability analyses were conducted for an opencast

slope and two centrifuge model tests. The study of all three examples indicated that

stability analyses considering inertial forces (LEM, FELA, SRFEA) show an influence of

the seismic excitation on the evolution of the FoS at an earlier point in time compared to

approaches not explicitly accounting for inertial forces (SDSS). Contrary to conventional

approaches neglecting the influence of accumulated excess pore water pressures, it was

observed that ∆pw has a decisive impact on the seismic slope stability. Interestingly,



vi

analyses based on SRFEA showed that inertial forces may temporarily stabilize gentle

slopes such that practically no additional shear resistance due to frictional or cohesive

tangential forces is required, resulting in FoS exceeding the one corresponding to the

static situation.
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Zusammenfassung

Standsicherheitsanalysen werden verwendet, um das Sicherheitsniveau natürlicher oder

künstlicher Böschungen oder anderer geotechnischer Strukturen in Form eines einzigen

skalaren Wertes zu bewerten - der Standsicherheit (engl. factor of safety, FoS). Bei

Böschungen, die einer seismischen Belastung ausgesetzt sind, sind viele Vereinfachun-

gen erforderlich, wenn gängige Methoden zur Ermittlung der Standsicherheit angewandt

werden, wobei eine akkurate Berücksichtigung von effektiven Spannungen, Porenwasser-

überdrücken oder Beschleunigungen meist nicht möglich ist. Die vorliegende Arbeit wurde

durch den Mangel an fortschrittlichen und ganzheitlichen Ansätzen zur Beurteilung der

Standsicherheit von Böschungen unter seismischer Anregung motiviert. Während dieses

Thema in vorangegangenen Arbeiten auf der Grundlage vereinfachter Standsicherheits-

ansätze oder mit dem Fokus auf große Verformungen und der Überschreitung des Verflüssi-

gungswiderstands bewertet wurde, konzentrierte sich die vorliegende Arbeit auf die En-

twicklung von Ansätzen zur Bewertung der Standsicherheit von Böschungen unter seis-

mischer Anregung auf Basis der Ergebnisse von dynamischen Finite-Elemente-Analysen

(DFEA). Letztere liefern akkurate Informationen über räumliche und zeitliche Verteilun-

gen von Spannungen, Porenwasserüberdrücken (∆pw) und Beschleunigungen während

eines seismischen Ereignisses, die anschließend in den Standsicherheitsanalysen berück-

sichtigt werden sollen.

Vier Ansätze, die auf der Grenzgleichgewichtsmethode (engl. limit equilibrium method,

LEM), der Finite-Elemente Limit Analysis (FELA), dem Konzept der dehnungsabhängi-

gen Standsicherheit (engl. strain-dependent slope stability, SDSS) und der Festigkeitsre-

duktion in einer Finite-Elemente-Analyse (engl. strength reduction finite element anal-

ysis, SRFEA) basieren, wurden entwickelt bzw. erweitert, um eine genauere Bewertung

der Standsicherheit von Böschungen unter seismischer Anregung zu ermöglichen. Im

Gegensatz zu konventionellen Ansätzen ermöglichen es die in dieser Arbeit entwickelten

Methoden, die Entwicklung der Standsicherheit während der seismischen Anregung zu un-

tersuchen und den Einfluss von Porenwasserüberdrücken zu berücksichtigen, welche sich

während der seismischen Anregung akkumulieren können. Da kommerzielle LEM- und

FEM-Codes die mit den vier vorgenannten Ansätzen verbundenen Anforderungen nicht

umfassend erfüllen, war ein wesentlicher Teil dieser Arbeit der Entwicklung eines neuen

Softwarepakets für die LEM (geoSlice), der Implementierung von drei elastoplastischen

Stoffmodellen und der Implementierung einer Festigkeitsreduktion in das Finite-Elemente-

Softwarepaket numgeo gewidmet. Umfassende Verifizierungen der Methoden und Mod-

elle wurden auf der Grundlage vergleichender Analysen mit kommerziellen LEM-, FEM-
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und FELA-Programmen sowie der Untersuchung von bekannten Benchmark-Problemen

durchgeführt.

Die Anwendbarkeit der Ansätze wurde für Randwertprobleme in verschiedenen Maß-

stäben gezeigt, wobei dynamische FE Simulationen und anschließende Standsicherheit-

sanalysen für eine synthetische Tagebauseeböschung und zwei Zentrifugenmodellversuche

durchgeführt wurden. Die Untersuchung aller drei Beispiele zeigte, dass Standsicherheit-

sanalysen, welche Trägheitskräfte berücksichtigen (LEM, FELA, SRFEA), einen Einfluss

der seismischen Anregung auf die Entwicklung der Standsicherheit zu einem früheren

Zeitpunkt zeigen, verglichen mit Ansätzen, welche diese nicht explizit berücksichtigen

(SDSS). Im Gegensatz zu konventionellen Ansätzen, die den Einfluss von akkumulierten

Porenwasserüberdrücken vernachlässigen, wurde beobachtet, dass ∆pw einen entscheiden-

den Einfluss auf die Standsicherheit von Böschungen unter seismischer Anregung hat.

Interessanterweise zeigten Analysen auf der Grundlage der SRFEA, dass Trägheitskräfte

Böschungen geringer Neigung vorübergehend so stabilisieren können, dass praktisch kein

zusätzlicher Scherwiderstand aufgrund von Reibungs- oder Kohäsionskräften erforderlich

ist, wodurch Standsicherheitswerte über dem des statischen Falls erreicht werden können.
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1. Introduction

1.1. Background and motivation

When opencast mines are decommissioned, the areas occupied by opencast mining will

be recultivated, where the residual pits are frequently refilled with soil or water, resulting

in so-called residual lakes. The enclosing slopes of such lakes are often made of uncom-

pacted material obtained from the excavation pit, which is excavated on the exploitation

side, transported via conveyor belts to the spreader side and dumped there with so-called

spreaders. After the rise of the water level in the residual lakes, the pores of the un-

compacted material are filled with water. If the opencast mining area and the residual

lakes are located in seismically active areas, as in the case of the Rhenish lignite mining

area (Dahmen et al., 2014), earthquake loading must be considered when assessing the

stability of the slopes.

As uncompacted materials tend to compact under shear loading, saturated uncompacted

materials are prone to liquefaction under (fast) cyclic shearing, for instance due to seismic

loading. Due to the severity of the consequences in case of large liquefaction events,

assessment of the seismic stability of slopes composed of saturated uncompacted materials

is first and foremost focused on prevention of such liquefaction events. Note that for cases

where excess pore water pressures due to cyclic shearing do not accumulate up to a

magnitude that liquefaction is induced, they may still lead to a significant reduction of

effective stresses and, correspondingly, to a reduction of shear resistance. As a direct

consequence of reduced shear resistances along potential slip surfaces, slope stability is

also decreased. For this reason, stability analyses must be conducted to evaluate the

influence of the seismic loading on the slope stability.

For the Rhenish lignite mining area, stability of slopes subjected to earthquake loading

is examined following the guidelines of RfS (2013) using either Bishop’s method of slices

(Bishop, 1955; Bishop and Morgenstern, 1960) or composite failure mechanisms composed

of rigid elements sliding along straight slip lines. Seismic effects are considered using the

1
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pseudo-static approach with inertial forces determined based on slice weights, peak ground

accelerations (PGA) and pseudo-static coefficients χ. The latter factor can be estimated

for shallow or deep slip surfaces in accordance with Triantafyllidis and Grandas-Tavera

(2013). Note that this approach to evaluate slope stability does not account for spatial

variation of inertial forces, as schematically depicted in Fig. 1.1. In fact, a constant

peak ground acceleration is considered throughout the domain, where the PGA value is

estimated based on the location and the probability of occurrence of an earthquake with a

predefined magnitude (Grünthal et al., 2009). Following the suggestions by Goldscheider

et al. (2010), excess pore water pressures can be estimated based on material type and

horizontal/vertical accelerations. The excess pore water pressures approximated in this

manner can then be used in stability analyses using Bishop’s method of slices. Note that

following this approach, peak values of accelerations and excess pore water pressures likely

coincide due to their direct dependency. In the stability analyses, the evolution of the

factor of safety (FoS) can not be investigated as neither inertial forces, nor excess pore

water pressures are considered to vary during earthquake loading.

A computational more elaborate approach for the estimation of seismic effects on open-

cast slopes is to perform dynamic finite element analyses (DFEA) utilizing sophisti-

cated constitutive models capturing effects of density (pyknotropy) and confining pressure

(barotropy), stress/strain history as well as accumulation of strains. Besides the spatial

distribution of accelerations and accumulated excess pore water pressures as well as their

temporal evolution, DFEA yields information about displacements that can be further

evaluated to assess slope stability. Among others, investigations for opencast slopes of the

Rhenish lignite mining area utilizing DFEA were conducted by Machaček (2020) focusing

Deposited soil

Spatial and temporal 
variation of accelerations 
and excess pore water

pressures due to
seismic loading

Residual lake

Subsoil

a(t)

Figure 1.1: Schematic illustration of the spatial variation of accelerations and excess pore

water pressures due to earthquake loading
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on the accumulation of displacements and potential liquefaction events. Note that the

aim of that work was not to quantify the level of safety of the slopes in terms of a single

scalar value, for instance a FoS defined with regard to soil’s shear strength. Though, a

convenient option to quantify the level of safety could be the definition of FoS with re-

gard to maximum displacements obtained from the DFEA and project-specific allowable

displacements. However, as the definition of the latter requires substantial experience of

practitioners, potentially resulting in different threshold values defined by different prac-

titioners, this type of slope stability assessment must be regarded as rather subjective.

Contributing to the above discussion, the focus of this thesis is the development of ap-

proaches to assess the seismic slope stability. All approaches should enable assessment

of seismic slope stability based on results obtained from DFEA, allowing for spatially

accurate estimation of seismic effects. The definition of the FoS should not be related to

project-specific allowable displacements but rather based on objective criteria, for instance

soil’s shear strength or mobilization of shear stresses. As different methods (e.g. limit

equilibrium method, limit analysis or strength reduction method) and software packages

can be applied to achieve this goal with different degrees of accuracy, four fundamen-

tally different concepts are followed. Depending on the availability of tools (e.g. software

packages) to assess slope stability, an appropriate approach can be selected.

1.2. Objectives

The main aim of this work is to extend existing and develop new approaches for the

assessment of the seismic slope stability. Ultimately, depending on the availability of

tools and software packages, the required level of accuracy and reliability as well as the

tolerable amount of computational costs and time, suggestions should be given, which of

these approaches should be applied to predict accurate stability estimates. Following the

concept presented and applying the approaches developed in this thesis, it is believed that

design approaches for slopes and dams subjected to seismic loading are improved with

regard to accuracy, reliability and economic savings.

Although not strictly linked to, to some extend, the present work builds on the work of

Machaček (2020), who investigated the seismic slope stability of an opencast slope and

a centrifuge model test by use of dynamic finite element analyses (DFEA). DFEA was

conducted using the finite element software package numgeo, which was initially developed

by Machaček (2020) and, among others, further extended in Staubach (2022). Note that
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major goals of the present work could only be achieved due to the possibility of contribut-

ing to numgeo by implementation of elastoplastic constitutive models and other features.

The present work differs from the work by Machaček (2020) in the sense that stability

assessment is not exclusively conducted based on the results of the DFEA, but also based

on the results of stability analyses performed subsequently to the DFEA. Thereby, in

addition to the evaluation of displacements, peak ground accelerations and potential liq-

uefaction, the level of safety can be quantified in terms of FoS. Furthermore, the present

work extends the concept of strain-dependent slope stability proposed by Nitzsche and

Herle (2020) by adaption to earthquake loading and reduction of computational costs

using machine learning approaches.

As the main aim of this thesis covers multiple aspects of different complexity, the following

objectives are defined:

• Development of a new limit equilibrium (LE) software package serving as a basis for

a modified pseudo-static approach taking into consideration temporal and spatial

variations of accelerations and accumulated excess pore water pressures. Validation

of the different stability evaluation methods and features implemented in this soft-

ware package by comparative analyses with well-established LE software packages.

• Implementation of two elastoplastic constitutive models (Matsuoka-Nakai and Mohr-

Coulomb) in the finite element software package numgeo. Validation of the imple-

mentations of the constitutive models based on simulations of representative element

tests considering different materials.

• Implementation of a strength reduction method in numgeo. Validation of the strength

reduction scheme based on comparative analyses with well-established finite element

software packages via investigation of parametric studies and benchmark problems.

• Development and detailed description of different approaches for the assessment of

the stability of slopes subjected to seismic loading. Demonstration of the applica-

bility of these seismic stability approaches for boundary value problems of different

scales. Discussion regarding similarities, differences, reliability and computational

costs associated with the different approaches.

1.3. Layout of the thesis

After this introductory chapter, an overview over the most popular methods for the as-

sessment of slope stability under static and seismic loading is provided. Considering that
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early development of these methods started many decades ago, emphasis is put on those

that are further developed in this thesis. In addition, Chapter 2 sheds light on popu-

lar elastoplastic and hypoplastic constitutive models for soils used in dynamic and/or

stability analyses.

As a basis for the Spatial pseudo-static analysis using LEM presented in Chap-

ter 6, a limit equilibrium software package named geoSlice has been developed based

on the method of slices in this thesis. Details with regard to the general structure, fea-

tures and keywords are provided in Chapter 3. Moreover, verification of the methods and

most important features implemented is reported in this chapter. Within the scope of the

verification, comparative analyses of geoSlice with two well-established LEM software

packages are conducted evaluating FoS and shapes of critical slip surfaces for a multi-

tude of different benchmark examples. A keyword manual for geoSlice can be found in

Appendix A.

Within the scope of this thesis, three elastoplastic constitutive models – the Mohr-

Coulomb model (Sloan and Booker, 1986; Abbo and Sloan, 1995; Abbo et al., 2011),

the Matsuoka-Nakai model (Matsuoka and Nakai, 1974) and the General Classic Plastic-

ity model (Lagioia and Panteghini, 2016; Lester and Sloan, 2018) have been implemented

in IncrementalDriver (Niemunis, 2008) and numgeo (Machaček, 2020; Staubach, 2022).

Chapter 4 covers the general concept of elastoplasticity, return mapping algorithms and

verification of the former two models, while verification of the latter model is reported in

Appendix B. For all models, verification includes comparative analyses of the implemented

models with similar models incorporated in well-established finite element software pack-

ages in terms of results from different element tests (triaxial compression/extension and

direct simple shear tests).

Chapter 5 focuses on the implementation of the strength reduction method into the fi-

nite element software package numgeo. After introducing the general concept as well as

preliminary attempts to define failure within the scope of a strength reduction analysis,

parametric studies and simulations of benchmark examples are conducted. For verifi-

cation purposes, comparative analyses are performed using two well-established finite

element software packages. Note that Chapters 4 and 5 serve as basis for the Spatial

pseudo-static analysis using SRFEA discussed in Chapter 6.

Chapter 6 is devoted to the main objective of this thesis, which is the assessment of the

stability of slopes subjected to seismic loading. Four approaches based on limit equilibrium

method (LEM), finite element limit analysis (FELA), strain-dependent slope stability

(SDSS) and strength reduction finite element analysis (SRFEA) are presented and detailed
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explanations are provided. Similarities and differences of the approaches are emphasized

to enhance the comprehensibility of the discussions related to different boundary value

problems investigated in Chapters 7 and 8.

To emphasize the applicability of the four approaches discussed in Chapter 6, the stability

of a saturated opencast mine slope subjected to seismic loading is assessed in Chapter 7.

In a first step, seismic loading of the opencast slope is considered in a fully-coupled

dynamic finite element analysis (DFEA) with the results of the DFEA presented in terms

of the evolution of spatial distribution of accelerations and excess pore water pressures.

Subsequently, the four seismic stability approaches (Chapter 6) are applied to assess the

FoS time history of the opencast slope. Lastly, the approaches are evaluated with regard

to similarities, differences, reliability and computational costs.

To evaluate the seismic slope stability for real case studies, two centrifuge model tests –

Verification of Liquefaction Analyses by Centrifuge Studies (VELACS) and Liquefaction

Experiments and Analysis Projects (LEAP) – are investigated in Chapter 8. DFEA and

subsequent assessment of the seismic slope stability are conducted for a dam (VELACS)

and a gentle slope (LEAP). Results of the DFEA are compared to the results obtained in

the centrifuge model tests in terms of displacements, accelerations and excess pore water

pressures. Stability assessment is performed with LEM, SDSS and SRFEA. FoS time

histories are investigated and discussed with regard to the results of the experiments.

As the concept of the Strain-dependent slope stability (SDSS) for earthquake

loading introduced in Chapter 6 is associated with large computational costs, Chapter 9

emphasizes how machine learning (ML) algorithms can be adapted to the concept of SDSS

by replacing element test simulations. Sampling, training and testing of ML algorithms

are discussed for the simulation of direct simple shear element tests, analyzing accuracy

and reduction of computational costs with different ML algorithms. Besides evaluation

of ML algorithms on the element test scale, SDSS with ML is compared to the SDSS

without ML for the stability assessment of the opencast mine slope subjected to seismic

loading discussed in Chapter 7.

In Chapter 10, conclusions of the present work are drawn and suggestions for potential

extensions are provided.
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2.1. Slope stability analysis

If the resistance due to shear strength is not sufficient to withstand external driving

forces, inclined soil or rock slopes may undergo large deformations, often referred to

as slope instability or slope failure. To prevent large deformations, slopes are commonly

designed such slope stability is not endangered by ensuring that shear strength is sufficient.

Evaluation of slope stability is one of the fundamental tasks in geotechnical engineering.

Within the last century, many different methods for the evaluation of slope stability have

been developed, out of which the most popular methods are summarized in the following

sections. To quantify the level of safety for a slope with regard to a scalar value, the

factor of safety (FoS) is commonly used, where FoS > 1.0 and FoS < 1.0 denote stable

and unstable states, respectively. Considering a specific method to perform slope stability

analysis, the FoS allows an objective evaluation of slope stability, not affected by subjective

judgments of individuals performing the analyses (e.g. practitioners). In general, slope

stability analyses attempt to determine the critical failure surface that is associated with

the minimum FoS.

2.1.1. Limit equilibrium method (LEM)

Limit equilibrium method (LEM) is a collective term that covers a wide range of different

approaches, which are characterized by similar assumptions with respect to the shape of

the slip surface, the strategy of locating the critical slip surface, the stress distribution and

the definition of yield strength along the slip surface. All limit equilibrium methods have

in common that the analysis of the slope stability is conducted for a predefined slip surface.

Depending on the limit equilibrium method utilized, the failure body is approximated by

a single or multiple (rigid) wedges, which allows for relative displacements with respect to

neighboring elements. Although the shape of the slip surface has to be selected in advance,

the geometrical type is not identical in all approaches. Popular geometrical types include

7
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circles, logarithmic spirals, wedges, polygons or other shapes, while it is widely known

that the shape of the slip surface of real case slope failures depends on many factors, such

as soil type, drainage conditions, subsoil layering, etc. To identify the critical slip surface

as the one which yields the least limit load (e.g. bearing capacity, earth pressure) or factor

of safety (slope stability), limit equilibrium methods require many analyses for different

positions of the slip surface, for instance many variations of the center point and the

radius in case of a circular slip surface shape. To efficiently locate the critical slip surface

without relying on a brute-force approach applying all combinations possible, advanced

optimization techniques can be utilized. Further details regarding different optimization

techniques are discussed in Chapter 3. As the stress distribution along the slip surface is

unknown a priori, assumptions regarding this stress distribution are necessary, for instance

by subdivision of the failure mass into smaller units. However, different assumptions are

made in different LE approaches in order to overcome this drawback and approximate

the stress distribution along the slip surface. Considering the shear resistance that can be

mobilized along the slip surface, assumptions are to be made with respect to the degree of

mobilization and the ultimate strength. Commonly it is assumed that the shear strength

is fully mobilized along the slip surface and the maximum shear strength of the material

is given by simple failure criteria, for instance Tresca or Mohr-Coulomb criterion, where

the former is commonly utilized for cohesive soils and undrained conditions, whereas the

latter is more applicable for frictional and frictional-cohesive soils and drained conditions.

Furthermore, it should be noted that, in contrast to limit analysis, which is discussed in

the subsequent section, the kinematic admissibility of the slip surface is not necessarily

checked in LEM. Among others, popular methods within the group of limit equilibrium

methods are the method of slices (Terzaghi, 1943; Janbu, 1954; Bishop, 1955; Bishop

and Morgenstern, 1960; Morgenstern and Price, 1965; Spencer, 1967), the block sliding

method or the Kinematic Element Method (KEM) (Gußmann, 1986, 2000; Schmüdderich

et al., 2017a,b; Qarmout et al., 2019a,b), the former being further elaborated here as it is

utilized intensively throughout this thesis. Note that, in contrast to the method of slices

which does not account for kinematic admissibility of the slip surface, KEM accounts for

kinematic admissibility of the failure mechanism by use of a hodograph linking the virtual

displacements of elements with common element edges.

In advance to the discussion of different approaches and their (implicit) assumptions,

the general methodology of the method of slices is introduced. To approximate the stress

distribution along the slip surface, the sliding body is subdivided in a predefined number of

slices. The orientation of the slices can be horizontal or vertical, where the latter represents

the common choice. The number of the slices is usually of subordinate importance,
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provided a sufficiently large number is chosen (usually 100 or more). As the method

of slices requires to solve the equilibrium of forces and/or moments with respect to the

global system representing the collection of slices as well as to individual slices, distinction

between both cases is made here using the labels global and local, respectively. For

each slice, the local forces acting on the slice are determined, assuming that the line

of action of all forces intersects the local center of the slice, ensuring that the local

equilibrium of moments is ensured. Among others, forces acting on a slice include self

weight of the slice, concentrated or distributed external loads, hydrostatic pore water

pressures, excess pore water pressures, inertial forces due to seismic actions, or reaction

forces due to constructional elements such as anchors, piles, geogrids, nails or walls. The

normal interslice forces acting on both vertical edges representing reaction forces from

the neighboring slices are determined based on the local equilibrium of horizontal forces

by consecutive evaluation of interslice forces in all slices starting at the first or last slice

as only a single unknown interslice force needs to be evaluated due to zero outer edge

height. The vertical interslice force is determined according to Eq. 2.1 where E is the

lateral interslice force, f(x) is a interslice force function and λ is a scaling parameter.

X = E λf(x) (2.1)

The shear resistance in the slip surface of each slice can be expressed with respect to a

failure criterion (e.g. Mohr-Coulomb) employing the shear strength parameters of the

material at the slice base, the effective normal force N ′ on the base of the slice and the

FoS. In case of drained conditions, the effective cohesion c′ and the effective friction angle

ϕ′ should be used whereas for undrained conditions and fine-grained soils, the undrained

shear strength su should be applied. Inserting all relations in the local equilibrium of

vertical forces yields the effective normal force N ′ on the base of the slice (Eq. 2.2)

N ′i =
Wi +Xi −Xi+1 − li

(
ui cosαi +

c′i
FoS

sinαi

)

cosαi +
tanϕ′

i sinαi

FoS

(2.2)

where the index [ ]i refers to the number of the slice, l = b/ cosα is the length of the slice

base, b is the width of the slice, α is the angle between the slice base and the horizontal

axis, W is the weight of the slice, Xi and Xi+1 are the vertical interslice forces, u is the

average pore water pressure at the base of the slice, and FoS is the factor of safety (see

e.g. Fig 2.1). Following the Mohr-Coulomb failure criterion and focusing on the effects

due to soil self weight, pore water pressure, friction and cohesion, the FoS based on the

global equilibrium of moments and based on the global equilibrium of horizontal forces
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are determined according to Eq. 2.3 and Eq. 2.4, respectively, with Ri denoting the radius

for each slice.

FoSM =

∑
iRi · (c′ili +N ′i tanϕ′i)∑

Ri ·Wi sinαi
(2.3)

FoSF =

∑
(c′ili cosαi +N ′i tanϕ′i cosαi)∑

(N ′i + ui li) sinαi
(2.4)

The factor of safety is obtained in an iterative manner, where based on an initial guess

of the FoS, the effective normal force N ′ (Eq. 2.2) and subsequently the updated FoS is

determined in accordance with Eq. 2.3 or Eq. 2.4. The iteration process is finished when

the iterative change of the factor of safety is less than a predefined tolerance. In DIN-4084

(2021), it is recommended to use a tolerance of 3 % to exit the iteration loop, however, the

default tolerance used in many commercial LEM codes is smaller. It should be noted that

Eq. 2.3 and Eq. 2.4 in the form presented here do not account for external concentrated

or distributed loads, inertial forces, excess pore water pressures, or reaction forces due

to constructional elements. Moreover, it is assumed in Eq. 2.3 that the slip surface may

be of a circular or non-circular (e.g. a logarithmic spiral) shape, thus, the radius is not

necessarily constant for all slices. Considering a circular slip surface, Eq. 2.3 simplifies

as the constant radius can be factored out of the summation terms in the nominator and

the denominator.

Bishop (1955) proposed a rigorous and a simplified way to determine the factor of safety,

referred to as rigorous and simplified Bishop method in this study, respectively. Both

methods evaluate the factor of safety based on the global equilibrium of momentum given

in Eq. 2.3 for a circular slip surface, as shown in Fig. 2.1. However, in contrast to the
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Figure 2.1: Slip circle and resulting forces acting in an arbitrary slice, modified after

Bishop (1955)
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rigorous method, where the resulting interslice force may be inclined with respect to the

horizontal (X ≥ 0), in the simplified method, it is assumed that the resulting interslice

force is horizontal (X = 0 due to λ = 0 in Eq. 2.1), which has a direct impact on the

normal reaction force on the base of the slice calculated according to Eq. 2.2. Bishop

(1955) and Bishop and Morgenstern (1960) state that the difference in the factor of safety

obtained using the rigorous and the simplified method should not be larger than 1 % for

circular slip surfaces. Krahn (2003) also reports that the difference between the rigorous

and the simplified Bishop method is small for circular slip surfaces, but emphasizes that it

is significantly larger for other shapes of the slip surface. In contrast to the Bishop method,

Janbu (1954) used the global horizontal force equilibrium to determine the factor of safety

(Eq. 2.4). Analyses with Janbu’s method are commonly conducted for (almost) planar slip

surfaces, for example sliding on a weak thin layer. Similar to Bishop’s method, Janbu’s

method is often implemented in its simplified version, thus, neglecting vertical interslice

forces. Krahn (2003) reported that the difference between the general and simplified

Janbu method in terms of the factor of safety is small for slip surfaces of planar or wedge

type, however, it is significantly larger for other shapes, for instance circular slip surfaces.

As neither Bishop’s method nor Janbu’s method considers both, the global moment equi-

librium and the global horizontal force equilibrium, other methods have been proposed

satisfying both equilibrium conditions, for instance by Morgenstern and Price (1965) and

Spencer (1967). To satisfy both equilibrium conditions, the interslice force parameter

λ, which describes the inclination of the resulting interslice force (λ = tan θ), is varied

until both equilibrium conditions yield similar factors of safety (see e.g. Fig. 2.2). Note

that the shape of the slip surface may change the influence of λ on the factor of safety

based on both global equilibrium equations (Eq. 2.3 and Eq. 2.4). This effect has been

demonstrated, among others, by Krahn (2003) considering several different shapes of the

slip surface (Fig. 2.3). Due to the necessity of solving the equilibrium equations multi-

ple times within the λ iteration loop, it should be clear that the computational effort to

obtain an FoS according to Morgenstern and Price (1965) and Spencer (1967) is larger

compared to the simplified Bishop or simplified Janbu method. The main difference be-

tween Spencer’s method and the Morgenstern and Price (M&P) method is the definition

of the interslice force function (f(x) in Eq. 2.1), which is constant in the former method,

whereas it changes with respect to the number of the current slice in the latter method.

Therefore, in Spencer’s method, all interslice forces (resulting from E and X) are inclined

with the same angle to the horizontal axis. In contrast, an interslice force function, com-

monly a halfsine function, is utilized in the M&P method, resulting in (almost) horizontal
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Figure 2.2: Influence of orientation of interslice forces on the factor of safety based on

the global equilibrium of horizontal forces (Ff ) or moments (Fm) for a slope of height H

considering a pore pressure ratio ru, modified after Spencer (1967)

interslice forces at the entry and exit slices and interslice forces with increasing inclination

towards the central slice.

Besides the higher computational effort of the Spencer and the Morgenstern and Price

method compared to the Bishop and Janbu method, additional difficulties may arise

due to convergence issues related to the former two methods. As the objective function

does not necessarily converge for every slip surface, the center of the critical slip surface

may be very close to other center points which did not converge. This fact increases

the difficulty to propose a proper and robust LEM implementation, which satisfies the

global equilibrium of moments and horizontal forces. Several authors proposed strategies

on how to implement the Spencer and the Morgenstern and Price method, for instance

Morgenstern and Price (1967), Fredlund and Krahn (1977), Zhu et al. (2001, 2003, 2005)

and Zolfaghari et al. (2005), however, there is no guarantee that these implementations

yield reliable estimates of the FoS for every slope stability problem. Further details

regarding the implementation of limit equilibrium methods are provided in Chapter 3.

As limit equilibrium methods are developed solely based on statics and do not account

for physics in terms of strains, displacements and displacement compatibility, careful

interpretation of the results is necessary. As discussed at the beginning of this section

and reported for instance by Krahn (2003), the stress distribution along the slice bases

assumed in LEM may significantly differ from the stress distribution obtained using a
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Figure 2.3: Influence of λ on FoS obtained from global equilibrium of momentum and

horizontal forces for different shapes of the slip surface, modified after Krahn (2003)

finite-element simulation. Cases with large differences cover steep slopes and slopes with

constructional elements, whose influence is accounted for in single slices (e.g. anchor

forces). Moreover, it should be noted that the assumption made with regard to the

orientation of the interslice forces also has a decisive impact on the factor of safety.

2.1.2. Limit analysis (LA)

Limit analysis is based on the limit theorems of plasticity discussed, among others, by

Drucker et al. (1952). The limit theorems are defined based on a lower and upper bound

theorem, which are presented here following the formulation of Chen (2013):
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Theorem 1 (lower bound): If an equilibrium distribution of stress σEij covering the whole

body can be found which balances the applied loads Ti on the stress boundary AT and

is everywhere below yield f(σEij) < 0, then the body at the loads Ti, Fi (body loads) will

not collapse.

Theorem 2 (upper bound): If a compatible mechanism of plastic deformation ε̇p∗ij , ε̇p∗i
is assumed, which satisfies the condition ε̇p∗i = 0 on the displacement boundary Au, then,

the loads Ti, Fi determined by equating the rate at which the external forces do work to

the rate of internal dissipation will be higher or equal to the actual limit load.

Note that the term compatible refers to the kinematic compatibility of the failure mech-

anism. Following the above definitions, a static admissible stress field should satisfy the

equilibrium conditions and the stress boundary conditions and should nowhere violate the

yield criterion. A kinematic admissible velocity field should satisfy the velocity boundary

conditions and the strain and velocity compatibility. An associated flow rule is required

as normality ensures that stress and velocity characteristics are parallel. In addition, a

convex yield surface and an associated flow rule are required to guarantee that ∆σij · ε̇ij
produces the maximum dissipation. Similar to the limit equilibrium method, a failure

surface is assumed and the minimum failure load is sought. However, it should be noted

that a limit equilibrium solution is not necessarily a limit analysis solution as kinematic

admissibility is not checked. On the other hand, every limit analysis solution can also

be considered a limit equilibrium solution. Considering identical shapes of the failure

surface, for many practical applications, LEM and upper bound limit analysis yield sim-

ilar/identical ultimate loads.

As limit analysis has been used to evaluate slope stability for more than 50 years in

research, correspondingly, many studies have been conducted. However, since limit anal-

ysis in its original form is not applied in this thesis, only a few studies are mentioned

here. Chen et al. (1969) conducted a parametric study for slopes of various inclinations

(15◦ ≤ β ≤ 90◦) and compared stability numbers of benchmark limit equilibrium solutions

with the ones obtained using limit analysis and rotational failure mechanisms of log-spiral

shape. They concluded that reasonable good agreement between limit equilibrium and

upper bound limit analysis solutions is seen for a wide range of different slope geometries.

Michalowski (1995) analyzed limit equilibrium and limit analysis solutions for slopes of

different inclinations utilizing translational and rotational failure mechanisms with em-

phasis on the effect of interslice forces and pore water pressures. Michalowski (1995)

showed that rotational LA yields better (lower) results compared to translational LA.

Moreover, LEM and rotational LA approaches provide similar critical γH/c ratios for a
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wide range of different friction angles. Almost all results are bounded by results of trans-

lational LA considering full interslice strength and zero interslice strength. Michalowski

(2002) performed parametric studies and proposed slope stability design charts using the

rotational LA with slip surfaces of log-spiral shape considering variations of the slope

geometry in terms of the sloping angle β and height H, the friction angle ϕ, the cohesion

c, the pore pressure ratio ru and the seismic horizontal coefficient kh.

2.1.3. Strength reduction finite element analysis (SRFEA)

In contrast to limit load problems (e.g. bearing capacity or earth pressure problem) in

which a load is increased until collapse or failure is obtained, slope stability problems

are analyzed by finding the critical strength of a material that causes failure. In strength

reduction finite element analysis (SRFEA), the critical strength is found by division of the

shear strength parameters (tangent of friction angle tanϕ′ and cohesion c′) by a strength

reduction factor (SRF) which is assumed to be equivalent to the factor of safety (FoS).

The FoS can be expressed as the ratio of the shear strength at current and failure state,

expressed in terms of the shear strength parameters as depicted in Eq. 2.5

FoS =
tanϕ

tanϕred

=
c

cred

(2.5)

where ϕred and cred refer to the reduced friction angle and the reduced cohesion at failure

state, respectively. Considering simple elastoplastic constitutive models, a yield surface

needs to be defined to distinguish between elastic and elastoplastic stress states. The yield

surface is expressed in terms of a yield function, which considers the current stress state,

the material shear strength parameters and potentially additional state variables (e.g.

plastic strains). Among others, well-known yield functions are Tresca, von Mises, Drucker-

Prager, Mohr-Coulomb or Matsuoka-Nakai, where the latter two are further elaborated in

Sections 2.3.1 and 2.3.2, respectively. However, it should be noted that the corresponding

simple elastic-perfectly plastic constitutive models using these respective yield functions

can not accurately approximate the soil’s behavior under complex boundary conditions.

To conduct a strength reduction in a finite element framework, in general, two different

concepts can be followed, as for instance described in Potts and Zdravković (2012) and

Chen et al. (2019). The first concept (SR1) is related to a continuous reduction of shear

strength parameters within a single simulation. Starting with the original shear strength

parameters, the FoS is continuously changed and equilibrium of the system is sought.

If equilibrium can be found, the factor of safety is increased in the following increment
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leading to reduced shear strength parameters. This increment loop is continued until

failure is obtained. In contrast, the second concept (SR2) is related to a series of restart

analyses with different sets of reduced shear strength parameters. To be more specific,

considering a reference state defined by an initial stress field, multiple restart analyses

are conducted each starting from the same benchmark state but applying a different

factor of safety. Within the restart, the shear strength parameters used are the reduced

parameters, thus, a sudden reduction is considered. Given a predefined factor of safety,

a restart analysis is considered to have converged if equilibrium is obtained within a user

defined number of iterations. The latter concept can be conducted either by monotonically

increasing the FoS in increments until failure is obtained or utilizing a bracketing solution

approach, where first a stable and an unstable solution is sought and the gap between

both brackets is reduced subsequently.

Potts and Zdravković (2012) discussed advantages and drawbacks of both approaches.

Advantages of SR1 include that only a single analysis is required to obtain the FoS and

that the SR1 approach presented by Potts and Zdravković (2012) can be adapted to any

(advanced) constitutive model. However, this requires modifications of the finite element

implementation, which is only possible in case of full access to the FE code. Considering

SR2, no modification of the implementation is required, however, only simple elastoplas-

tic constitutive models can be used. Considering well-known commercial geotechnical

finite element and finite difference codes, both concepts are utilized. Among other codes,

strength reduction via a continuous analysis is performed in Plaxis (Brinkgreve and

Bakker, 1991; Brinkgreve et al., 2017), Geo5 (GEO5 Slope Stability, 2020), ICFEP (Potts

and Zdravković, 1999, 2012) and OpenGeoSys (Kolditz et al., 2012), whereas restart anal-

yses are conducted in FLAC (Dawson et al., 1999; Itasca Consulting Group, 2020), DIANA

(DIANA FEA BV, 2020), ZSoil (Zace Services Ltd, Software engineering, 2020) and

Slope64 (Griffiths and Lane, 1999; Smith et al., 2013).

At least as essential as the decision of the strategy followed to conduct the strength reduc-

tion analysis is the definition of failure for which the factor of safety is sought. Common

criteria to define failure include (1) bulging of the slope expressed in terms of large nodal

displacements or shear strains (Donald et al., 1988; Wei et al., 2009), (2) a continuous

plastic zone extending from the top to the bottom of the slope (Matsui and San, 1992;

Zheng et al., 2005) and (3) non-convergence of the solution indicated by large unbalanced

forces (Griffiths and Lane, 1999; Dawson et al., 1999). However, it should be noted that

the former two criteria are based on a rather subjective judgments, as has also been

discussed by Chen et al. (2019). Moreover, as convergence in finite element simulations
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is
”
decided” based on prescribed convergence criteria, numerous different approaches to

this exist and to date none of these approaches have proven to be
”
universally valid”.

Comparing different widely used finite element programs, one observes that these criteria

span from rather simple and
”
loose” (Plaxis, Tochnog) to comparably sophisticated and

”
strict” (Abaqus, Ansys). Therefore, it is important to note that an assessment of stabil-

ity based on convergence or non-convergence might be highly dependent on the choice of

the convergence criterion (Zheng et al., 2005; Chen et al., 2019). In addition, the influ-

ence of the convergence criterion on the FoS increases for more complex boundary value

problems. As an alternative, energy based criteria have been used recently by Tu et al.

(2016), Chen et al. (2019) and Huang et al. (2020) to identify slope failure with SRFEA.

To avoid termination of strength reduction analyses based on non-convergence or other

criteria mentioned above, Plaxis and Geo5 follow a continuation strategy by taking ad-

vantage of the arc-length method, which was initially proposed by Riks (1979), further

developed, among others, by Crisfield (1981) and adopted to strength reduction finite

element analysis by Brinkgreve and Bakker (1991). In the arc-length method, an addi-

tional load multiplier is used to scale the contributions of the external forces. However,

as this load multiplier is unknown, an additional scalar equation is added to the system

of equations.

Considering finite element strength reduction analysis conducted using advanced consti-

tutive models, care should be taken in case of elastoplastic models with material strain

softening, which may result in numerical instabilities and mesh dependency (Galavi and

Schweiger, 2010). These problems can be overcome by taking advantage of mesh refine-

ment or regularization approaches such as gradient theories (Zervos et al., 2001; Papan-

icolopulos and Zervos, 2010), nonlocal approaches (Eringen, 1981; Bažant and Jirásek,

2003; Galavi and Schweiger, 2010; Summersgill et al., 2017; Staubach et al., 2022b) or

others. In case constitutive models from different model families are utilized in SRFEA,

difficulties may arise due to the definition of failure since shear strength is usually not con-

stant but dependent on other state variables such as the current void ratio. Still, stability

analyses taking into consideration advanced constitutive models have been conducted via

SRFEA, for instance using clay hypoplasticity (Kadĺıček and Maš́ın, 2020) or barodesy

(Schneider-Muntau et al., 2018; Tschuchnigg et al., 2019).
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2.1.4. Finite element limit analysis (FELA)

The finite element limit analysis (FELA) is based on the lower and upper bound theorems

of plasticity introduced by Drucker et al. (1952). Application of lower and upper bound

finite element analysis to geotechnical problems considering plane-strain conditions has

been conducted as early as Lysmer (1970) and Bottero et al. (1980). Based on these works

many contributions enabled continuous improvement of both methods (Sloan, 2013). Fol-

lowing the lower and upper bound theorems of plasticity, the restrictions of both theorems

are also essential for finite element limit analysis. Therefore, a rigorous lower or upper

bound solution can only be determined if it is based on a statically admissible stress field

or a kinematically admissible velocity field, respectively (Sloan, 2013). In addition, it has

to be assured that the material utilized is rigid-perfectly plastic and follows an associated

flow rule. Moreover, calculations are only valid for small deformations. To obtain rigor-

ous lower and upper bound solutions, which bracket the exact solution from below and

above, respectively, simulations with FELA have to be performed using the correct ele-

ment types, see remarks below (Sloan, 2013). The methods permit discontinuities in the

stress and velocity fields (Merifield et al., 1999). Compared with traditional incremental

finite element method, the procedures are very fast and straightforward to use (Sloan,

2005), giving the limit load directly, without the need to perform a complete incremental

analysis. This is a major advantage in large-scale three-dimensional applications, where

stability analysis using the conventional finite element method is both difficult and time

consuming (Sloan, 2013).

Adaption of FELA to perform strength reduction analyses has been discussed by Sloan

(2013) and Krabbenhoft and Lyamin (2015), where the latter approach is also used in

OptumG2 (OptumG2, 2019), which is also applied in this thesis. Similar to limit load

problems investigated with FELA, a lower and an upper bound solution are investigated

in the stability analyses. Note that the smaller the gap between both solutions, the more

accurate is the prediction of the exact solution. Application of FELA for slope stability

problems has been conducted, for instance in Tschuchnigg et al. (2015b) and Mahmoudi

et al. (2020).

To quantify the gap between both solutions, the concept of the worst case error discussed

in Krabbenhoft (2018) can be applied. The worst case error is defined as εwc = (UB −
LB) / (UB + LB) (Krabbenhoft, 2018; Schmüdderich et al., 2020d) with LB and UB

denoting lower and upper bound results, respectively.
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2.1.5. Stress-based analysis (SBA)

To overcome drawbacks of limit equilibrium methods mentioned above and discussed,

among others, by (Krahn, 2003), stress-based approaches can be utilized to evaluate slope

stability in terms of a factor of safety. Stability analysis is conducted based on a stress

field obtained using a numerical analysis, for instance finite element analysis or finite

difference analysis. The stress field represents the current situation, thus, no reduction

of the shear strength parameters or other constitutive parameters is conducted. Slope

stability is analyzed on a predefined slip surface, discretized by a user defined number

of points where stresses from the stress field are interpolated for each node along the

slip surface. Similar to limit equilibrium approaches, the general idea of stress-based

approaches is to compare the shear forces and shear resistance, the latter governed by the

shear strength of the material and the normal effective stresses, based on the equilibrium

of forces or moments. A general description to evaluate the FoS following a stress-based

approach is given in Eq. 2.6 with τfi and τi denoting the shear strength and shear stresses

acting along a section ∆Li of the slip surface.

FoS =

B∫
A

τfi dL

B∫
A

τi dL

≈

Ns∑
i=1

τfi ∆Li

Ns∑
i=1

τi ∆Li

(2.6)

To evaluate the maximum shear resistance, assumptions with respect to the failure cri-

terion (e.g. Mohr-Coulomb failure criterion) are required. Usually, nodes along the slip

surface are treated individually, thus, no information is shared between the different nodes

along the slip surface during the stability analysis. Therefore, it is not possible to analyze

progressive failure as this would require information exchange, for instance to allow for

redistribution of stresses during the stability analysis. In general, transfer of state vari-

ables (e.g. void ratio, plastic strains, etc.) from the finite element simulation to the slope

stability analysis is not considered, thus, effects such as stress history (e.g. excavation

process) can not be considered realistically. Only the current stress state has an influence

on the factor of safety determined based on a stress-based approach.

Development of stress-based approaches and investigation of slope stability problems using

stress-based approaches has been conducted for instance by Zou et al. (1995), Farias and

Naylor (1998), Krahn (2003), Guo et al. (2011), and Liu et al. (2020). Further details

and discussions with regard to advantages and drawbacks of stress-based approaches are

provided in the following section.
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2.1.6. Strain-dependent slope stability (SDSS)

To evaluate the stability of slopes considering the current stress state, the stress history,

the soil density as well as a realistic stress-strain behavior, Nitzsche and Herle (2020)

proposed a concept referred to as
”
strain-dependent slope stability”. In a manner similar

to other stress-based approaches (Zou et al., 1995; Farias and Naylor, 1998; Guo et al.,

2011; Liu et al., 2020), the factor of safety is calculated for an arbitrarily chosen slip

surface of predefined shape discretized using a user-defined number of points. Using a pre-

calculated stress field, such as the one obtained using the finite element method, stresses

are interpolated for each point and rotated in the direction of the slip surface to analyze

the normal and shear stress components. In contrast to other approaches that define the

factor of safety with respect to resisting and driving forces evaluated in terms of integrals

of shear strength and shear stresses, respectively, Nitzsche and Herle (2020) define the

factor of safety based on the mobilization of shear stresses while taking the soil’s stress-

strain behavior into account. To accomplish this, it is suggested to conduct element tests

(simple shear tests) for each point along the potential slip surface considering its current

stress state to subsequently evaluate the mobilization of shear stresses with increasing

shear strains. For each slip surface with length L, Nitzsche and Herle (2020) evaluate

the global mobilized shear resistance ratio T (γ) according to Eq. 2.7 as the mobilized

shear stresses τmob with respect to the shear strain γ integrated for the segments i with

individual length Li, divided by the initial shear stresses τ0 integrated over the same

segments. Note that Li may be omitted in case all segments are of the same length.

T (γ) =

∑
i τmob,i(γ)Li∑

i τ0,i Li
(2.7)

Upon shearing and depending on the soil density, the T (γ) curve depicted in Fig. 2.4(a)

and (b) may be characterized by monotonically increasing shear stresses or by a peak

state followed by a reduction of shear stresses, respectively. The former, pure contractive

behavior, is typical of loose sandy soils or normally consolidated clays, whereas the latter,

contractive behavior followed by dilatant response, is typical of dense sandy soils and

overconsolidated clays. However, the latter type of behavior (peak state followed by

shear stress reduction) can only be numerically simulated in a simple shear test if the

constitutive model used in the simulation is either capable of capturing strain softening

(in the case of elastoplastic models) or takes into account the effect of pyknotropy (in

case of hypoplastic models). Moreover, advanced constitutive features, for instance small

strain stiffness (Benz, 2007; Benz et al., 2009; Niemunis et al., 2011), intergranular strain
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Figure 2.4: Global mobilized shear resistance ratio T (γ) for (a) a loose and (b) a dense

material

(Niemunis and Herle, 1997) or destructuration (Taiebat et al., 2010), may also result in

similar curve trends.

Based on the global mobilized shear resistance ratio T (γ), the maximum and residual

values (Tmax, Tres) as well as the corresponding shear strains (γmax, γres) are identified,

wherein the residual value corresponds to a shear strain beyond which T remains con-

stant. As indicated in Fig. 2.5, Nitzsche and Herle (2020) suggest to evaluate the strain-

dependent slope stability for a particular slip surface as FoS(γ) = Tmax for γ ≤ γmax and

FoS(γ) = T (γ) for γ > γmax. It should be noted that γmax and γres coincide for strain

hardening materials. Furthermore, for softening materials, Tmax is usually smaller than

the ratio of the sum of the individual maximum shear stresses divided by the sum of the

initial shear stresses as also depicted in Fig. 2.4(b). The reason for this particularity is

that the local maxima of the shear stresses are usually not mobilized at the same shear

strain in each point. Therefore, at a certain shear strain, the peak state may be reached

at one point whereas softening is already seen for other points. The critical slip surface is

identified as the slip surface that yields the minimum factor of safety when the objective

function is defined with respect to the factor of safety at a given shear strain.

Compared to other approaches which can be used for the analysis of slope stability prob-

lems, a major advantage of the concept presented by Nitzsche and Herle (2020) summa-

rized above is the possibility for evaluation of the FoS considering sophisticated constitu-

tive models. This includes the simulation of the element tests as well as the finite element

simulation conducted to obtain the initial stress field for stability analysis. Thus, it is not

only the stress state that can be transferred from the initial slope model to the element
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Figure 2.5: Strain-dependent slope stability FoS(γ) for (a) a loose and (b) a dense material

test model, but all internal and additional state variables of the constitutive model which

enable to approximate stress history, density changes, evolution of small strain stiffness

etc. on the small scale test level. In fact, this allows for a significantly better approxima-

tion of shearing resistance on the slip surface than traditional stress-based analyses using

initial stress fields obtained from linear elastic or elastoplastic analyses.

Still, it should be noted that the concept of strain-dependent slope stability proposed by

Nitzsche and Herle (2020) cannot be used to detect progressive failure in a slope aris-

ing from softening behavior. Considering a finite-element simulation with a constitutive

model capturing material softening, it should be clear that as soon as one material point

softens, the decrease of the deviatoric stress causes stress redistributions around it induc-

ing, in many cases, softening in neighboring points. However, as the points along the slip

surface are treated individually in the strain-dependent slope stability (and other stress-

based approaches), stress redistribution is not possible, thus, progressive failure cannot

be captured.

2.2. Slope stability analysis for seismic loading

The classical methods for accounting for the seismic impact on the stability of slopes are

the pseudo-static analysis (PSA), the permanent-displacement analysis and the stress-

deformation analysis (Newmark, 1965; Kramer, 1996; Jibson, 2011), where the latter is

also referred to as dynamic finite element analysis in this thesis.
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2.2.1. Pseudo-static analysis (PSA)

The evaluation of the factor of safety of slopes subjected to earthquake loading is often

conducted based on two subsequent steps where the effects of the earthquake loading

are estimated first and the stability analysis is performed subsequently. One approach

to perform the latter is by utilizing slope stability methods as discussed in Section 2.1

combined with a pseudo-static analysis (PSA). In PSA, seismic effects are approximated

via a static force, usually expressed in terms of a seismic coefficient, acting in a potential

sliding mass. This force Fh/v is determined based on the seismic coefficient acting in

horizontal (kh) or vertical (kv) direction and the total weight W in accordance with

Eq. 2.8 and Eq. 2.9, respectively.

Fh =
ah ·W
g

= kh ·W (2.8)

Fv =
av ·W
g

= kv ·W (2.9)

In its original form, PSA is applied in combination with limit equilibrium methods (LEM)

for the analysis of planar or circular slip surfaces discretized as single rigid bodies or

multiple slices. As depicted in Fig. 2.6, the pseudo-static force is considered as an addi-

tional force with a component in horizontal and vertical direction to be included in the

equilibrium of forces and/or moments. Note that in contrast to horizontal seismic coef-

ficients that yield smaller FoS when directed towards the slope toe, for vertical seismic

coefficients, both directions/signs need to be checked to identify the one that yields the

minimum FoS. Besides LEM (Leshchinsky and San, 1994; Baker et al., 2006; Goldschei-

der et al., 2010; Hleibieh and Herle, 2019a), evaluation of the factor of safety for slopes

and earth dams subjected to earthquake loading has also been conducted by combining

PSA with other methods, for instance limit analysis (Ausilio et al., 2000; Loukidis et al.,

2003), strength reduction finite element analysis (Baker et al., 2006) or finite element

limit analysis (Loukidis et al., 2003; Li et al., 2021).

The seismic coefficient is commonly assumed to be constant with respect to the location

and the dynamic loading time as the time step corresponding to the most critical acceler-

ation is analyzed. Note that for many projects, assumptions are required to approximate

the effects of the dynamic loading in terms of acceleration time histories or peak ground

accelerations (PGA). In most studies, the seismic coefficient is approximated with respect

to the earthquake signal at the bedrock, the soil properties and layering or with the peak

ground acceleration rather than being directly evaluated from dynamic analyses. De-

pending on the severity of the earthquake, Terzaghi (1950) suggested typical values of kh
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Figure 2.6: Consideration of pseudo-static forces for planar and circular slip surfaces

ranging between 0.1 and 0.5, whereas Seed (1979) proposed smaller values of kh ranging

between 0.12 and 0.14. Alternatively, kh is either linked to PGA or to allowable displace-

ments. To avoid over-conservative estimates in cases where the seismic coefficients are

determined based on PGA in combination with Eq. 2.8 and Eq. 2.9, multiplication with a

factor 0 ≤ χ ≤ 1.0 is usually considered, for instance χ = 0.5 as discussed in Kramer and

Smith (1997) and Goldscheider et al. (2010). To determine ranges for χ in accordance

with shallow and deep slip surfaces, investigations were performed by Triantafyllidis and

Grandas-Tavera (2013) using two-dimensional numerical simulations with the hypoplas-

tic model. Alternatively, the seismic coefficients can be back-calculated from permanent-

displacement analysis, which is introduced in the next section, by defining project-specific

allowable displacements (Bray and Travasarou, 2009; Macedo and Candia, 2020).

Note that, in contrast to the permanent-displacement analysis and the stress-deformation

analysis which provide information on potential slope deformations, PSA only represents

one instant in time and predicts either a factor of safety for a given acceleration or a yield

acceleration for a slope at limit state, where the latter is the favorable option (Abramson

et al., 2001; Jibson, 2011).

2.2.2. Pseudo-dynamic analysis

In contrast to the pseudo-static approach, in which horizontal and vertical seismic coeffi-

cients are applied constant with respect to time and space, the pseudo-dynamic approach

enables to account for spatial and temporal variation of the seismic coefficients. This is

accomplished by consideration of primary compression and shear waves propagating from

a reference level (e.g. slope toe) vertically upwards through a soil body. As discussed,

among other authors, by Steedman and Zeng (1990), Choudhury and Nimbalkar (2005)

and Hazari et al. (2020), the variation of the horizontal and vertical accelerations ah and

av with regard to time t and vertical position z (Fig. 2.7) can be approximated by a
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harmonic function (e.g. a sine function) via

ah(t, z) = ah,0 · sinω

(
t− H − z

Vs

)
(2.10)

av(t, z) = av,0 · sinω

(
t− H − z

Vp

)
(2.11)

where ah,0 and av,0 denote the acceleration amplitudes, ω is the frequency, H is the height

of the slope, and Vs and Vp refer to the shear and compression wave velocities determined

based on the elastic shear modulus G, the Poisson’s ratio ν and the soil density ρ as

Vs =

√
G

ρ
and Vp =

√
2G(1− ν)

ρ(1− 2ν)
(2.12)

Modified harmonic functions used in accordance with the pseudo-dynamic approach (Qin

and Chian, 2018; Zhou and Qin, 2020; Zhang and Yang, 2021) also include an additional

amplification factor f that allows to consider increased accelerations with increasing ver-

tical position and a phase shift parameter t0. The modified harmonic functions then

read

ah(t, z) =
[
1 +

z

H
(f − 1)

]
· ah,0 · sinω

(
t− H − z

Vs

)
(2.13)

av(t, z) =
[
1 +

z

H
(f − 1)

]
· av,0 · sinω

(
t− H − z

Vp
+ t0

)
(2.14)

Considering accelerations (or seismic coefficients) determined using a pseudo-dynamic

analysis, the seismic slope stability can be assessed using the above mentioned slope

stability methods. Note that, in contrast to the pseudo-static analysis, the respective

methods need to allow for the consideration of spatial distributions of ah and av. As this

requirement is not fulfilled by many limit equilibrium or finite element software packages,

user-implementations of those methods may have to be used, considering discretization

and interpolation schemes that enable the import of this (un-)structured data. Among
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Figure 2.7: Seismic slope stability analysis using pseudo-dynamic approach
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other authors, seismic slope stability analyses using the pseudo-dynamic apporach or

extensions thereof have been conducted by Hazari et al. (2020) using the limit equilibrium

method, by Qin and Chian (2018) and Zhang and Yang (2021) using the upper bound

limit analysis and by Zhou and Qin (2020) using the finite element upper bound analysis.

Note that pseudo-dynamic approaches are based on a rough estimate of the acceleration

time history by a (harmonic) function as described above and cannot accurately predict

the effects of an earthquake loading. Shortcomings with regard to this approach are

related to missing physics, for instance as reflections at the ground surface or reflection,

refraction and absorption of waves at layer boundaries are not considered accurately. To

predict better the time history of accelerations, accumulations of strains, and build-up of

excess pore water pressures, dynamic finite element analysis (DFEA) - previously referred

to as stress-deformation analysis - need to be conducted using sophisticated constitutive

models.

2.2.3. Permanent-displacement analysis

The permanent-displacement analysis is based on the sliding block method proposed by

Newmark (1965). In its original form, Newmark’s method treats the potential slip masses

of a landslide as a rigid-plastic body as depicted in Fig. 2.8. The sliding mass does

not deform internally, but starts moving along a discrete shear surface when a critical

acceleration is exceeded. This acceleration – also referred to as the yield acceleration – is

determined from a pseudo-static analysis (PSA) by iterative adjustment until FoS = 1.0

is obtained. Newmark’s method calculates the cumulative permanent displacement of

the block as it is subjected to the action of an earthquake acceleration-time history by

double integration of those accelerations exceeding the yield acceleration. Thereby, no

permanent displacements at accelerations below the critical or yield level are considered.

Both methods (PSA and original Newmark method) ignore the reduction in shear strength

that may take place during an earthquake, the influence of relatively small but long-

standing oscillations on slope stability, and treat independently the determination of the

factor of safety and the estimation of slope displacements.

Within the last 50 years, continuous improvement of Newmark’s method enabled to over-

come the major drawbacks mentioned beforehand, for instance by consideration of soil

deformability, damping, degradation of yield accelerations, spatial distribution of yield

accelerations or excess pore-water pressure build-up. Among other authors, extensions

of the Newmark method have been proposed by researchers based on decoupled and
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Figure 2.8: General concept of Newmark’s sliding block method

coupled analyses (Seed and Martin, 1966; Makdisi and Seed, 1978; Lin and Whitman,

1983; Kramer and Smith, 1997; Bray and Rathje, 1998; Rathje and Bray, 2000; Bray

and Travasarou, 2009; Rathje and Antonakos, 2011; Tropeano et al., 2017; Jafarian and

Lashgari, 2017; Leshchinsky et al., 2018; Mathews et al., 2019; Ji et al., 2021). Decoupled

analyses consider an independent evaluation of the dynamic response and the permanent

displacement, whereas in coupled analyses the ground motion is determined with regard

to the plastic sliding displacement. Note that to quantify the seismic slope stability

in terms of a FoS based on the permanent-displacement analyses following Newmark’s

method or extensions thereof, project-specific allowable displacements or velocities need

to be defined.

2.2.4. Dynamic finite element analysis (DFEA)

In case inertial and damping effects or temporal variations should be considered in a

finite element analysis, the time dependent behavior of the system needs to be simulated in

terms of a dynamic analysis. For this, the system of equations solved by the finite elements

needs to extended (compared to the static case) by including inertial and damping terms.

Assuming a linear relationship between K and u, the linearized system of equations can

be expressed as (Bathe, 2006)

Mü+Cu̇+Ku = R (2.15)

where M is the mass matrix, C is the damping matrix, K is the stiffness matrix, R

is the vector of external nodal forces, gathering contributions of body forces and surface

tractions, and u, u̇ and ü denote the nodal displacements, velocities and accelerations,

respectively. Note that the type of solution variables, in this case u, depends on the ele-

ment type formulation. To account for elements with different types of solution variables,

for instance u-p elements discretizing the displacements of the solid phase u and the pore
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water pressure pw, a more general definition can be used with d, ḋ and d̈ denoting the so-

lution variables, their first and second time derivatives, respectively. The general system

of equations can be expressed as

r
(
d, ḋ, d̈

)
= sDMd̈− f

(
d, ḋ

)
(2.16)

where r and f denote the residuum and the assembled contributions of internal and

external forces, while sD is used to switch between static (sD = 0) and dynamic (sD = 1)

simulations. Note that time dependency of the solution is obtained by considering that the

solution variables and their derivatives are functions of time. To account for this, different

time integration schemes can be adopted, for instance Newmark’s method (Newmark,

1959) or the Hilber-Hughes-Taylor time integration scheme (Hilber et al., 1977) that is an

extension of the former time integration method. Further information and details about

time integration schemes can also be found in Machaček (2020) and Staubach (2022).

In general, dynamic finite element analysis (DFEA) allows to determine the spatial and

temporal evolution of accelerations, accumulated strains and the build-up of excess pore

water pressure during the seismic loading, provided that sophisticated constitutive models

and coupled elements (u-p) are used. However, similar to the permanent displacement

method, quantitative evaluation of slope stability needs to be conducted based on project-

specific criteria such as allowable displacements or velocities. In case Federal Institutes or

official authorities request an additional evaluation of the slope stability under earthquake

loading in terms of a factor of safety, as discussed for instance by Goldscheider et al. (2010),

Dahmen et al. (2014), Mittmann et al. (2015) and Eyll-Vetter (2015), results of DFEA

should be further processed in slope stability analyses.

Combining SRFEA and DFEA in a way that repeated DFEA are conducted with different

sets of reduced soil shear strength (Karray et al., 2018, 2019) and stiffness parameters (Ma

et al., 2021), the FoS can be determined based on more general criteria, such as a rapid

increase of displacements or numerical non-convergence. Note that significant repetitions

of DFEA are associated with substantial computational costs. Alternatively, a more

rational two-step approach can be followed, where LEM, LA, SRFEA, FELA or stress-

based analyses are conducted based on the results of the DFEA at different time steps of

the seismic loading. However, despite Hleibieh and Herle (2019a) and Schmüdderich et al.

(2022a), not many attempts were made to transfer information (e.g. stresses, pore water

pressures and other state variables) between DFEA and consecutive stability analyses.
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2.3. Material models

In this section, three material models are explained in detail due to their importance for

this work. The Mohr-Coulomb (MC) model and the Matsuoka-Nakai (MN) model are im-

plemented in numgeo and verified using element test simulations in Chapter 4. Ultimately,

both models (MC and MN) are used in combination with the strength reduction method

implemented in Chapter 5. The hypoplastic model is introduced due to its application for

the estimation of seismic effects using dynamic finite element analyses and the estimation

of the factor of safety based on the concept of strain-dependent slope stability.

2.3.1. Mohr-Coulomb (MC)

As noted in Section 2.1.1, considering normal and shear stresses acting on a plane, the

basic Mohr-Coulomb criterion limits the maximum shear strength of a material with

respect to its shear strength parameters ϕ and c and the normal effective stress (σ′n =

σn − u) acting on that plane (Coulomb, 1776) according to Eq. 2.17.

τmax = (σn − u) tanϕ+ c (2.17)

Extending the Mohr-Coulomb criterion to three-dimensional space expressed in terms of

principal stresses σ1, σ2 and σ3, the shape of the Mohr-Coulomb criterion is represented

by a hexagonal pyramid with the tip of the pyramid (apex) located on the hydrostatic axis

at a distance of c · cotϕ from the origin. As depicted in Fig. 2.9, the hexagonal pyramid

is defined by the yield surface which is composed of six faces. The yield functions and
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Figure 2.9: Mohr-Coulomb yield surface composed of six faces plotted in principal stress

space
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derivatives are well defined on the surfaces. However, the derivatives can not be found

easily for the intersections between two faces (i.e. edges/corners in the deviatoric plane)

as those represent singularities. In literature, different strategies have been proposed to

handle these singularities, as will be further elaborated in the subsequent paragraphs.

Considering principal stresses ordered numerically, only one sector of the yield function of

the Mohr-Coulomb model needs to be analyzed. Considering the Mohr-Coulomb model

in the deviatoric plane normalized by the mean stress p = (σ1 + σ2 + σ3)/3, this sector

is shown in Fig. 2.10, where potential stress states range between triaxial compression

and triaxial extension states with Lode angles of θ = 30◦ and θ = −30◦, respectively. It

should be noted that stress states could only be assigned to the other sectors if the order

of principle stresses is neglected.

Considering mechanical sign convention with tensile stresses positive and principle stresses

ordered such that σ1 ≤ σ2 ≤ σ3, the yield function can be expressed according to Eq. 2.18.

From this equation it can be seen that the intermediate stress σ2 is not considered in the

yield function, thus, changes of σ2 that do not lead to a change in the order of the principle

stresses have no effect on the response obtained with the Mohr-Coulomb model.

FMC = − (σ1 − σ3) + (σ1 + σ3) sinϕ− 2c cosϕ for σ1 ≤ σ2 ≤ σ3 (2.18)

As the implementation of the Mohr-Coulomb model is difficult due to the singularities at

the corners and the apex of the yield surface, researchers (Griffiths, 1986, 1990; Schweiger,
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θ = −30◦

Mohr-Coulomb
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Matsuoka-Nakai

Mohr-Coulomb

Figure 2.10: Shape of the Mohr-Coulomb yield surface in the deviatoric plane with em-

phasis on the main sector for potential stress states
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1994; Clausen et al., 2010) investigated to what extend the Drucker-Prager model was an

appropriate alternative for simulating geotechnical boundary value problems. In general,

the Drucker-Prager model is described by a yield surface with the shape of a cone, which is

differentiable everywhere except for the tip of the cone. Considering the shape of the yield

surface in the deviatoric plane, the isotropic Drucker-Prager model is described by a circle

with the center located at the hydrostatic axis. The distance between the hydrostatic axis

and the yield surface on the deviatoric plane is dependent on the first stress invariant I1

and the second deviatoric stress invariant J2 but independent of the Lode angle θ (i.e.

identical in every direction) and can be expressed as

FDP =
√

3 J2 + α I1 − β (2.19)

where α and β are material parameters, which are related to the soil friction and cohesion,

respectively. However, as the Mohr-Coulomb model is not described by a yield surface

with the shape of a circle in the deviatoric plane, different fits of the Drucker-Prager model

to the Mohr-Coulomb model are possible. The common fits depicted in Fig. 2.11 are (1)

an external cone fitted to the compression corner of the MC model, (2) a cone fitted to

the extension corner of the MC model and (3) an internal/inscribed cone that touches

the MC yield surface without intersecting it. Determination of α and β for the cones (1)

- (3) can be conducted based on the shear strength parameters ϕ and c, as discussed for

instance by Clausen et al. (2010).

Considering the external and internal cones, Griffiths (1990) evaluates the equivalent

Mohr-Coulomb friction angle ϕMC for different Lode angles θ, which represent the friction
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Figure 2.11: Mohr-Coulomb and Drucker-Prager criteria on the deviatoric plane consid-

ering (1) external, (2) extension and (3) internal fit
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Figure 2.12: Equivalent friction angle variation for different external and internal cones,

modified after Griffiths (1990)

angle that needs to be used in combination with the Mohr-Coulomb model to obtain the

same size of the yield surface in the deviatoric plane at a given Lode angle. As can be

seen from Fig. 2.12 the equivalent friction angle significantly changes with varying Lode

angle, which makes it very difficult to define proper values for α and β to avoid large

over- or underestimation of the size of the Drucker-Prager yield surface in case of varying

Lode angles. In fact, it is seen in this figure for the external cone and a friction angle

of ϕ = 36.87◦ that the equivalent friction angle approaches ϕMC → 90◦ for Lode angles

approaching the triaxial extension corner with θ → −30◦. This massive over-estimation

was also reported by Bishop (1966). In case of element test simulations with a limited

range of different Lode angles, a convenient fit of the Drucker-Prager yield surface might

be found, still, it should be noted that these fits do not perform well for geotechnical

boundary value problems covering large ranges of Lode angles.

Clausen et al. (2010) studied the differences between the Mohr-Coulomb and the Drucker-

Prager model based on two- and three-dimensional bearing capacity analyses considering

different sizes of the cones based on the concepts described above. Although for plane

strain conditions, the inscribed fit of the Drucker-Prager model resulted in approximately

similar results as the Mohr-Coulomb model in terms of the bearing capacity, the stiffness

was not well approximated, yielding completely different settlements when reaching the

ultimate limit load. Moreover, for three-dimensional conditions, none of the fits was

capable to provide appropriate predictions, neither for the bearing capacity nor for the

stiffness. As the differences in terms of bearing capacity and stiffness obtained using the
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Mohr-Coulomb model and different fits of the Drucker-Prager model were found to be

very large, Clausen et al. (2010) concluded that the Drucker-Prager model should only be

considered an educational model in soil mechanics, rather than a model to be actually used

for simulations of real case geotechnical applications. Similar observations and concluding

statements were also made earlier by Schweiger (1994) based on simulations of the earth

pressure problem.

As the Drucker-Prager model can not be considered an alternative to the Mohr-Coulomb

model for geotechnical applications, other alternatives were sought. To circumvent the

difficulties of the Mohr-Coulomb model associated with the singularities at the edges

between two yield surfaces as well as at the tip/apex, where the derivatives of the yield

surfaces are not defined, two strategies are commonly followed: (1) definition of the

yield function using multiple surfaces in combination with the Koiter (1953) rule, as for

instance discussed in Ristinmaa and Tryding (1993), Clausen et al. (2006) or Huang and

Griffiths (2008), or (2) definition of a smooth (rounded) approximation of the original

Mohr-Coulomb yield function, where the derivatives are well-defined for all Lode angles.

With regard to the latter concept, different approximations with rounded compression and

extension corners in the deviatoric plane have been proposed, for instance by utilizing the

Von Mises criterion to round off the MC corners (Owen and Hinton, 1980). However,

considering a MC model with rounded corners, the question arises whether continuity

between the regular surfaces and the rounded ones can be guaranteed with respect to the

yield function as well as its derivatives.

A few years after the study of Owen and Hinton (1980), Sloan and Booker (1986) proposed

an alternative approximation of the Mohr-Coulomb model with rounded corners in the

deviatoric plane (Fig. 2.13). In contrast to the definition of the Mohr-Coulomb yield

function with respect to principle stresses (Eq. 2.18), a definition based on the works of

Nayak and Zienkiewicz (1972) was proposed by Sloan and Booker (1986) according to

Eq. 2.20, where the stress state is considered in terms of the stress invariants σm, σ̄ and

θ, representing the mean stress, the deviatoric stress and the Lode angle, respectively.

FMC =




σm sinϕ+ σ̄(cos θ − 1√

3
sinϕ sin θ)− c cosϕ = 0 for |θ| ≤ θt

σm sinϕ+ σ̄(A−B sin 3θ)− c cosϕ = 0 for |θ| > θt
(2.20)

Moreover, the yield function serves as a switch between the original formulation and

the approximated (rounded) formulation of the Mohr-Coulomb yield function based on

a comparison of the current Lode angle θ and the transition Lode angle θt, the latter

representing an additional parameter of the proposed material model. Considering Lode
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angles θ ≤ θt, the original Mohr-Coulomb yield function is used, whereas for θ > θt, the

approximation function is applied. Forcing continuity of the yield function and the first

derivative (C1 continuity) at θ = θt, the parameters A and B were determined. The

analytical solutions for A and B with respect to the Lode angle θ, the transition Lode

angle θt and the friction angle ϕ are not discussed here, but can be found in Sloan and

Booker (1986).

Comparing the yield function proposed by Sloan and Booker (1986) to the original model,

it is apparent from Fig. 2.13 that the approximation of the yield function is an inside

round-off of the Mohr-Coulomb corners when plotted in the deviatoric plane, thus, the

elastic zone of the proposed model is smaller compared to the original model for θ > θt.

Moreover, the difference between both models is more pronounced for triaxial compression

conditions with Lode angles of θ = 30◦ compared to triaxial extension conditions with

Lode angles of θ = −30◦. Considering a triaxial compression test simulated with the

original and the approximated Mohr-Coulomb model, it should be clear that the ultimate

deviatoric stress is smaller using the latter model. Sloan and Booker (1986) reported for

the case of a triaxial compression test (θ = 30◦) with a friction angle of ϕ = 30◦ and a

transition Lode angle of θt = 25◦ that the difference in the maximum deviatoric stress

between the exact and the rounded MC model was smaller than 4.3 %. Considering the

selection of θt, it is apparent from this figure that larger values of θt lead to a closer fit,

whereas smaller values of θt lead to a larger deviation from the original model as the

smooth approximation starts at smaller (absolute) Lode angles. For practical use, Sloan

and Booker (1986) recommend using a transition angle in the range of θt = 25◦ to 29◦

as it allows for an accurate approximation of the Mohr-Coulomb model, whereas larger

θ = 30◦

θ = +θt

θ = 0◦

θ = −θt
θ = −30◦

Mohr-Coulomb

θt = 25◦

ϕ = 30◦

Figure 2.13: Mohr-Coulomb yield surface in the deviatoric plane with rounded vertices,

modified after Sloan and Booker (1986)
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values of θt close to 30◦ should not be selected in order to avoid issues with regard to the

determination of the fitting parameters A and B.

Abbo and Sloan (1995) proposed a more convenient form of the yield surface proposed by

Sloan and Booker (1986) by introducing K(θ) serving as the split function between the

original and the approximated Mohr-Coulomb model with respect to θ and θt. Moreover,

they extended the approximation of the Mohr-Coulomb model proposed by Sloan and

Booker (1986) by addition of a hyperbolic surface, which eliminates the singularity at

the tip of the pyramid of the Mohr-Coulomb model. The updated equation of the yield

function and the function K(θ) are given in Eq. 2.21 and Eq. 2.22, respectively, where a

is a new parameter of the material model controlling the shape of the hyperbolic surface

as depicted in Fig. 2.14.

FMC = σm sinϕ+
√
σ̄2K2(θ) + a2 sin2 ϕ− c cosϕ = 0 (2.21)

K(θ) =





cos θ − 1√
3

sinϕ sin θ for |θ| ≤ θt

A−B sin 3θ for |θ| > θt
(2.22)

As the distance between the tip of the MC model and the origin can be determined

from d = c · cotϕ (unless ϕ = 0◦), the parameter a can be expressed as a = α · d with

0 ≤ α ≤ 1. As shown in Fig. 2.15(a), for α→ 0, the hyperbolic approximation approaches

the original Mohr-Coulomb yield function, whereas α = 1 results in a yield function that

does not allow for tensile stresses. However, it is obvious from Fig. 2.15(b) that the

hyperbolic approximation also impacts the size of the yield surface in the deviatoric (π)

plane, where larger values of α lead to a smaller elastic zone. For practical purposes, Abbo

Mohr-Coulomb

Hyperbolic approximation

a

b

d

s

-�sm

Figure 2.14: Hyperbolic approximation to Mohr-Coulomb yield function, modified after

Abbo and Sloan (1995)
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and Sloan (1995) recommend using α = 0.05, as results obtained with this approximation

are almost identical to the ones obtained with the original model.

Abbo et al. (2011) further extended the works of Sloan and Booker (1986) and Abbo and

Sloan (1995) by replacing the C1 continuous approximation of the Mohr-Coulomb yield

surface by a C2 continuous approximation, which ensures continuity of the yield function

as well as its first and second derivative. Therefore, Abbo et al. (2011) extended the

function K(θ) by addition of a third term, which includes an additional fitting parameter

C as shown in Eq. 2.23.

K(θ) =




A+B sin 3θ + C sin2 3θ for |θ| > θt

cos θ − 1√
3

sinϕ sin θ for |θ| ≤ θt
(2.23)

Compared to the original formulations presented in Sloan and Booker (1986) and Abbo

and Sloan (1995), it should be noted that also the sign of the second term (related to

parameter B) has been reversed. To obtain C2 continuity, it needs to be ensured that the

two functions yield identical results if the Lode angle is identical to the transition Lode

angle. Therefore, the system of equations composed of K(θ), dK/dθ and d2K/d2θ was

solved for the parameters A, B and C at θ = θt. Again, the analytical solution for A, B

and C is not presented here, but can be found in Abbo et al. (2011). Analyzing the shape

of the yield surface presented in Fig. 2.16, it is apparent that the C2 approximation of

the Mohr-Coulomb yield function is slightly outside of the C1 approximation and, thus,

resembles a better fit to the original yield function.
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Figure 2.15: Hyperbolic approximation to Mohr-Coulomb meridional section and rounded

hyperbolic yield surface in the deviatoric plane, modified after Abbo and Sloan (1995)
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Figure 2.16: Rounding of Mohr–Coulomb failure criterion in deviatoric plane, modified

after Abbo et al. (2011)

More importantly, it should be noted that the main advantage of the approximation of

the Mohr-Coulomb model proposed by Abbo et al. (2011) is the continuity with respect

to the second derivative of the yield and potential surface which enables usage of proper

return mapping schemes and determination of the consistent tangent stiffness to obtain

better numerical convergence of the model. For practical use, Abbo et al. (2011) suggest

a lower limit of θt ≥ 25◦ and an upper limit of θt ≤ 29.5◦, which for instance result in

5.3 % and 0.56 % reduction of the maximum strength, respectively, in case of ϕ = 45◦.

However, it should be clear that this reduction is only observed for triaxial conditions

with Lode angles |θ| ≈ 30◦, whereas for plane strain conditions such as 2D slope stability

or bearing capacity analyses no reduction is observed due to |θ| < θt.

2.3.2. Matsuoka-Nakai (MN)

The Matsuoka-Nakai failure criterion proposed by Matsuoka and Nakai (1974) has initially

been formulated for granular materials based on the concept of the spatial mobilized plane

(SMP) as an extension of the concept of mobilized planes, discussed among others by

Matsuoka (1974). Following these concepts, a mobilized plane describes the maximum

ratio of shear to normal stresses, (τ/σn)max, on a two-dimensional plane. Considering

principle stresses σ1, σ2 and σ3, there are three mobilized planes, which are defined on

the two-dimensional planes spanned by each two unit vectors (i.e. σ1-σ2, σ1-σ3 and σ2-

σ3) while it is assumed that the third principle stress component (i.e. the intermediate

stress) has no effect on the mobilized planes. However, taking into account that the shear
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strength of soils does depend on the intermediate principle stress, as for instance shown

by Sutherland and Mesdary (1969) and Ramamurthy and Rawat (1973) presenting results

from true triaxial tests on sand, Matsuoka and Nakai (1974) defined the concept of the

SMP considering all principle stresses, where the SMP results from the combination of

the mobilized planes. A schematic illustration of the mobilized planes and the SMP in

the three-dimensional principle stress space is depicted in Fig. 2.17. The failure criterion

based on the SMP according to Matsuoka and Nakai (1974) is given in Eq. 2.24, where I1,

I2 and I3 denote the first, second and third stress invariant, respectively, and ϕij denotes

the mobilized friction angle in the principle plane i, j.

τ

σN
=

√
I1 I2 − 9 I3

9 I3

=
2

3

√
(σ1 − σ2)2

4σ1σ2

+
(σ2 − σ3)2

4σ2σ3

+
(σ3 − σ1)2

4σ3σ1

=
2

3

√
tan2 ϕ12 + tan2 ϕ23 + tan2 ϕ31

(2.24)

Considering that the Matsuoka-Nakai failure criterion should coincide with the Mohr-

Coulomb failure criterion for triaxial compression and triaxial extension (θ = ± 30◦) with

two identical principle stresses, one summand under the root vanishes while the other two

are identical, thus, Eq. 2.24 simplifies to
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Figure 2.17: Mobilized planes and spatial mobilized plane, modified after Matsuoka and

Nakai (1974)
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√
I1 I2 − 9 I3

9 I3

=
2

3

√
2 tan2 ϕ

I1 I2 − 9 I3

9 I3

=
8

9
tan2 ϕ

I1 I2

I3

− 9 = 8 tan2 ϕ

I1 I2

I3

= 8 tan2 ϕ+ 9 =
9− sin2 ϕ

1− sin2 ϕ
= KMN

(2.25)

Therefore, the yield function of the Matsuoka-Nakai model can be formulated according

to Eq. 2.26 in terms of the stress invariants I1, I2 and I3 and the shape parameter KMN,

which is controlled by the internal friction angle (Eq. 2.27).

FMN =
I1 I2

I3

−KMN ≤ 0 (2.26)

KMN = 8 tan2 ϕ+ 9 =
9− sin2 ϕ

1− sin2 ϕ
(2.27)

As the original concept of the spatial mobilized plane (SMP) proposed by Matsuoka

and Nakai (1974) was solely developed for granular materials, cohesive soils could not

be considered. Therefore, Matsuoka and Sun (1995) proposed a modified concept called

’Extended Spatially Mobilized Plane (Extended SMP)’ to consider frictional and cohesive

materials. The general idea of the Extended SMP is that the yield function is not evaluated

for the current stress σij, but for a translated stress σ̂ij. This is achieved by a translation

of the current stress tensor along the hydrostatic axis according to

σ̂ij = σij + σ0 δij (2.28)

where σ0 = c · cotϕ and δij denote the bonding stress and the Kronecker delta, respec-

tively. The yield function for the extended Matsuoka-Nakai criterion FE-MN takes into

consideration the translated stress in terms of updated stress invariants Î1, Î2 and Î3,

which are determined with respect to the translated stress σ̂ij. The update yield function

then reads

FE-MN =
Î1 Î2

Î3

−KMN ≤ 0 (2.29)

where the definition of KMN remains unchanged. In contrast to the Mohr-Coulomb model

and its approximations discussed above, the Matsuoka-Nakai yield surface is described by

a single continuous surface in the three-dimensional principle stress space, as shown in
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Figure 2.18: Shape of the Matsuoka-Nakai yield surface in principal stress space

Fig. 2.18. Except for the tip of the surface, the MN yield surface is fully differentiable,

whereby it is not necessary to find approximations to that surface to avoid singularities.

Comparing the Matsuoka-Nakai yield surface to the Mohr-Coulomb surface on the devi-

atoric plane, it is apparent from Fig. 2.19 that while both surfaces coincide for triaxial

compression and triaxial extension with Lode angles θ = ± 30◦, the MN surface has a

larger distance to the hydrostatic axis and allows for larger deviatoric stresses for Lode

angles −30◦ < θ < 30◦, for instance for plane strain conditions. The difference between

both surfaces can be expressed in terms of the equivalent Mohr-Coulomb friction angle, as

discussed among others by Griffiths (1990) for the original Matsuoka-Nakai model and by
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Figure 2.19: Shape of the Matsuoka-Nakai and the Mohr-Coulomb yield surface in the

deviatoric plane
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Griffiths and Huang (2009) and Jiang and Wang (2011) for the extended Matsuoka-Nakai

model. Exemplary trends emphasizing the difference between both models in terms of

the equivalent Mohr-Coulomb friction angle are shown in Fig. 2.20(a) for a granular soil

and (b) for a cohesive-frictional soil with increasing normalized cohesion c/σ3.

Major limitations of the original and the extended Matsuoka-Nakai model with the for-

mulations presented above have been discussed, among others, by Panteghini and Lagioia

(2014a). In their study, the authors emphasize that, following the exact formulations,

the MN criterion is actually satisfied along three different surfaces (Fig. 2.21), where only

the one in the positive octant is required. However, due to the presence of the other

two surfaces, the overall function is not convex as the value of the yield function does

not monotonically increase for a stress point whose distance towards the yield surface is

incrementally increased. Note that the distance between surfaces reduces with increasing

friction angle, whereas intersections of the surfaces are observed for the extended MN

criterion with cohesion values larger than zero. For this reason, Panteghini and Lagioia

(2014a) proposed a reformulation of the MN criterion in accordance with Eq. 2.30 that

neglects the second and third surface and guarantees convexity of the yield function.

f = g(θ)
√
J2 − ηI1 = 0 (2.30)

g(θ) = 2
√

3 cos

(
1

3
arccos [ξ sin(3θ)]

)
(2.31)

η =

√
m− 9

m− 3
, ξ = m

√
m− 9

(m− 3)3
, m = KMN (2.32)

Lagioia and Panteghini (2016) made an effort to develop a unique general formulation of

a yield function that allows to switch between several popular yield surfaces, for instance

von Mises, Drucker-Prager, Tresca, Mohr-Coulomb, Matsuoka-Nakai, Lade-Duncan as

well as rounded versions of Tresca and Mohr-Coulomb. The general formulation of the

yield function is given in Eq. 2.33. In this equation, the term Γ(θ) is dependent on three

shape parameters (α, β and γ) that can be adjusted in a way that the yield surface of

the general model coincides with the aforementioned popular yield surfaces. Lagioia and

Panteghini (2016) provide a table with the shape parameter values to fit the different

yield surfaces. For example, by setting α = 1, β = 0 and γ = 1, the Drucker-Prager or

von Mises model is obtained. Lester and Sloan (2018) further extended this research and

provided details on the implementation of the general classic plasticity model. Note that
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Figure 2.20: Equivalent Mohr-Coulomb friction angle for (a) the Matsuoka-Nakai model

considering variations of the internal friction angle and (b) the extended Matsuoka-Nakai

model considering variations of the normalized cohesion, modified after Griffiths (1990)

and Griffiths and Huang (2009)

Figure 2.21: Plot of the original Matsuoka-Nakai failure surface in principle stress space,

modified after Panteghini and Lagioia (2014b)

the general model ensures convexity for all yield surfaces as well as C2 continuity.

f = −(K +M · p) + Γ(θ)
√
J2 (2.33)

M =
6 · sinϕ√

3(3− sinϕ)
, K = c ·M · cotϕ (2.34)

Γ(θ) = α cos

(
1

3
arccos [β sin(3θ)]− γπ

6

)
(2.35)
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2.3.3. Constitutive models for dynamic finite element analyses

In recent years, different sophisticated constitutive models have been used in dynamic

finite element analysis (DFEA) to analyze the liquefaction and deformation behavior of

earth dams and artificial slopes under earthquake loading. Among others, the general-

ized plasticity (Pastor et al., 1990), the hypoplastic model with intergranular strain (von

Wolffersdorff, 1996; Niemunis and Herle, 1997), the MSS model (Kavvadas and Amorosi,

2000), the PDMY02 model (Yang et al., 2003; Mazzoni et al., 2006), the PMY model

(Mazzoni et al., 2006), the endochronic model (López-Querol and Blázquez, 2006), the

SANISAND family of models (Dafalias and Manzari, 2004; Taiebat and Dafalias, 2008;

Barrero et al., 2020), the UBCSand model (Beaty and Byrne, 2011), the ISA Sand model

(Fuentes, 2014; Fuentes and Triantafyllidis, 2015), the ISA Clay model (Fuentes et al.,

2018), the PM4Sand model (Boulanger and Ziotopoulou, 2015) and the PM4Silt model

(Boulanger and Ziotopoulou, 2018, 2019) were used for the different analyses. These

analyses included the back calculation of centrifuge tests related to the VELACS project

(Verification of Liquefaction Analyses by Centrifuge Studies) (Muraleetharan et al., 2004;

Machaček et al., 2018; Machaček, 2020), the LEAP-UCD-2017 project (Liquefaction Ex-

periments and Analysis Projects) (Kutter et al., 2020; Chen et al., 2020; Montgomery and

Ziotopoulou, 2020; Tsiaousi et al., 2020; Yang et al., 2020; Reyes et al., 2021) and the

LEAP-Asia-2019 project (Chen et al., 2021; Reyes et al., 2021) as well as the investigation

of the earthquake resistance of earth dams (Fernandez-Merodo et al., 2004; López-Querol

and Moreta, 2008; Elia et al., 2011; Pelecanos et al., 2015; Han et al., 2016; Boulanger,

2019; Wu et al., 2021) and open pit mine slopes (Machaček et al., 2018; Machaček, 2020).

As DFEA is performed using the hypoplastic model with intergranular strain to assess

the seismic slope stability in this thesis, only this constitutive model is further elaborated

in this section.

2.3.4. Hypoplasticity with Intergranular Strain (Hypo-IGS)

Hypoplasticity is a family of incrementally non-linear constitutive models that, unlike the

classical elastoplasticity framework, do not split strain increments into elastic and plastic

portions. Therefore, hypoplasticity does not require the explicit formulation of any surface

like the plastic potential or the yield surface. It belongs to the group of path-dependent

and rate-independent constitutive models, i.e., the sequence of deformation increments

influences accumulated stresses, but the duration of the deformation processes or individ-

ual increments is insignificant (Niemunis, 2003). The hypoplastic formulation accounts
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for density (pyknotropy) and confining pressure (barotropy) effects and incorporates the

critical state line in the form of a potential compression law (Bauer, 1996). The model

requires the calibration of 8 material parameters: the critical friction angle ϕc, the void

ratios (at zero mean stress) at densest state ed0, at critical state ec0 and the maximum

void ratio in a suspension ei0, the granular hardness hs, and the exponents n, α and β.

The main constitutive equation of the hypoplastic constitutive model in the version of

von Wolffersdorff (1996) presents the objective stress rate σ̊ in non-linear dependency of

the strain rate ε̇ as follows:

σ̊ =

(
L + fdN

ε̇

‖ε̇‖

)
: ε̇ (2.36)

Thereby, L is a fourth order tensor linear in ε̇, whereas N is a second order tensor non-

linear in ε̇. Both tensors are functions of effective stress and void ratio as depicted in the

following equations

L = fbfe
1

σ̂ : σ̂

(
F 2I + a2σ̂σ̂

)
(2.37)

N = fdfbfe
F a

σ̂ : σ̂
(σ̂ + σ̂∗) (2.38)

where

σ̂ = σ/trσ, σ̂∗ = σ̂ − 1

3
1 (2.39)

a =

√
3 (3− sinϕc)

2
√

2 sinϕc
(2.40)

In the above equations, I is the fourth order identity tensor and σ̂σ̂ is a dyadic product.

F is a stress-dependent factor taking into consideration the Matsuoka-Nakai criterion and

the Lode angle θ.

F =

√
1

8
tan2 ψ +

2− tan2 ψ

2 +
√

2 tanψ cos 3θ
− 1

2
√

2
tanψ (2.41)

tanψ =
√

3‖σ̂∗‖, cos 3θ = −
√

6
tr (σ̂∗ · σ̂∗ · σ̂∗)

[σ̂∗ : σ̂∗]3/2
(2.42)

The scalar factors fd, fe and fb taking into account the mean stress p and the void ratio

e are determined according to

fd =

(
e− ed
ec − ed

)α
(2.43)

fe =
(ec
e

)β
(2.44)

fb =
hs
n

(
ei0
ec0

)β
1 + ei
ei

(
3p

hs

)1−n [
3 + a2 − a

√
3

(
ei0 − ed0

ec0 − ed0

)α]−1

(2.45)
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As mentioned above, a compression law (Bauer, 1996) is utilized in the hypoplastic model

to account for the fact that the void ratios decrease with increasing mean stress.

ei
ei0

=
ec
ec0

=
ed
ed0

= exp

[
−
(

3p

hs

)n]
(2.46)

Note that the hypoplastic model does not predict accurate responses upon load rever-

sals. The reason for this is that changes in the strain path do not result in an increased

hypoplastic stiffness, although this phenomenon has been observed in laboratory exper-

iments. As a consequence – especially for cyclic loading – large strains are accumulated

within each cycle, resulting in an unrealistic soft response (Wichtmann, 2005), which is

often referred to as ratcheting. To overcome this issue, the concept of intergranular strain

(IGS) was introduced by Niemunis and Herle (1997). Memorizing the latest strain his-

tory, IGS is a strain tensor that is considered an additional state variable. IGS modifies

the hypoplastic model to obtain a larger stiffness upon unloading and strain direction

changes. In addition, IGS yields a quasi-elastic response of the model in case of small

strain levels. To consider IGS in the hypoplastic model, the definition of the tensor M

(Eq. 2.36) is modified in accordance with

M = [ρχmT + (1− ρχ)mR] L +




ρχ (1−mT ) L :

→
h
→
h + ρχN

→
h for

→
h : ε̇ > 0

ρχ (mR −mT ) L :
→
h
→
h for

→
h : ε̇ ≤ 0

(2.47)

where h and
→
h are the IGS tensor and its direction, respectively, ρ = ‖h‖/R is the degree

of mobilization of intergranular strain with R representing the maximum value of IGS

and χ is a constant. In addition, mT and mR control the increase in stiffness due to

changes in the direction of loading, referring to the case of rotations by α = 90◦ and

α = 180◦, respectively, with α denoting the angle between the most recent and current

strain direction according to

α = arccos
(→

h :
→
ε̇
)

(2.48)

The evolution in IGS is defined with respect to ε̇, h, R and the exponent βR via

ḣ =





[
I−

→
h
→
h

(‖h‖
R

)βR]
: ε̇ for

→
h : ε̇ > 0

ε̇ for
→
h : ε̇ ≤ 0

(2.49)

Note that the initialization of IGS (e.g. h0 = ±R 1 or h0 = 0) may have a significant

impact on the response of the hypoplastic model (Buehler, 2006). This impact on the
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integration point level can also propagate to the entire boundary value problem, resulting

in different predictions (e.g. bearing capacity or slope stability) with regard to the choice

of h0. Therefore, the history of the soil (e.g. deposition, compaction, excavation, etc.)

should be considered carefully.

Estimation of equivalent elastic properties

To enable shear waves traveling through a transition from a linear elastic to a hypoplastic

material without notable changes in the velocities, it is important to minimize differences

in the shear stiffness between the elastic layer and the hypoplastic layer. Wegener and

Herle (2012) proposed a concept to determine the shear modulus of the hypoplastic model

with intergranular strain. The shear modulus at small strains G0 (so within the range

of the IGS extension) of the Hypo+IGS model can be approximated based on Eq. 2.50,

where p is the mean effective stress, and mR, hs, n, ec0 and β are parameters of the

hypoplastic model and the factors fa and fK are calculated according to Eq. 2.51 and

Eq. 2.52, respectively.

G0 = mR
hs
n

(
3p

hs

)1−n (ec0
e

)β
· fa · fK (2.50)

fa =

(
ei0
ec0

)β
1 + ei0
ei0

[
3 + a2 − a

√
3

(
ei0 − ed0

ec0 − ed0

)α]−1

(2.51)

fK =
1

2

(1 + 2K)2 + a2(1−K)

1 + 2K2
with K =

σ2

σ1

and a =

√
3(3− sinϕc)

2
√

2 sinϕc
(2.52)

Note that above equations only hold if p� hs since then ed ≈ ed0, ec ≈ ec0 and ei ≈ ei0.

Otherwise, the dependency of the void ratio ec(p) on the mean effective stress must be

taken into account. For a given soil state, the shear modulus can be calculated with

and without consideration of the influence of the mean effective stress on the void ratios

according to Bauer (1996). Furthermore, it should be noted that by setting mR = 1, the

calculated G0 corresponds to the shear modulus of the (purely) hypoplastic model.
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method

3.1. Motivation

A widely used method to evaluate the stability of slopes subjected to earthquake loading in

terms of a factor of safety is the pseudo-static analysis (PSA), which has been introduced

in Section 2.2.1. As reported, drawbacks of the PSA include that temporal and spatial

variations due to the earthquake loading can not be considered directly, but indirectly

in terms of pseudo-static coefficients and inertial forces, which can only be estimated in

an approximate manner. Considering measurements of peak ground accelerations and

applying concepts for reduction of the acceleration magnitudes with increasing depth,

as proposed for instance by Seed and Idriss (1971), Liao and Whitman (1986), Youd

and Idriss (2001) or Kishida et al. (2009), a rough approximation of a potential spatial

distribution of accelerations can be made. Utilizing further approaches, for example by

Biondi et al. (2002), estimation of earthquake induced excess pore water pressures can

also be included. Those are of high importance as the effective stresses may change during

earthquake loading, which can cause significant loss of shear strength and slope failure.

In this thesis, an approach is developed where prior to the limit equilibrium analyses, a

dynamic finite element simulation is conducted to accurately approximate the effect of the

earthquake loading. Subsequently, the spatial distributions of pseudo-static coefficients

obtained from accelerations and the excess pore water pressures should be transferred

to the limit equilibrium analyses to evaluate the slope stability in terms of the factor of

safety.

Despite the availability of many well-established commercial LEM softwares (e.g. GGU-

Stability (2021), GeoStudio (2020), Slide2 (2022) and GEO5 Slope Stability (2020)) for

slope stability analyses, it is rather difficult to find an LEM code which satisfies the

requirements described above, allows for users-implemented features and enables automa-

tion of simulations using external scripts (e.g. Matlab, Python, etc.). Therefore, a new

47
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limit equilibrium program called geoSlice is developed in this thesis. geoSlice is based

on the method of slices and implemented in Python.

Among others, popular features and methods implemented in geoSlice cover different

limit equilibrium methods (e.g. Bishop, Janbu, etc.), advanced optimization techniques,

different types of external loads, precise separation of slices at intersections of the slip sur-

face with soil layers and phreatic levels, import of spatial distributions of pseudo-static

coefficients and user excess pore water pressures and impenetrable layers. A schematic

illustration of a slope subjected to seismic loading and corresponding forces acting in a

representative slice are depicted in Fig. 3.1. It is apparent from this figure that pseudo-

static forces and excess pore water pressures are applied to account for the seismic loading,

however, to also consider long water waves at the free water surface, additional forces ∆W

are considered (Goldscheider et al., 2010). Further details about the general structure of

geoSlice and the implemented features are provided in Section 3.2 and Section 3.3, re-

spectively, whereas a comprehensive verification of different implemented features based

on comparative analyses with commercial LEM codes and benchmark examples is pro-

vided in Section 3.4.

3.2. General structure

The main structure of the program covers tasks, which will be further explained in the

subsequent paragraphs: (1) data input, (2) initialization, (3) generation of circular slip

surface, (4) determination of slice forces, (5) evaluation of factor of safety, (6) optimization

of circular slip surface, (7) generation and optimization of non-circular slip surface and

(8) post-processing. It should be noted that the tasks (3 - 5) are executed within the
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Figure 3.1: Schematic illustration of a slope subjected to seismic loading and corresponding

forces acting in a representative slice
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optimization process (6), while the optimization process for a non-circular slip surface is

characterized by some modifications.

Data input: The program starts by reading an input file, which should contain all in-

formation about problem geometry, soil layers, material properties, phreatic levels, etc.

These blocks of data need to be defined in terms of keywords followed by the respective

information. The input file needs to be written in YAML format considering the general

rules for formatting YAML files, where the latter can be verified using open access online

tools (e.g. Onlineyamltools (2022)). Editing of input files can be done using basic text

editors such as Notepad++ or SublimeText. The keywords are used to define the main

features (e.g. geometry, soil layers, phreatic level), the shape and location of the slip sur-

face, the method of analysis, the optimization technique and additional features. Further

information about the keywords and the respective features are discussed in the subse-

quent paragraphs and in Appendix A. Input files of examples analyzed with geoSlice

with regard to the verification process are provided in the next section. Once all infor-

mation is read by the input routine and checks of a correct definition of input statements

have been finished, databases are created for all active features to be considered in the

slope stability analysis.

Initialization: After the input fields have been read and the data class has been

created, initialization of the core element (main class) is conducted, which covers all

information with regard to the individual slices such as geometry variables and forces

related to different influencing parameters (e.g. unit weight, pore water pressure, external

loads, inertial effects). Moreover, entry and exit point boundaries are defined with regard

to the actual slope geometry. Lastly, initialization of advanced features is executed for

those features which are activated in the current analysis. However, this only applies to

features, which are independent of the location of the slip surface and the subdivision

into slices. In case of the features dealing with spatial distributions of pseudo-static

coefficients and excess pore water pressures, interpolation functions are trained at this

stage to allow for a fast evaluation of the spatially distributed data during the stability

analysis. In case the geogrid feature is used, the location and strength of the individual

geotextiles is defined. Moreover, the stone column feature can be considered within the

initialization following the averaging approach for shear strength parameters proposed by

Priebe (1995).

Generation of circular slip surface: For the generation of slip surfaces, the entry-

exit method (see e.g. GeoStudio (2020)) is used in geoSlice. In its current implementa-

tion, three values are required to create the slip circle – the entry point, the exit point and
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the ratio of the sagitta to the distance between entry and exit point, where the latter is

related to the radius of the circle and, thereby, the curvature of the slip circle. From these

three input values and using basic math manipulation, the center point coordinates and

the radius of the circle are obtained. Here, it may be questioned, why the latter variables

(i.e. circle center coordinates and radius) have not been used for the definition of the slip

circle, however, the entry-exit method was chosen as it allows for a more precise definition

of the slip surfaces investigated. Considering the number of slices defined in the input file,

assuming equivalent widths of the slices (at this point) and rearranging the circle equa-

tion, the coordinates of the slice bases are determined. Although the generation of the slip

surface could be finished after these steps, two features may, if activated, interfere with

the surface, leading to modifications of the slip surface shape. The first feature to mention

here is the bedrock or impenetrable layer feature, which generates a composite slip surface

defined by a regular slip circle, which is cut at the intersection with the bedrock layer (see

e.g. the schematic illustration in Fig. 2.3(c)). Using this feature, composite slip surfaces

can be investigated for instance to analyze the slope stability with a slip surface following

a thin weak interlayer. The second feature – referred to as EnhancedSlices – does not

change the shape of the slip surface but rather the number of slices as additional slices

are introduced at every intersection of the slip surface with layer changes, the phreatic

level and (if active) the bedrock/impenetrable layer. By activation of this feature, a clear

definition of shear strength parameters in the vicinity of layer changes and a precise de-

termination of water pressures is ensured for each slice. After consideration of all features

influencing the shape of the slip surface and the number of slices, shear parameters are

determined at the slice bases. Furthermore, it should be noted that taking into consider-

ation further control features, for instance related to the minimum size or height of the

slip surface, classification of slip surfaces as invalid may dismiss further analyses of the

respective surfaces.

Determination of slice forces: For each type of force to be considered in the anal-

ysis, a separate array with the size of the number of slices is initialized, where the com-

ponents related to the individual slices are determined simultaneously taking advantage

of NumPy array operations. These operations are utilized as computational costs are

significantly smaller compared to consecutive evaluation of slice forces using loop struc-

tures. Forces to be evaluated for the slope stability analysis include forces due to soil

unit weights, hydrostatic water pressure, free surface water, concentrated and distributed

external loads, inertial effects, excess pore water pressure, geogrids and cohesion, while

forces due to friction are evaluated separately due to their dependency on the normal

effective stress. With regard to the forces listed above, some details are emphasized
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here as they may differ from common procedures. In contrast to many commercial LEM

codes, geoSlice allows for a distinction between unsaturated and saturated unit weights,

which enables a more accurate determination of slice weights. Moreover, resulting forces

from hydrostatic water pressures are accounted for with regard to two different inputs: a

phreatic level (e.g. groundwater table) defined via a poly-line and a pore-pressure ratio

relating the hydrostatic water pressure to the total stress at the slice base. Similar to

other LEM schemes, inertial forces are calculated using the total soil weight and pseudo-

static coefficients. However, in this implementation of the method of slices it is possible

to either consider a constant pseudo-static coefficient for the whole domain or spatially

distributed pseudo-static coefficients defined via user inputs. The latter procedure is also

utilized to account for forces resulting from spatially distributed excess pore water pres-

sures. Thereby, it is possible to conduct slope stability analysis taking into consideration

spatially distributed pseudo-static coefficients and excess pore water pressures obtained

from a dynamic finite element analysis.

Evaluation of factor of safety (FoS): Depending on the stability method chosen,

the factor of safety is evaluated with respect to the global equilibrium of momentum

and/or the global equilibrium of horizontal forces defined in their basic forms in Eq. 2.3

and Eq. 2.4, respectively. Currently, the following methods are implemented in geoSlice:

Simplified and General Bishop method, Simplified Janbu method, Spencer method and

Morgenstern & Price method (Bishop, 1955; Janbu, 1954; Spencer, 1967; Morgenstern

and Price, 1965). Further methods to be implemented soon include the General Janbu

method as well as the Sarma method (Sarma, 1973). To obtain the factor of safety (FoS)

with respect to either the global equilibrium of momentum or horizontal forces, a single

loop structure is used, during which the FoS is continuously updated until the difference

of the FoS at the beginning and end of an iteration is smaller than a tolerance value.

Considering methods that satisfy both types of equilibrium (e.g. Spencer method and

Morgenstern & Price method) a second loop is used to vary the interslice force parameter

λ until the intersection of the equilibrium of momentum and horizontal forces is found.

Optimization: Considering a set of input parameters x1, x2, . . . , xi, . . . , xn with given

ranges and a scalar (objective) function of these parameters F(x1, x2, . . . , xi, . . . , xn) to

be optimized, the idea is to find the best combination of input parameters that yields the

optimal result for F (e.g. the lowest/highest value). In this case, the objective function is

defined with regard to the FoS and the optimal solution is characterized as the set of input

parameters that relates to the slip surface with the lowest FoS. The input parameters to be

varied within the optimization process are the geometrical parameters (entry-, exit-points
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and the sagitta ratio) that define the shape of the slip surface. The objective function

takes the information provided by the main and data classes, generates a slip surface for

a given set of input parameters, determines the forces in the slices, evaluates the FoS

and returns it thereafter. However, as the optimal combination of input parameters can

hardly be found by manual manipulation, automized optimization techniques should be

used. In general, an optimization algorithm selects a set of input parameters considering

lower and upper bounds for each parameter, evaluates the objective function for this set

and saves the output returned by the objective function, before repeating the process

with the next set of input parameters. In its simplest form (e.g. a brute grid search), a

predefined number of sets is evaluated and the optimal result is obtained by comparison of

all individual results, not considering any type of learning within the optimization process.

In contrast to this simple concept, advanced optimization algorithms consider different

types of learning techniques within the optimization process to enhance the quality of the

optimization result. In geoSlice, locating the critical slip surface can be conducted via

different optimization schemes taking advantage of open-source implementations provided

within the scipy and pyswarm libraries. Among others, a brute grid search, Differential

Evolution (DE) (Storn and Price, 1997) and Particle Swarm Optimization (PSO) (Clerc,

2013) can be used in the stability analysis. Based on the experience gained from the

analysis of many examples testing different optimization schemes to find the most reliable

methods, it is recommended to apply either brute grid search or DE rather than PSO, as

the latter showed larger scatter for repeated optimization runs.

Generation and optimization of non-circular slip surfaces: As real case slip

surfaces do not necessarily follow circular shapes, results of LEM analyses based on slip

circles may overestimate the FoS. For this reason a topological optimization can be con-

ducted subsequently to the slip circle optimization to identify the most critical non-circular

slip surface. Further details about the topological optimization are provided in the next

section as well as in the discussions of the benchmark examples in Section 3.4.4.

Post-processing: After the optimization, the set of optimal input parameters is re-

turned to the main routine and a single stability run with this optimal set is conducted

to obtain detailed information (e.g. geometry and forces) with respect to each slice as-

sociated with the critical slip surface. For a thorough analysis of the results, detailed

information (e.g. coordinates, radii, weights, external and inertial forces, forces due to

water pressures, effective normal forces, interslice forces) for each slice are saved to a file.

Moreover, a graphical output is generated emphasizing the problem investigated and the

optimal solution defined in terms of the coordinates and the radius of the critical slip
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circle and the graphical representation of it. To enhance comprehensibility, handling and

work flow of geoSlice, it is intended to soon incorporate the pre- and post-processing

into the main routine by creating a graphical user interface, which should also enable to

create proper input files.

3.3. Keywords and features

In this section, a more thorough description of the keywords and associated features

is provided. To do so, an input file of a slope studied within the verification section

(Fig. 3.8) is explained in detail. The slope geometry and soil materials have been chosen

as β = 26.67◦, H = 10 m, h = 5 m, γ = γsat = 20 kN/m3, ϕ = 25◦ and c = 4 kPa, where β,

H and h denote the slope inclination, the slope height and the height of the groundwater

table above the slope toe, respectively. The distances from the slope toe to the left and

bottom boundaries are both equal to 10 m and the distance from the slope crest to the

right boundary is 20 m. The origin of the coordinate system is identical to the toe of the

slope.

For more clarity, distinction is made here between the format used for the keywords and

corresponding entries in the input file and the general explanations by emphasis of the

former with gray background color. Moreover, it should be noted that the # symbol in

the input file is used for comments in the YAML format, where lines starting with this

symbol are only included to enhance comprehensibility of the input file. In addition, the

reader should be aware that all counters used to define dependencies (e.g. layer nodes,

layer materials) start with the index zero, thus, for instance referring to the third material

is conducted using a counter with a value of two.

Nodes, GwtNodes: Several geometrical features (e.g. layers, phreatic level, bedrock fea-

ture) require the specification of poly-lines, which are defined via sets of nodes. These

poly-lines should extend from the left to the right outside boundaries to ensure that the

geometrical features work properly. For the definition of nodes, x- and y-coordinates need

to be provided for each node along the ground surface and any layer boundary. The

nodes related to the bottom of the model do not need to be defined as a separate keyword

(Depth) is used to define the distance towards the bottom boundary. Moreover, the group

of nodes does not necessarily need to be sorted as long as the respective features (e.g.

the layer definition) refer to the correct order of nodes. As indicated by the keyword

names, distinction is made between Nodes and GwtNodes, where the former is used to
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define layers and bedrocks and the latter is used to define the ground water table. For

the example slope, the groups of nodes and ground water nodes are defined as:

# Nodes: [x, y]

Nodes:

- [-10, 0] # Node No. 0

- [0, 0] # Node No. 1

- [20, 10] # Node No. 2

- [40, 10] # Node No. 3

# Ground Water Nodes: [x, y]

GwtNodes:

- [-10, 0] # GwtNode No. 0

- [0, 0] # GwtNode No. 1

- [20, 5] # GwtNode No. 2

- [40, 5] # GwtNode No. 3

Materials, Layers, Depth: For each material set, the unit weight of the unsaturated

and saturated soil γ and γsat, the friction angle ϕ, the cohesion c and the name need to

be selected. Multiple material datasets are defined in separate lines following the same

format as depicted in the gray box below. With known nodes and materials, layers can be

created by definition of the upper layer boundary, which also corresponds to the ground

surface in case of the first layer. Using the Layer keyword, two subsequent lines need

to be defined for each layer: the first line denotes the material type of the layer and the

second line refers to the nodes. As the layer material type and the layer nodes must

be defined in subsequent lines, multiple layers are specified as ’layer packages’. In case

material datasets are not referred to in any layer (e.g. unused material datasets), these

material datasets are skipped in the analysis and will not appear in the graphical output.

To finalize the definition of the layers, the height of the lowest layer is specified using the

Depth feature, which denotes the distance between the model base and the lowest layer

node used.

# Materials:

# [γ, γsat, ϕ, c, name]

Materials:

- [20, 20, 25, 4, Soil] # Material No. 0

# Depth below the lowest layer

Depth: 10

# Layers:

# 1st line: MaterialType of layer i

# 2nd line: [Node numbers of layer i]

Layers:

- - 0 # MaterialType of layer No. 0

- [0, 1, 2, 3] # Nodes of layer No. 0

Groundwater, PWPratio: Hydrostatic water pressures can be defined with regard to

two different features. The Groundwater feature representing the phreatic level inside

and outside of the slope is specified via selection of GwtNodes. Using this feature, the

hydrostatic pressures are calculated based on the hydrostatic water height, neglecting

tensile (suction) stresses above the water head. Regarding the selection of the GwtNodes,

a proper order of the nodes (continuously increasing/decreasing x-values) needs to be

ensured. In contrast to the determination of the hydrostatic water pressures with regard



3.3. Keywords and features 55

to a water level, the pore water pressure ratio (PWPratio) allows to determine pore

water pressures with regard to the total vertical stress via u = ru · γ ·H (Bishop, 1955;

Bishop and Morgenstern, 1960), assuming that the pore water pressure ratio is constant

throughout the domain. Considering analyses with geoSlice, it should be noted that only

one feature for pore water pressure determination can be active. In case both features

are defined and ru = 0.0, Groundwater feature will be active, whereas if ru > 0.0, the

PWPratio feature will be active and the Groundwater feature is neglected. For the current

example, the features are selected as depicted in the gray boxes below.

# Ground water table: [GwtNode numbers]

Groundwater: [0, 1, 2, 3]

# Pore pressure ratio (ru)

PWPratio: 0.0

EntryExit, NumSlices, etc.: To control the area, in which the most critical slip sur-

face is searched for, the input parameter ranges for the optimization process need to

be defined. As mentioned in the previous section, the slip surface is created using the

Entry-Exit method utilizing three input parameters: the entry point, the exit point and

the sagitta ratio, where the latter is defined as the ratio of the sagitta s to the distance

between the entry- and exit point (see Fig. 3.2). The ranges for the former two input pa-

rameters are specified using the EntryExit keyword, where four values (i.e. x-coordinates)

are inserted, describing the spans of both input parameters in x-direction. For the ex-

ample studied within this section, ranges of [−5, 0] and [15, 30] are defined, as shown in

the gray box below. Moreover, to control the curvature of the slip circles investigated,

the hRatio keyword is used, where values in the range (0.0 : 0.5] can be specified, noting

that values of 0.0 and 0.5 represent circles with radii R⇒∞ and R = s, respectively. To

further control the size of the slip surface, for instance to avoid analysis of too shallow

slip surfaces, two additional keywords can be used, which limit the minimum width and

height of the slip surface. The MinWidth feature ensures a minimum horizontal distance

between the entry and exit points, whereas the MinHeight feature provides a lower limit

for the absolute value of the sagitta of the slip surface. It should be noted that the latter

P1

P2

P3

s

Figure 3.2: Generation of a slip surface via Entry-Exit method
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feature could also be implemented in a way that the height of the largest slice must not

be smaller than the MinHeight. However, this requires many additional computations

before an invalid slip surface is neglected. For the example studied here, the values of

MinWidth and MinHeight have been selected close to zero as these additional control

features were not actively used. To divide the slip surface into vertical slices, the number

of slices needs to be defined. Moreover, the EnhancedSlices feature enables consideration

of additional slices at intersections with layer boundaries, ground water levels or bedrock

layers. The idea of this feature is that each slice is sub-divided to more accurately locate

these intersections. For each intersection found, an additional slice is added to the group

of slices. Although in this example only a single layer is investigated, the EnhancedSlices

feature is used to better locate the intersection of the slip surface and the ground water

table.

# Entry-exit spans in x-direction

# Input: [4 x-values]

EntryExit: [-5, 0, 15, 30]

# Minimum width of slip surface

MinWidth: 0.001

# Minimum height of slip surface

MinHeight: 0.001

# Curvature of slip surface

hRatio: [0.01, 0.5]

# Number of Slices

NumSlices: 100

# Determination of slices

# (0: Normal, 1: Enhanced)

EnhancedSlices: 1

Method, LambdaSlice, Tolerance: As the evaluation of the factor of safety depends

on the method used within the slope stability analysis, the Method keyword is used to

select between four different methods: Bishop, Janbu, Spencer and Morgenstern & Price.

In case the Bishop or Janbu method is selected, further specification is possible using

the LambdaSlice keyword, which enables specifying the rotation of the interslice forces

according to the parameter λ, where λ = 0.0 yields the simplified Bishop method and

simplified Janbu method. Lastly, the Tolerance feature can be specified, which denotes

the tolerance value within the FoS iteration loop. Although DIN-4084 (2021) recommends

a tolerance of 3 % for the determination of the utilization factor (i.e. µ = 1/FoS), default

tolerance values used in commercial LEM codes are usually much smaller, e.g. 0.1 % as

indicated below.

# Method of analysis

# (0: Bishop, 1: Janbu)

# (2: Spencer)

# (3: Morgenstern & Price)

Method: 0

# Interslice force rotation

# (e.g. for rigorous Bishop method)

LambdaSlice: 0.0

# Tolerance for determination of FoS

Tolerance: 0.001
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Optimization: As the objective and general structure of the optimization within slope

stability analyses has already been explained in the previous section, only a few details

are added in this paragraph. The keyword Optimization is used in combination with

an abbreviation referring to one of the different optimization algorithms presented above

(e.g. Brute, DE, PSO). The settings of the different optimization algorithms can – up

to this point – only be changed in the Python code and not via the input. However, it

is planned to also enable more flexibility with regard to the optimization settings of all

algorithms as soon as the preprocessing is coupled with a graphical user interface. As

can be seen from the gray box below, in this example Differential Evolution optimization

algorithm is utilized.

# Optimization algorithm

# (Brute: Brute Grid Search)

# (DE: Differential Evolution)

# (PSO: Particle Swarm Optimization)

Optimization: DE

Additional features: Although not used in this example, further keywords and cor-

responding features are explained in the following paragraphs. To clarify the required

format of the inputs related to these features, artificial values have been inserted.

Bedrock, DeltaHw: To insert an impenetrable layer, the Bedrock keyword is used, where

the consecutive input is a list of node numbers. For this, it is to be ensured that the

nodes are defined using the respective keyword. In contrast to the definition of layers, the

bedrock feature does not require to start and extend up to outer horizontal boundaries as

it is extended horizontally to the outer boundaries. To consider rapid changes of the free

water level associated with long water waves generated by seismic loading, while the pore

water pressures inside the soil domain remain unchanged (Goldscheider et al., 2010), the

DeltaHw keyword is used, which requires the definition of the change in the water level

height of the free water surface.

# Bedrock layer [node numbers]

Bedrock: [13, 14]

# Free water level change ∆hw

DeltaHw: 0.0

Cload, Dload: External loads (concentrated or distributed) acting in vertical (’V’), hor-

izontal (’H’) direction or perpendicular (’P’) to the ground surface can be considered.

The former two are related to the global coordinate system (i.e. positive to the right and

top), whereas the latter (’P’) considers compressive forces positive. Inclined loads can

be obtained by a combination of vertical and horizontal loads. All loads are assumed to

act permanently, thus, there is yet no possibility to automatically check if transient loads
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should be considered or not as they might act in a favorable direction. Assuming that all

loads are applied to the ground surface, the general format to specify concentrated and

distributed loads requires the definition of the horizontal positions xi and corresponding

loads qi.

# Concentrated loads:

# [x, Q, ’V/H/P’]

Cload:

- [30, -25, ’V’]

# Distributed loads:

# [xstart, xend, qstart, qend, ’V/H/P’]

Dload:

- [22, 26, -10, -12, ’V’]

PseudoStatic, ExcessPWP: As emphasized in the beginning of this chapter, one of the

main reasons for the implementation of an extended limit equilibrium method is the

capability to perform slope stability analyses taking into account spatial distributions

of pseudo-static coefficients kh and kv and excess pore water pressures obtained from

dynamic finite element simulations. For this, a structure had to be implemented, which

would allow to import user data. Moreover, an interpolation strategy had to be defined,

which ensures a transformation of the scattered data to a spatial distribution, where

evaluation of pseudo-static coefficients or excess pore water pressure is enabled anywhere

within the limits of the scattered data. In geoSlice, interpolation of kh, kv and ∆pw

is performed using the LinearNDInterpolator from scipy. The user-data itself should

be provided as a text file containing column-sorted table data with the first two columns

representing x- and y-coordinates and the subsequent column(s) denoting pseudo-static

coefficients or the excess pore water pressure. The format to be used for the import of

user data is identical for PseudoStatic and ExcessPWP and is depicted in the gray box

denoting the excess pore water pressure feature.

# Pseudo-static coefficients:

# format 1: Constant, [kh, kv]

# format 2: User, Path to file

PseudoStatic:

- Constant

- [0.1, 0]

# Excess pore water pressure:

# format 1: User, Path to file

ExcessPWP:

- User

- user excess pwp.txt

Beside considering the spatial distribution of these variables, a second option is available

with regard to pseudo-static coefficients, as for other applications it may also be of inter-

est to prescribe constant pseudo-static coefficients throughout the domain. A format is

provided to analyze the stability of a slope based on constant kh and kv values. In general,

it should be noted that horizontal pseudo-static coefficients are always considered point-

ing towards the slope toe, while for each slip surface investigated vertical pseudo-static



3.3. Keywords and features 59

coefficients are varied in their direction (upwards, downwards) to find the less favorable

scenario. Therefore, no manual checks with regard to the direction of the vertical pseudo-

static coefficients and the corresponding factors of safety need to be conducted.

StoneColumn: To include subsoil improvement using granular columns installed via vibro

replacement in stability analyses, a common approach is the consideration of an improved

area with modified soil properties (shear strength parameters) according to Priebe (1995).

For the implementation of this approach in geoSlice, an analytical solution has been

derived using Mathematica, which – in contrast to the equations given in (Priebe, 1995) –

enables variable inputs of the Poisson’s ratio of the soil νsoil. Information to be specified in

the input file with regard to this approach include the number of the soil material, which

is improved by the column installation, and its Poisson’s ratio, the shear strength (ϕcol)

and relative stiffness of the column material Ecol/Esoil and the geometrical setup in terms

of the area ratio Acol/A. For practical use, it should be noted that no additional material

is created when using the StoneColumn feature, but an existing material set is updated.

Thus, in case multiple layers refer to one material but only a single one is improved, the

original material set needs to be inserted twice.

# Stone Columns (Priebe approach) [Mat-No, νsoil, ϕcol, Ecol/Esoil, Acol/A]

StoneColumn:

- [2, 0.3, 40, 20, 0.115]

Geogrid: To account for geosynthetics in slope stability analyses, the Geogrid feature

can be used, which has been implemented in geoSlice in a slightly simplified way. The

simplifications refer to the orientation of the geogrid and the determination of the vertical

stresses acting on the geogrid, where the former is restricted to a perfectly horizontal

orientation and the latter is calculated with regard to an average soil unit weight γ defined

in the input file. To specify the position and length of the geogrid, the coordinates of

the left and right end need to be specified (x1, x2, y). The tensile force of the geogrid is

determined based on the pull-out resistance of the geogrid, which is calculated from the

relevant anchorage length, the overburden pressure and the frictional resistance defined

by µ · tanϕ. To limit the tensile force, the pull-out resistance can not be larger than the

allowable material resistance Rb,k.

# Geogrids: [x1, x2, y, γ, ϕ, µ, Rb,k]

Geogrid:

- [2, 17, 5.5, 19, 32.5, 0.9, 50]

# TensionCrack: z0

TensionCrack: 0.63

Considering the global momentum of horizontal forces, the sum of the tensile forces of all

geogrids is considered as additional resisting force. In case of the global equilibrium of
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momentum, the sum of the products of the individual tensile forces and respective lever

arms is added to the resisting moments.

TensionCrack: In case tensile stresses exceed the tensile strength of a material, a crack

opens up and, depending on the position of this crack, its presence may have a large

impact on the stability of a slope. This can be explained with regard to the fact that

shear stresses can not be transferred across tension cracks, which reduces the overall shear

resistance along a potential slip surface. The maximum length of tension cracks z0 can

be estimated based on Eq. 3.1 according to (Spencer, 1968, 1973; Baker, 1981; DIN-4084,

2021). An alternative strategy to account for tension cracks does not explicitly define

the maximum length, but rather sets a limit to the slice base angle (see e.g. GeoStudio

(2020)) and neglects slices inclined at higher angles than the slope of the active earth

pressure wedge (45◦ + ϕ/2).

z0 =
2 c

γ
tan
(

45◦ +
ϕ

2

)
(3.1)

In geoSlice, tension cracks can be accounted for using the respective feature, which

allows for a more precise determination of the factor of safety for steep cohesive slopes.

For this, the maximum length of the tension crack needs to be specified, for instance

based on Eq. 3.1. Furthermore, as it is not ensured that the largest tension crack is

associated with the lowest FoS, the length of the actual tension crack ztc is considered as

an additional input parameter in the optimization process with limits of 0 ≤ ztc ≤ z0.

Although not considered in the example discussed above, using the input parameters and

Eq. 3.1, a maximum tension crack length of z0 = 0.63 m is obtained. Note that water

pressures in tension cracks as a result of tension cracks filled with water are considered in

accordance with the global water level.

TopologicalOptimization: To investigate whether the critical slip surface might be of

a non-circular shape, a topological optimization can be conducted subsequently to the

optimization of the analyses based on circular slip surfaces. To do so, the keyword should

be used in the input file together with the required inputs. Motivated by the strategy

conducted in GeoStudio (2020), the slip surface is defined by a predefined number of

nodes (n0), which are optimized consecutively, considering hulls limiting possible locations

of the nodes and an angle of concavity (αconcave), which can be set to zero to ensure

analysis of convex slip surfaces only. The possible locations of the interior nodes (ni) are

sampled using Latin-Hypercube sampling (LHS), which ensures a proper distribution of

the samples in the input parameter space. Surface nodes at the entry and the exit areas

of the slip surface are only varied along the ground surface (ns). For each combination
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of nodes, the slip surface is defined as follows: connecting the points via straight lines

or cubic splines (χinterp) and knowing the number of slices to be used in the stability

analysis, the actual subdivision into slices is conducted via interpolation. As soon as no

further changes of the critical slip surface are observed (εtol related to FoS) for a constant

number of nodes (n0) used for the interpolation of the slices on consecutive optimizations

of the complete slip surface, the number of nodes is increased by adding nodes at the

positions with largest distances to the other nodes until the final number of nodes is

reached (nfinal). Thereby, the shape of the non-circular slip surface is refined in steps,

creating a well defined poly-line. Additional inputs of the topological optimization are ϑa

and ϑp, which specify the maximum (absolute) inclinations of the slices at the active and

passive wedges. These angles can for instance be calculated based on Rankine’s theory

by 45◦ ± ϕ/2. However, it should be noted that slices of critical slip surfaces may also

be inclined steeper than these angles, for example in case of slopes with weak layers as

discussed in Section 3.4.4.

# Topological Optimization: [n0, nfinal, n
s, ni, χinterp, αconcave, ϑa, ϑp, εtol]

TopologicalOptimization: [8, 20, 30, 80, 0, 0, 60, 30, 0.001]

Although not used in the example described above, the inputs of the topological optimiza-

tion depicted in the gray box result in the following settings: the discretization of the slip

surface is started with 8 nodes (2 surface and 6 interior nodes), which are increased up to

20 nodes during the optimization process as soon as the critical FoS after two consecutive

optimization runs does not change by more than εtol = 0.001. In each iteration 30 varia-

tions of each surface node and 80 variations of each interior node are investigated. The

nodes are connected via straight lines (χinterp = 0) and only fully convex slip surfaces are

accepted (αconcave = 0◦).

3.4. Verification

Verification of the methods and features implemented in geoSlice is performed in terms of

comparative analyses for different examples. As a first step, homogeneous dry slopes with

varying geometries and soil shear strength parameters are investigated using different

methods of slices in Section 3.4.1. Subsequently, verification of the determination of

pore water pressures and pseudo-static coefficients is conducted in Sections 3.4.2 and

3.4.3, respectively. Results of analyses are presented in terms of design charts, including

results obtained using well-established commercial LEM codes, GGU-Stability (GGU-

Stability, 2021) and SLOPE/W (GeoStudio) (GeoStudio, 2020) for comparison. Lastly, in
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Section 3.4.4, results of benchmark examples covering layered soil strata, weak layers and

pore water pressure ratios investigated with geoSlice are compared to results reported

in different studies.

3.4.1. Implemented methods

As a first step of the verification process, a comprehensive parametric study is conducted

for shallow to steep slopes (10◦ ≤ β ≤ 80◦) under dry conditions considering circular

slip surfaces, variations of the shear parameters (ϕ, c) and different methods of slices

(i.e. simplified Bishop method, simplified Janbu method, Morgenstern & Price method).

The objective of this step is to verify if the core structure of the program geoSlice

has been implemented correctly. This includes the generation of circular slip surfaces, the

determination of forces due to unit weight and shear resistance, the evaluation of the factor

of safety with regard to the global equilibrium of momentum or/and horizontal forces and

the optimization routines. For a condensed representation, results of the parametric study

with regard to each method are evaluated independently in terms of normalized stability

charts as used for instance by Hoek and Bray (1981), Gußmann (1990) and Steward et al.

(2011).

For the parametric analyses conducted in this section, ranges of normalized shear pa-

rameters are selected as 0 ≤ c/(γ H FoS) ≤ 0.25 and 0 ≤ tanϕ/FoS ≤ 2.0, where γ, H

and FoS are the soil unit weight, the slope height and the factor of safety. Assuming

an input factor of safety (e.g. FoS = 1.0) and constant values of β and c/(γ H FoS), a

single result point of this chart is obtained by variation of the friction angle until the

input and output factors of safety are identical. To obtain the design curves, which are

plotted without any smoothing or fitting, analyses have been performed for step sizes

of ∆c/(γ H FoS) = 0.0025 and ∆c/(γ H FoS) = 0.005 for 0 ≤ c/(γ H FoS) ≤ 0.05 and

0.05 ≤ c/(γ H FoS) ≤ 0.25, respectively. In addition to the analyses conducted with

geoSlice, further analyses are performed with GGU-Stability and GeoStudio for com-

parison and verification. To ensure comparability of the results, no tension crack feature

is used for the analyses with geoSlice and GeoStudio.

Starting with the slope stability analysis using the simplified Bishop method, the results

of the parametric study obtained using the three LEM codes are summarized in terms of

a design chart in Fig. 3.3. Note that close agreement between the results of geoSlice and

the two commercial LEM codes could only be obtained in case tensile normal effective

stresses not violating the Mohr-Coulomb failure criterion were accepted. In case no tensile
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normal effective stresses were accepted, for instance due to consideration of a tension

cut-off criterion, the design curves would be (slightly) translated towards larger ϕ - c

combinations, indicating that a higher shear strength is required to obtain an equilibrium

for an initially selected FoS. As depicted in Fig. 3.3, good agreement between the results

of geoSlice (solid lines) and GeoStudio (square symbols) is obtained for a wide range

of combinations for β, c and ϕ. Although slight deviations are observed for β = 80◦

and c/(γ H FoS) > 0.1, which may also be attributed to the quality of the optimization

process, systematic differences cannot be seen when comparing geoSlice and GeoStudio.

Comparing results obtained with geoSlice and GGU-Stability (triangular symbols),

good agreement is observed for β ≤ 60◦. However, systematically increasing deviations

between geoSlice and GGU-Stability can be concluded for increasing slope angles and
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increasing values of normalized cohesion. A potential explanation for these deviations

obtained for steep slopes composed of cohesion-dominated soils can be given with regard

to the critical failure mechanisms, which show clear differences in the shapes obtained

with geoSlice and GeoStudio compared to the ones obtained with GGU-Stability.

These differences in the shapes of the critical slip surfaces obtained using the simplified

Bishop method implemented in different LEM codes are investigated with regard to stabil-

ity analyses for an example slope with β = 80◦, H = 10 m, γ = 20 kN/m3 and c = 40 kPa

considering friction angles in the range of 10◦ ≤ ϕ ≤ 40◦. The results obtained using

geoSlice, GeoStudio and GGU-Stability are presented in terms of the critical slip sur-

faces and associated factors of safety in Fig. 3.4 and Tab. 3.1, respectively. It is apparent

from this figure that the shapes of critical slip surfaces are slightly different comparing

geoSlice and GeoStudio. Considering that the factors of safety (Tab. 3.1) are similar,

the differences may be related to a more advanced optimization algorithm (DE instead of

grid search) used in combination with the former LEM code. Analyzing the shape of the

critical slip surfaces determined using GGU-Stability it is observed that it is composed

of a circular and a linear (almost vertical) part, where the latter – although not clearly

explained in the respective manual – might represent a tensile crack, where no shear re-

sistance is generated over the length of the tensile crack. Additional analyses utilizing

a tension crack feature in geoSlice and GeoStudio should be supplemented to continue

this discussion.

40◦

30◦

20◦

ϕ = 10◦0

2

4

6

8

10

0 2 4 6 8

geoSlice

40◦

30◦

20◦

ϕ = 10◦

0 2 4 6 8

GeoStudio

40◦

30◦

20◦

ϕ = 10◦

0 2 4 6 8

GGU-Stability

Figure 3.4: Critical slip surfaces obtained via geoSlice, GeoStudio and GGU-Stability

for a steep cohesive slope (β = 80◦, c = 40 kPa, γ = 20 kN/m3) with 10◦ ≤ ϕ ≤ 40◦
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Table 3.1: FoS obtained via different LEM codes for a steep cohesive slope

LEM code ϕ = 10◦ ϕ = 20◦ ϕ = 30◦ ϕ = 40◦

geoSlice 1.015 1.169 1.337 1.529

GeoStudio 1.038 1.188 1.370 1.550

GGU-Stability 0.926 1.103 1.281 1.482

Recapturing the objective of this first parametric study, it can be concluded from the

comparison of geoSlice and the commercial LEM codes that the implementation of the

basic features covering the handling of unit weights, shear parameters and the determi-

nation of the factor of safety with regard to the global equilibrium of momentum using

the simplified Bishop method was successful. To additionally verify the determination of

the factor of safety with regard to the global equilibrium of horizontal forces, a second

parametric study is performed using the simplified Janbu method. Besides the simplified

Bishop method, the simplified Janbu method is implemented in many LEM codes, for in-

stance in GeoStudio and GGU-Stability. However, in contrast to the former LEM code,

which allows to evaluate the slope stability using the simplified Janbu method consider-

ing circular slip surfaces, the latter code only offers the possibility to evaluate the FoS

with the simplified Janbu method using block slip surfaces, as depicted for instance in

Fig. 2.3(d). As currently, not considering the bedrock feature, only circular slip surfaces

can be used for slope stability analyses in geoSlice. The verification is performed by

comparison with results obtained using GeoStudio.

Similar to the first parametric study utilizing the simplified Bishop method, the ranges of

the geometry and soil parameters are selected as 10◦ ≤ β ≤ 80◦, 0 ≤ c/(γ H FoS) ≤ 0.25

and 0 ≤ tanϕ/FoS ≤ 2.0 for the second parametric study. The results of this study

obtained using the simplified Janbu method and only considering circular slip surfaces

are presented in terms of a stability chart in Fig. 3.5. As can be seen from this plot, very

good agreement between the results obtained using geoSlice and GeoStudio is obtained

for a wide range of different soil shear strength parameters and geometries of the slope.

Small deviations may be attributed to slightly different success during the optimization

process, however, no systematic deviations are observed. Therefore, it can be noted that

also the simplified Janbu method has been implemented correctly in geoSlice.

As the simplified Bishop method and the simplified Janbu method can not be considered

rigorous since neither of them ensures that the global equilibrium of momentum and
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horizontal forces is satisfied simultaneously, a third parametric study is required using a

method that satisfies the requirements, such as the Spencer method or the Morgenstern

and Price method. As the former can be considered a special case of the latter method in

case the interslice force function is equal to unity, the Morgenstern and Price method is

selected here. For the simulations conducted in this parametric study, only circular slip

surfaces are investigated and a half-sine interslice forces function is chosen. Verification

is conducted with respect to results obtained with GeoStudio solely as the Morgenstern

and Price method is not implemented in GGU-Stability. As for the first two parametric

studies, similar parameter ranges are utilized.
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Figure 3.5: Simplified Janbu stability chart for dry slopes and circular slip surfaces
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The results of the parametric study using the Morgenstern and Price method are presented

in Fig. 3.6. Overall, good agreement between the results obtained with geoSlice and

GeoStudio is achieved, although minor deviations are observed for slope angles β ≥
70◦. Potential reasons for these deviations may be manifold, for instance accuracy of

the optimization process, differences in the implementation of the interslice forces or

convergence issues due to the non-linearity of the objective function. In fact, it was

observed that due to the latter reason, it is rather difficult to implement this method in

a robust and stable way. Similar observations have also been reported, among others,

by Morgenstern and Price (1967), Ching and Fredlund (1983) and Zhu et al. (2005).

Moreover, it should be noted that the range of the interslice parameter λ should be
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selected carefully. In contrast to the ranges schematically depicted in Fig. 2.3, the upper

limit of λ to be investigated for the detection of the intersection between the equilibrium

of momentum and horizontal forces curves should be λmax > tanϕ.

In general, it can be concluded from the parametric studies conducted on dry slopes in

this section that – despite slight deviations in the last parametric study – good overall

agreement of the implemented methods was achieved for a wide range of geometries

(e.g. shallow to steep slopes) and shear strength parameters. In the subsequent sections,

features covering pore water pressures and pseudo-static analyses are verified.

General remark: It should be noted that the stability charts presented in Figs. 3.3, 3.5

and 3.6 were not only prepared for verification purposes but may also serve as comprehen-

sive design charts for practical use. For this, the gray solid lines denote constant ratios of

known properties H, γ, c, and ϕ. Considering a homogeneous slope with known geometry

(β, H) and soil properties (γ, c, ϕ), the intersection of the corresponding gray line with

the respective β curve directly yields the values for c/(γ H FoS) and tanϕ/FoS, where

either of both can be used to back-calculate the FoS.

3.4.2. Hydrostatic pore water pressures

As shown in Fig. 3.1, pore water pressures U , W , ∆W and ∆Uacc result from phreatic lev-

els inside the soil domain, outside/above the soil domain (e.g. lakes), water level changes

due to long waves and accumulated excess pore water pressures due to cyclic shearing,

respectively. Focusing on static conditions (∆W = 0, ∆Uacc = 0) and neglecting the

effect of interslice shear forces (i.e. XL/R = 0, no effect of UL/R on N ′) by using the

simplified Bishop method, determination of hydrostatic pore water pressures U and ex-

ternal water pressures W can be verified. This is achieved by investigation of two example

slopes depicted in Fig. 3.7(a) and (b) considering variations of the phreatic level inside

the soil body and a global phreatic level, respectively. Since W = 0 holds in the first

example, verification of the determination of U is ensured. Afterwards, knowing that the

determination of U is correct, the second example allows to verify W .

To investigate the first effect, the influence of a rising phreatic level inside the soil domain

on the factor of safety is studied for an example slope with β = 26.67◦ and ϕ = 25◦

considering variations of the normalized cohesion ratio with c/(γ H) = 0.02, 0.04 and 0.06.

No differentiation is made here between the soil unit weight below and above the phreatic

level (i.e. γ = γsat) as the other LEM codes used for verification do not account for two

independent soil material parameters to define the soil unit weight. Though not conducted
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Figure 3.7: Verification of hydrostatic pore water pressures by variations of (a) the phreatic

level inside the soil body and (b) the global phreatic level

here, workaround solutions could be used by choosing different materials below and above

the phreatic level. The results of this study obtained with geoSlice, GGU-Stability

and GeoStudio are compared in Fig. 3.8. This figure shows an almost perfect agreement

between the results of all three LEM codes, indicating a proper implementation of the

pore water pressures inside the soil domain U . As seen from this figure, the factor of

safety significantly decreases with increasing phreatic level inside the soil domain in case

the outside phreatic level remains unchanged at the level of the slope toe. Considering
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the influence of the normalized cohesion on the FoS, it is observed that the FoS increases

with increasing cohesion, while the general trend with regard to the effect of the phreatic

level increase on the FoS remains almost unchanged.

To verify the determination of external water pressures W , the example slope schemati-

cally depicted in Fig. 3.7(b) is investigated for β = 40◦ and ϕ = 25◦ considering variations

of the normalized cohesion ratio with c/(γ H) = 0.02, 0.04 and 0.06. As mentioned be-

fore, it is assumed that soil unit weights below and above the phreatic level are identical.

The results of this study obtained with geoSlice, GGU-Stability and GeoStudio are

compared in Fig. 3.9. As can be seen from this figure, good agreement between all three

LEM codes is obtained for almost all analyses, while only slight deviations for a few

GGU-Stability simulations is observed. Investigating the general trend of the curves,

it is apparent that the cohesion has a decisive impact on the FoS versus h/H curves,

especially for larger h/H ratios, where the FoS significantly increases with increasing co-

hesion. Although not depicted in this plot, trial analyses confirmed that FoS(h/H = 0.0)
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and FoS(h/H = 1.0) are identical in case of c = 0 kPa and γ = γsat. Thus, it should

be clear that the critical phreatic level associated with the lowest FoS is obtained for

intermediate heights. Considering the design of residual lake slopes, this fact should be

kept in mind, especially if the increase of the water level is slow and the hazard posed by

seismic loading is large.

In general, it has been shown with the parametric studies discussed in this section

that the implementation of the hydrostatic pore water pressures U and W in geoSlice

yields accurate results when compared to the well-established commercial LEM codes

GGU-Stability and GeoStudio. Further analyses for the purpose of verification are con-

ducted with regard to inertial forces defined via pseudo-static coefficients in the following

section.

3.4.3. Pseudo-static analysis

To investigate the seismic slope stability with limit equilibrium methods, a pseudo-static

analysis is commonly performed. In this section, comparative analyses are conducted to

verify the LEM implementation with regard to horizontal and vertical pseudo-static coef-

ficients (kh, kv) for the determination of inertial forces due to seismic actions, for instance

earthquake loading. As many basic features of the LEM implementation have been veri-

fied in the previous sections, comparative analysis with geoSlice and GGU-Stability are

conducted for variations of kh, kv, c/(γ H FoS) and tanϕ/FoS, while the slope geometry is

assumed constant with β = 30◦. Two scenarios are investigated with regard to the choice

of the pseudo-static coefficients: (1) kh ≥ 0.0, kv = 0.0 and (2) kh = 0.5, kv ≥ 0.0. The

results of the parametric study are presented in Fig. 3.10 with solid and dashed lines cor-

responding to the two scenarios, respectively. As mentioned in Section 3.3, the direction

of the vertical pseudo-static coefficients is automatically checked, thus, identical results

are obtained by prescribing positive and negative values.

As can be seen from this figure, good agreement between the results determined with

geoSlice and GGU-Stability is obtained for a wide range of different pseudo-static

coefficients and normalized shear strength parameters. As the consideration of pseudo-

static coefficients in the implementation of an LEM code only requires a limited number

of changes, and the agreement of the results studied here is very satisfying, there is –

to the author’s opinion – no necessity to study and compare the effect of pseudo-static

coefficients for slopes with other geometries. Still, the verification process is proceeded

by the analysis of benchmark problems in the next section.
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Figure 3.10: Influence of horizontal and vertical pseudo-static coefficients kh and kv on

the factor of safety for a homogeneous slope with β = 30◦

3.4.4. Benchmark problems

In addition to the analysis of homogeneous slopes under different boundary conditions,

benchmark examples are investigated to further verify the accuracy of the implemented

LEM code. These benchmark examples have been selected as they have been investigated

intensively by many authors applying different methods. The main features to be verified

in this section cover handling of layered soils, thin weak layers, pore water pressure ratios,

impenetrable layers and topological optimization.

The first benchmark example selected has been published by von Wolffersdorff (2019)

and covers a large collaborative comparative analysis of the stability of a gravity wall

considering three different soil layer setups. Comparison is conducted in terms of the

factor of safety and the shape of the failure surface applying different FEM, FDM, FELA

and LEM codes. A schematic illustration of the geometry and soil layer setups in-
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vestigated is depicted in Fig. 3.11. The sand and silt soil layers are characterized by

γSand = 20 kN/m3, ϕSand = 35◦, cSand = 0.1 kPa and γSilt = 20 kN/m3, ϕSilt = 20◦,

cSilt = 10 kPa, respectively, while the gravity wall is modeled as concrete with a unit

weight of γConcrete = 25 kN/m3 and infinite shear strength. Note that a small cohesion

value of 0.1 for the sand material has been chosen in von Wolffersdorff (2019) to avoid

numerical instabilities. The distributed trapezoidal load is applied as design load with a

maximum value of qd,max = 1.3 · 20 = 26 kPa.

Although many different methods and codes have been utilized in (von Wolffersdorff,

2019) to evaluate the stability of the gravity wall, only selected results are used for the

verification. The reason for this is that, in general, good agreement between FoS de-

rived using different FE codes was obtained. The results obtained with Plaxis2D and

GGU-Stability (von Wolffersdorff, 2019) are summarized in Tab. 3.2 together with re-

sults obtained using geoSlice, which have been determined considering the simplified

Bishop method in combination with circular slip surfaces and the Morgenstern & Price

method in combination with non-circular slip surfaces. Comparing the second and third

row of this table, it is apparent that good agreement between the results obtained with

GGU-Stability and geoSlice is obtained for all three cases. Minor deviations in the

range of ∆FoS ≈ 0.01 are observed, which might result from small deviations in the lo-

cation of the critical slip surface due to different optimization algorithms applied, where

Figure 3.11: Stability of a gravity wall considering different soil layer setups (von Wolf-

fersdorff, 2019)
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Table 3.2: Comparison of FoS with benchmark data published in von Wolffersdorff (2019)

Soil layer setup

Reference Software Method U/U S/U S/S

von Wolffersdorff (2019) Plaxis2D SRFEA 1.36 1.56 1.78

von Wolffersdorff (2019) GGU-Stability LEM∗,a 1.58 1.89 2.19

Present study geoSlice LEM∗,a 1.57 1.90 2.18

Present study geoSlice LEM†,c 1.38 1.57 1.80

∗Bishop (simplified), †Morgenstern & Price method

acircular slip surface, cnon-circular slip surface

grid search was used in the former and differential evolution in the latter LEM code. How-

ever, taking into consideration the results obtained using Plaxis2D, it is apparent that

significantly smaller FoS are determined with strength reduction finite element analysis

(SRFEA) compared to LEM schemes. An explanation for the differences of the FoS can

be given with respect to the shape of the critical slip surfaces. In contrast to SRFEA,

where the shape of the slip surface develops without restrictions, in LEM (second and

third row) only circular slip surfaces are considered. Thereby, for cases where the critical

slip surface is not well approximated by a circle, overestimation of the FoS is expected

due to a lack of properly locating the critical slip surface. As shown in Tab. 3.2, the latter

methods may significantly overestimate the FoS in case circular slip surfaces are consid-

ered. In contrast, it can be seen from the results presented in the last row of this table

that applying the Morgenstern & Price method and utilizing non-circular slip surfaces via

topological optimization (see Section 3.3) yields significantly improved predictions of the

FoS with maximum deviations towards the SRFEA results of ∆FoS ≈ 0.02. This indicates

the importance of the topological optimization implemented in geoSlice to enable the

slope stability investigation with non-circular slip surfaces (Fig. 3.12).

The second benchmark example has been investigated, among others, by Krahn and Fred-

lund (1977), Fredlund and Krahn (1977), Baker (1980) and Leshchinsky and Ambauen

(2015) and consists of six variations (labeled a - f) of a slope with a height of H = 12.25 m

and an inclination of l/H = 1/2, where l is the width of the slope. The variations include

a thin weak horizontal layer below the slope toe (b, d, f), a pore water pressure ratio of

ru = 0.25 (c, d) and an inclined phreatic level (e, f). The soil parameters of the core

material are γ1 = 19 kN/m3, ϕ1 = 20◦ and c1 = 28 kPa, while the soil parameters of the
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Figure 3.12: Circular and non-circular critical slip surfaces obtained with geoSlice for

the benchmark example of a slope stabilized with a gravity wall (von Wolffersdorff, 2019)

thin weak layer are γ2 = 19 kN/m3, ϕ2 = 10◦ and c2 = 0 kPa. A schematic illustration of

the six variations including critical slip surfaces obtained in different studies is depicted

in Fig. 3.13. From this figure it is apparent that the shape of the critical slip surface is

significantly affected by the presence of the thin weak layer, where the shape of the slip

surface is almost circular for cases without this layer (a, c, e), while it strongly orientates

along this layer in case it is present (b, d, f). The strong impact of the weak layer can also

be seen by direct comparison of the FoS for two cases within the same row of this figure

(e.g. a vs. b, c vs. d or e vs. f), which clearly emphasize the importance of the consider-

ation of slip surfaces with shapes different from the circular type. Overall, this example

has been selected as it allows to verify different features implemented in geoSlice such as

handling of layered soils with thin weak layers, pore water pressure ratios, impenetrable

layers and topological optimization.

The stability of all six variations of the slope has been investigated using geoSlice con-

sidering different assumptions with regard to the shape of the slip surface. The different

shapes included circular, composite and non-circular slip surfaces, where the second is

defined as a composite surface of a slip circle and an impenetrable layer located within

the thin weak layer and the latter is the result of a topological optimization conducted

based on the location of the critical slip circle. Moreover, SRFEA and FELA (lower and

upper bound) simulations have been performed with Plaxis2D and OptumG2, respectively,

for three cases (a, b, e), which serve as additional benchmark data. FoS determined for

all variations of this benchmark example are summarized in Tab. 3.3 considering results



76 3. Implementation of limit equilibrium method

Figure 3.13: Stability of a homogeneous slope considering the effect of (b,d,f) a weak layer,

(c,d) a pore water pressure ratio ru and (e,f) an inclined phreatic surface (Leshchinsky

and Ambauen, 2015)

presented in Krahn and Fredlund (1977), Baker (1980) and Leshchinsky and Ambauen

(2015) as well as results obtained in the present study utilizing Plaxis2D, OptumG2 and

geoSlice.

Comparing the results obtained in the previous studies, it is seen that the predicted FoS

by Krahn and Fredlund (1977) are the largest for all six models, while the results of

Baker (1980) and Leshchinsky and Ambauen (2015) yield the smallest predictions for

cases without and with weak layer, respectively. Overall, comparing the results of those

studies, differences of up to 7.3 % are observed in the predicted FoS. Potential reasons for

the differences seen may be attributed to different methods applied (LEM, LA) as well

as different optimization schemes used. It should be noted that all analyses performed

in Krahn and Fredlund (1977) were based on circular and composite slip surfaces with

identical radii and circle centers, thus, no individual optimization was used for each of the
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six models. Complementing these results by FoS values obtained using FE schemes such

as SRFEA and FELA, it is observed that the predicted FoS obtained using Plaxis2D and

OptumG2 are slightly smaller compared to the previous studies. Still, the minimum FoS

values of the previous studies show good agreement with the numerical results. Consid-

ering the results obtained using geoSlice it is apparent that the shape of the slip surface

has a major impact on the predicted FoS (see Fig. 3.14). Good agreement of the sim-

ulations with circular slip surface is only obtained for models without weak layer, while

significant overestimation is seen for the other cases. Evaluating the results obtained using

the impenetrable layer feature creating composite slip surfaces and the topological opti-

mization enabling determination of the FoS for non-circular slip surfaces, it is observed

that both features enable accurate predictions of the FoS. However, it should be noted

that both features do not necessarily give identical results and have their own advantages

and drawbacks.

Comparing both features (impenetrable layer and topological optimization), it is to be

noted that the computational costs associated with the impenetrable layer feature are sig-

nificantly smaller compared to the topological optimization as no additional optimization

is required. However, this feature can only be used if it is ensured that the failure surface

Table 3.3: Factor of safety obtained from different methods for six benchmark slopes

Model

Reference Method a b c d e f

Krahn and Fredlund (1977) LEM† 2.07a 1.36b 1.75a 1.10b 1.83a 1.23b

Baker (1980) LEM‡,c 1.98 1.29 1.68 1.01 1.77 1.15

Leshchinsky and Ambauen

(2015)

LAc 2.03 1.28 1.65 1.01 1.82 1.14

Present study (Plaxis2D) SRFEA 1.94 1.22 – – 1.74 –

Present study (OptumG2) FELA 1.95 1.25 – – 1.75 –

Present study (geoSlice) LEM†,a 1.97 1.49 1.68 1.23 1.78 1.39

Present study (geoSlice) LEM†,b – 1.28 – 1.01 – 1.15

Present study (geoSlice) LEM†,c – 1.24 – 1.00 – 1.12

acircular slip surface, bcomposite slip surface, cnon-circular slip surface

‡Spencer method, †Morgenstern & Price method
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e f

Figure 3.14: Critical slip surfaces and FoS obtained with geoSlice for the six slopes of

the second benchmark example (Krahn and Fredlund, 1977) considering (a, c, e) circular

and (b, d, f) non-circular slip surfaces

would pass through a narrow weak layer. In case it is not clear where the critical slip sur-

face is located, as it was the case for instance for the first benchmark example studied in

this section (Fig. 3.11), the impenetrable layer feature is not very helpful. The topological

optimization is more versatile as less strict constraints are prescribed for the location and

shape of the failure surface. Although the non-circular slip surfaces have been restricted

to convex shapes for the examples studied within this thesis, in general, allowing for con-

cave sections within the slip surface, topological optimization might also be applicable to

more complex geotechnical boundary value problems problems, for instance the stability

of slopes composed of block-in-matrix soils or rocks (bimsoils/bimrocks) (Montoya-Araque

et al., 2020; Napoli et al., 2021). Nevertheless, it should be noted that the impenetrable

layer feature could also be combined with the topological optimization to enable a precise

approximation of the slip surface within the weak layer by the impenetrable layer feature

and to allow for non-circular shapes within the remaining part due to the topological

optimization.

The third benchmark example has been investigated by Zolfaghari et al. (2005), Cheng

et al. (2007), Jurado-Piña and Jimenez (2015) and Liu et al. (2015, 2020). The slope is

composed of four layers with inclined layer boundaries, where the third layer is a weak

layer that dictates the shape of the critical slip surface. A schematic illustration of this
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benchmark example including coordinates of the model and layer boundaries is provided

in Fig. 3.15. With identical unit weights in all layers (γ1-4 = 18.62 kN/m3), the shear

strength parameters associated with the four layers are defined as: ϕ1 = 20◦, c1 = 15 kPa,

ϕ2 = 21◦, c2 = 17 kPa, ϕ3 = 10◦, c3 = 5 kPa, ϕ4 = 28◦, and c4 = 35 kPa. As for the second

benchmark example, the effect of composite and non-circular slip surfaces on the FoS is

evaluated. Therefore, analyses with geoSlice are conducted using circular, composite

and non-circular slip surfaces. In addition, SRFEA is performed using Plaxis2D, which

serves as additional benchmark data. The results of the previous analyses and those

obtained in this thesis are summarized in Tab. 3.4 in terms of the FoS for the benchmark

problem at hand.

It can be seen from the results presented in Tab. 3.4 that a wide range of different factors

of safety have been obtained in previous studies with 1.095 ≤ FoS ≤ 1.50. Though,

the results obtained by Cheng et al. (2007), Jurado-Piña and Jimenez (2015), Liu et al.

(2015) and Liu et al. (2020) indicate that FoS ≈ 1.1 can be considered a reasonable

estimate. This is also supported by the evaluation of the slope stability via SRFEA,

which yields FoS = 1.057. Considering the results obtained with geoSlice, it is apparent

that larger discrepancies in the FoS are obtained when utilizing circular slip surfaces. A

similar observation is seen for the results reported by Zolfaghari et al. (2005) for analyses

with circular slip surfaces. In contrast, it is observed for the geoSlice analyses based on

composite and non-circular slip surfaces that the predicted FoS are in good agreement

with the expected FoS based on the previous studies.

To investigate the critical slip surfaces associated with analyses with geoSlice based on

circular, composite and non-circular slip surfaces, respective slip surfaces are depicted in

17 m 5 m4 m

2 m

5.6 m

0.9 m

1.5 m

1.8 m

0.5 m

4.7 m

g  = 18.62 kN/m³,1

j  = 20°, c  = 15 kPa1 1

g  = 18.62 kN/m³2

j  = 21°, c  = 17 kPa2 2

g  = 18.62 kN/m³,4

j  = 28°, c  = 35 kPa4 4

g  = 18.62 kN/m³,3

j  = 10°, c  = 5 kPa3 3

Figure 3.15: Geometry and soil parameter sets for the benchmark slope No. 3
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Table 3.4: Comparison of FoS for the benchmark slope No. 3

Reference Method FoS

Zolfaghari et al. (2005) LEM†,a 1.50

Zolfaghari et al. (2005) LEM†,c 1.24

Cheng et al. (2007) LEM‡,c 1.101

Jurado-Piña and Jimenez (2015) LEM‡,c 1.105

Liu et al. (2015) FELEM(EP) 1.095

Liu et al. (2020) FELEM(E) 1.111

Present study (Plaxis2D) SRFEA 1.057

Present study (geoSlice) LEM†,a 1.444

Present study (geoSlice) LEM†,b 1.132

Present study (geoSlice) LEM†,c 1.105

acircular slip surface, bcomposite slip surface, cnon-circular slip surface

‡Spencer method, †Morgenstern & Price method

Fig. 3.16. From this figure, it is apparent that the location and the shape of the critical

slip surface – and thereby the FoS – is dependent on the initial restrictions/assumptions

regarding the slip surface shape. For this benchmark example No. 3, the importance of

features was emphasized that enable the analysis of slip surfaces with shapes different

from the regular circular shape. From Fig. 3.16 it is observed that, in contrast to circular

circular

composite

non-circular

Figure 3.16: Circular, composite and non-circular critical slip surfaces obtained with

geoSlice for the benchmark example of a slope composed of multiple inclined layers
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shapes, analyses with composite and non-circular shapes predict critical slip surfaces that

fall within the weak layer over long stretches, since shear strength is smaller in the weak

layer, resulting in smaller FoS values. Note that composite slip surface shapes using the

Bedrock feature can only be applied for cases where the location of the critical layer

boundary (e.g. a weak soil layer) is known, otherwise – as shown in the first benchmark

example – non-circular slip surfaces using TopologicalOptimization must be applied.

Based on the analyses of different benchmark examples in this section and the comparison

with benchmark results presented in various studies, it can be concluded that the limit

equilibrium method in terms of the method of slices including different advanced features

has been implemented accurately in geoSlice. Minor differences between the results

obtained in this thesis and previous studies may be attributed to different iteration or

optimization schemes. However, no example showing large differences between predicted

and expected factor of safety was found.





4. Implementation of elastoplastic

constitutive models

4.1. Motivation

As the overall objective of this thesis is to perform stability analyses for a slope subjected

to earthquake loading, one concept followed in this work is to conduct a decoupled dynamic

strength reduction finite element analysis (DSRFEA) further elaborated in Chapters 5 and

6. Among others, this approach requires a FE software package allowing for dynamic finite

element analyses (DFEA), sophisticated constitutive models capturing cyclic and dynamic

material behavior, a strength reduction scheme, simple elastoplastic constitutive models

for SRFEA, the capability to change constitutive models between consecutive loading

steps and the possibility to implement additional features. As the number of requirements

for the selection of an appropriate FE software package is large, it was decided to conduct

this approach using the software numgeo (Machaček & Staubach, see e.g. Machaček

(2020); Machaček et al. (2021); Staubach et al. (2022a,b) and www.numgeo.de). numgeo

is a powerful FE software package capable to conduct DFEA. Sophisticated constitutive

models needed for DFEA were implemented in numgeo prior to this work by the developers.

Though, neither a strength reduction method nor simple elastoplastic models, which are

commonly used in combination with SRFEA, were available in numgeo. Therefore, this

chapter focuses on the implementation and verification of two elastoplastic constitutive

models for numgeo, namely the Mohr-Coulomb model and the Matsuoka-Nakai model,

which have been introduced in Section 2.3.1 and 2.3.2, respectively.

The choice of implementing the Mohr-Coulomb model and the Matsuoka-Nakai model1

was made for the following reasons: to conduct a strength reduction analysis at different

1Note that also the General Classic plasticity (GC) model discussed in the last paragraph of Section 2.3.2

was implemented in numgeo, allowing to perform simulations with the Drucker-Prager model, the

Matsuoka-Nakai model and the Lade-Duncan model. The verification of the GC model with Matsuoka-

Nakai yield function is provided in Appendix B.

83

www.numgeo.de
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times during a dynamic analysis, it needs to be ensured that the converged stress state of

the current dynamic calculation step does not violate the yield surface of the elastoplastic

model utilized in the SRFEA for the initial state of the subsequent static simulation.

To enable a model change from an advanced constitutive model to a basic elastoplastic

model, a combination of models is sought which uses similar definitions of yield, limit

state or bounding surfaces. In this case, the most convenient combination was found to

be the hypoplastic model and the Matsuoka-Nakai model for the dynamic analysis and

the strength reduction analysis, respectively, as both models incorporate the Matsuoka-

Nakai surface. However, to verify the strength reduction analysis it is more convenient to

perform comparative analyses using an implementation of the Mohr-Coulomb model as

there are only very few results of SRFEA conducted with Matsuoka-Nakai published so

far, see for instance Tschuchnigg et al. (2019).

The structure of this chapter is as follows: first, the general concept of elastoplasticity

is explained based on continuum mechanics conventions. Following, the implicit integra-

tion scheme is introduced including discussions with respect to different return mapping

algorithms and a formulation to determine the consistent elastoplastic stiffness tensor.

Lastly, verification of both elastoplastic models is conducted with respect to element test

simulations by comparing results obtained using numgeo with those obtained using the

implementations of the same constitutive models in other well-established FE codes. The

element tests used for the verification cover triaxial compression and extension tests as

well as simple shear tests starting from isotropic and anisotropic initial stress states.

4.2. Standard Elastoplasticity

In this section, the general concept of elastoplasticity is explained for the three-dimen-

sional case using tensor notation with second and fourth order tensors highlighted in bold

(e.g. stress tensor σ) and sans serif script (e.g. fourth order identity tensor I), respectively,

while scalar values are denoted with non-bold italic script (e.g. scalar value of the yield

function F ). As this section only covers the general methodology of elastoplasticity from

a continuum mechanics point, the interested reader may find further detailed information

in well-established textbooks, for instance in Simo and Hughes (2006), de Souza Neto

et al. (2011) and Borja (2013).

The basic assumption in elastoplasticity is that strains and strain rates can be split into

elastic and plastic portions in accordance with the additive decomposition of strains.
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Focusing on the strain rates, the total strain rate ε̇ represents the sum of the elastic

strain rate ε̇e and the plastic strain rate ε̇p, as given in Eq. 4.1.

ε̇ = ε̇e + ε̇p (4.1)

Considering isotropic Cauchy elasticity in the form of Hooke’s law, the stress rate σ̇ is

determined from the product of the elastic strain rate ε̇e and the fourth order isotropic

elasticity tensor Ce, where the latter is defined according to Ce = λ1 ⊗ 1 + 2µI with

the Lamé constants λ and µ. Including the concept of additive decomposition of strains

according to Eq. 4.1 into the incremental stress-strain relation according to Hooke’s law,

one obtains

σ̇ = Ce : ε̇e = Ce : (ε̇− ε̇p) (4.2)

To control the evolution of the plastic strain rate ε̇p and the evolution of the internal

variables q̇∗ the definitions given in Eq. 4.3 and in Eq. 4.4 are used, respectively

ε̇p = λ̇
∂G

∂σ
(4.3)

q̇∗ = −λ̇ ∂G
∂q∗

(4.4)

where λ̇ ≥ 0 is the plastic multiplier, ()∗ denotes a scalar or a vector with the dimension

of the internal variables, G is the plastic potential function, ∂G/∂σ is the direction of

plastic flow (flow rule) and ∂G/∂q∗ is the hardening rule. Inserting the definition of the

plastic strain rate defined in Eq. 4.3 into Eq. 4.2, it follows that the stress rate can be

calculated according to

σ̇ = Ce :

(
ε̇− λ̇∂G

∂σ

)
(4.5)

Considering the plastic multiplier λ̇, it needs to be ensured that the Kuhn–Tucker com-

plementarity condition (Eq. 4.6) is satisfied for any loading condition, thus, the following

set of equations is always satisfied

λ̇ ≥ 0 , F (σ, q∗) ≤ 0 , and λ̇F (σ, q∗) = 0 (4.6)

where F is a scalar referred to as yield function, which enables to distinguish elastic

(F < 0) and plastic states (F = 0), with the restriction that values larger than zero

are not admissible. The yield function takes into account the current stress state σ

and potentially additional internal variables q∗ controlling the hardening and softening
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behavior of the material, where in case of perfect plasticity, the latter variable is skipped.

Considering the definition of the yield and plastic potential functions, it is possible to

utilize identical functions (G = F , associated plasticity) or to use different functions

(G 6= F , non-associated plasticity) to better capture the plastic soil behavior. To ensure

consistency of the solution with respect to different loading scenarios, the consistency

condition defined in Eq. 4.7 needs to be satisfied at any loading step.

∂F

∂σ
: σ̇ +

∂F

∂q∗
· q̇∗ = 0 (4.7)

Inserting the stress rate defined in Eq. 4.5 into the consistency condition (Eq. 4.7), and

expressing the derivatives ∂F/∂σ, ∂G/∂σ, ∂F/∂q∗ and ∂G/∂q∗ via n, m, ξ∗ and h∗,

respectively, the plastic multiplier is determined according to

n : Ce :
(
ε̇− λ̇m

)
− λ̇ ξ∗ ·h∗ = 0 ⇔ λ̇ =

n : Ce : ε̇

n : Ce : m + ξ∗ ·h∗
(4.8)

Replacing λ̇ in Eq. 4.5 by Eq. 4.8, it follows that the stress rate reads

σ̇ = Ce : ε̇− (n : Ce : ε̇)Ce : m

n : Ce : m + ξ∗ ·h∗
(4.9)

Rearrangement of terms and replacement of the denominator by χ = n : Ce : m + ξ∗ ·h∗
yields a more convenient form of the stress rate

σ̇ = Ce : ε̇− 1

χ
(n : Ce : ε̇)Ce : m

= Ce : ε̇− 1

χ
(Ce : [m⊗ n] : Ce) : ε̇

=

(
Ce − 1

χ
Ce : [m⊗ n] : Ce

)

︸ ︷︷ ︸
Cep

: ε̇

(4.10)

where m ⊗ n denotes the dyadic product of m and n, returning a fourth order tensor,

and the term in brackets represents the fourth order elastoplastic tangent modulus Cep

Cep = Ce − 1

χ
Ce : (m⊗ n) : Ce (4.11)

Rewriting the latter equation in index notation, the continuum elastoplastic tangent mod-

ulus is defined as

Cep
ijkl = Ce

ijkl −
Ce
ijmnmmn nrtC

e
rtkl

nij Ce
ijklmkl + ξ∗i h∗i

(4.12)
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It should be noted that an exact elastoplastic step – as assumed in the derivation of

the continuum solution presented here – is not necessarily successful in a finite-element

framework. Therefore, return mapping schemes are commonly adopted which are based

on the idea of an elastic predictor or trial stress and a plastic corrector stress. The former

is determined as the sum of the current stress and the product of the total strain increment

and the elastic stiffness tensor, which might bring the stress to a position outside of the

yield surface, whereas the latter projects the stress back to the yield surface.

4.3. Return mapping algorithms

In this work, the primarily selected return mapping algorithm implemented in both elasto-

plastic constitutive models is the implicit Closest Point Projection Method (CPPM) ini-

tially proposed by Simo and Taylor (1985) in the version presented by Benz (2007), which

is very similar to the Backward Euler Return Scheme and the Closest Point Projection

Method discussed by Abbo (1997) and Huang and Griffiths (2009), respectively. In case

the CPPM does not properly converge (e.g. for integration points within slope stability

analyses with rather small stresses), a second return mapping scheme is implemented,

namely the Cutting Plane Algorithm (CPA) discussed by Huang and Griffiths (2009).

Moreover, instead of the continuum elastoplastic modulus derived in the previous section,

a consistent elastoplastic modulus (Simo and Taylor, 1985; Benz, 2007; Huang and Grif-

fiths, 2009) is determined, which allows for quadratic convergence when combined with

CPPM. A schematic illustration of the CPPM and CPA is provided in Fig. 4.1. Details

about the implementation of the return mapping algorithms (CPPM and CPA) and the

consistent elastoplastic modulus are given in the following paragraphs.

Closest Point Projection Method (CPPM)

Considering non-associated perfect plasticity, a simplified version of the closest point

projection method utilized in Benz (2007) is described in this section, in which internal

variables controlling the material hardening and softening behavior are not included.

The CPPM is implemented within a sub-stepping framework, which ensures that the

applied strain increment ∆ε is divided in smaller sub-increments δε based on a predefined

threshold strain increment. The previous converged step within the sub-stepping loop,

the current step, for which equilibrium is sought, and the current iteration within the

return mapping scheme are denoted as n, n + 1 and k, respectively. Moreover, the rate

equation form used in the previous section is replaced by an incremental formulation,
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Figure 4.1: Schematic illustration of the (a) Closest Point Projection Method (CPPM)

and the (b) Cutting Plane Algorithm (CPA), modified after Huang and Griffiths (2009)

where n+1∆σ
(k)
ij refers to the increment of stresses at the current iteration of the current

step.

The general procedure of the CPPM is as follows:

1. For the current step (n + 1), initialize the iteration counter k = 0 and the initial

plastic multiplier ∆λ = 0

2. Calculate the trial (elastic) stress and the yield function for the trial stress

Trialσij = nσij + Ce
ijkl

n+1δεkl
TrialF (0) = F (Trialσij)

3. IF TrialF (0) ≤ 0, update the stress (n+1σij = Trialσij) and EXIT the algorithm

4. Determine the first derivatives of the yield and potential functions for the trial stress

(Trialnmn, Trialmpq) and calculate starting values for the return mapping algorithm

∆λ(k) =
TrialF (0)

TrialnnmCe
nmpq

Trialmpq

n+1σ
(k)
ij = Trialσij −∆λ(k) Ce

ijkl
Trialmkl
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5. IF n+1F (k) = F (n+1σ
(k)
ij ) ≤ 0, EXIT the algorithm

6. Calculate the derivatives n+1n
(k)
mn, n+1m

(k)
kl and

∂mkl

∂σmn

∣∣∣∣
(k)

n+1

7. Calculate the residual stress

r
(k)
ij = n+1σ

(k)
ij −

(
Trialσij −∆λ(k) Ce

ijkl
n+1m

(k)
kl

)

8. Update the plastic multiplier

Ξ
(k)
ijmn =

(
Iijmn + ∆λ(k) Ce

ijkl

∂mkl

∂σmn

∣∣∣∣
(k)

n+1

)−1

δλ(k) =
n+1F (k) − r(k)

ij Ξ
(k)
ijmn

n+1n
(k)
mn

Ce
ijkl

n+1m
(k)
kl Ξ

(k)
ijmn

n+1n
(k)
mn

∆λ(k+1) = ∆λ(k) + δλ(k)

9. Update the stress tensor

n+1σ
(k+1)
ij = Trialσij −∆λ(k+1)Ce

ijkl
n+1m

(k)
kl

10. Update the iteration counter and return to Step 5

k = k + 1

It should be noted from the description of the CPPM presented above that the determina-

tion of the second derivative of the potential function (step 6) and the inverse of a fourth

order tensor (step 8) lead to high computational costs of the CPPM when compared to

other return mapping schemes (e.g. CPA). Still, in case the CPPM is coupled with a

consistent elastoplastic modulus, quadratic convergence in the Newton-Raphson method

can be achieved (Huang and Griffiths, 2009).

Consistent elastoplastic modulus

Utilizing the derivatives n+1nmn and n+1mkl and the fourth order tensor n+1Ξijmn updated

within the CPPM iterations as well as the fourth order isotropic elastic stiffness tensor

Ce
ijkl, the consistent elastoplastic modulus Cep

ijkl is calculated at the end of every step of

the sub-stepping routine in accordance with Benz (2007) and Huang and Griffiths (2009)

via

Cep
ijkl = Rijkl −

Rijmn
n+1mmn

n+1nrsRrskl

n+1nij Rijkl
n+1mkl

(4.13)
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with

Rijkl = n+1ΞijmnC
e
mnkl (4.14)

Considering the sub-stepping approach in the material routine, the average stiffness deter-

mined by averaging over the elastic steps (ne) and the elastoplastic steps (np) according

to Eq. 4.15 is returned to the element routine and assembled to the global system of

equations.

Cmnpq =

ne∑
i

Ce
mnpq,i +

np∑
j

Cep
mnpq,j

ne + np
(4.15)

Cutting Plane Algorithm (CPA)

The cutting plane algorithm is a simple return mapping scheme that allows for returning

to the yield surface without determination of second derivatives. However, although

the computational effort of CPA is less compared to CPPM, it can only be combined

with a consistent elastoplastic modulus if the fourth order tensor Ξijmn is determined

additionally, which again includes determination of the second derivative of the potential

function and the inverse of a fourth order tensor. Huang and Griffiths (2009) noted that

the CPA might also be combined with the continuum elastoplastic modulus according to

Eq. 4.12, to avoid the determination of second derivatives.

The general procedure of the CPA is as follows:

1. For the current step (n + 1), initialize the iteration counter k = 0 and the initial

plastic multiplier ∆λ = 0

2. Calculate the trial (elastic) stress

n+1σ
(k)
ij = nσij + Ce

ijkl
n+1∆εkl

3. IF n+1F (k) = F (n+1σ
(k)
ij ) ≤ 0, EXIT the algorithm

4. Calculate the derivatives n+1n
(k)
mn and n+1m

(k)
pq

5. Update the plastic multiplier

∆λ(k) =
n+1F (k)

n+1n
(k)
nmCe

nmpq
n+1m

(k)
pq
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6. Update the stress tensor

n+1σ
(k+1)
ij = n+1σ

(k)
ij −∆λ(k)Ce

ijkl
n+1m

(k)
kl

7. Update the iteration counter and return to Step 3

k = k + 1

4.4. Verification

4.4.1. General concept

In this work, the Mohr-Coulomb model and the Matsuoka-Nakai model have been imple-

mented in Incremental Driver and numgeo following the description of the models in

Sections 2.3.1 and 2.3.2, respectively, and the implicit integration schemes described in

Section 4.3. For verification, results of element test simulations performed with both mod-

els are compared to benchmark simulations using implementations of the same models in

well-established FE codes. As depicted in Fig. 4.2, the element tests conducted include

triaxial compression tests (TXC), triaxial extension tests (TXE) and direct simple shear

tests (DSS). Considering the initial stress states, TXC, TXE and DSSiso are performed

starting from an initial isotropic mean effective stress of p′ = 100 kPa, whereas DSSK0

is performed starting from an anisotropic state with an initial vertical effective stress of

σ′v = 100 kPa and a lateral stress of σ′h = K0 ·σ′v, where the lateral earth pressure coef-

ficient has been selected in accordance with K0 = 1 − sinϕ (Jaky, 1944). All tests have

been performed under drained conditions.

Simulations of the element tests have been conducted for two different materials, a purely

frictional material (Material 1) with a friction angle of ϕ = 30◦ and a cohesion of c = 0 kPa

and a cohesive-frictional material (Material 2) with a friction angle of ϕ = 20◦ and

a cohesion of c = 20 kPa. Further variation of material parameters considered in the

verification process is related to the dilation angle ψ, which is varied in the range of

0.0 ≤ ψ/ϕ ≤ 1.0. With regard to proper terminology, it should be noted that ψ/ϕ = 1.0

and ψ/ϕ < 1.0 are referred to as associated and non-associated flow rule, respectively.

The elastic behavior in the MC and MN model is described with respect to the elastic

material parameters: Young’s modulus E and Poisson’s ratio ν. Both elastic material

parameters are kept constant throughout the verification and – if not further specified –

take the values E = 30.0 MPa and ν = 0.333. Increments of stresses and strains are given
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Figure 4.2: Overview of materials and tests used for verification of the elastoplastic models

implemented within the framework of this study

here, thus, it should be clear that a test condition ∆σ = 0 refers to a stress component

that remains constant during the test.

4.4.2. Mohr-Coulomb model

In this work, the Mohr-Coulomb model in the version proposed by Abbo et al. (2011) has

been implemented in Incremental Driver and numgeo. As discussed in Section 2.3.1, this

model slightly deviates from the original Mohr-Coulomb model in terms of the shape of

the yield surface due to a hyperbolic approximation in the meridional plane (i.e. deviatoric

versus mean stress space) and rounded corners in the deviatoric plane, the former and

latter controlled by material parameters describing the distance towards the apex a =

α cotϕ and the transition Lode angle θt, respectively. Following the recommendations of

Abbo and Sloan (1995) and Abbo et al. (2011) for practical use of the model, α ≈ 0.05

and 25◦ ≤ θt ≤ 29.5◦ enable good approximations of the original model while ensuring

numerical stability at the transition between the original surface and the approximation

of the rounded corners. In this section, α = 0.05 and θt = 29.5◦ were selected. Additional

simulations emphasizing the influence of the transition angle θt on the results of triaxial

tests are presented subsequently to the verification at the end of this section.

The verification is conducted using benchmark simulations performed with the Mohr-

Coulomb model available in Plaxis2D considering four element test setups (TXC, TXE,
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DSSiso and DSSK0), two materials (frictional material and cohesive-frictional material)

and four dilation ratios (ψ/ϕ = 0.0, ψ/ϕ = 0.33, ψ/ϕ = 0.67 and ψ/ϕ = 1.0). Further

simulations performed for verification purposes also included variations of ν. Although

similar good agreement between the benchmark and the current results were seen in those

simulations, the results are not shown in order not to lose focus on the essential aspects.

The results of the triaxial compression (TXC) and extension (TXE) tests conducted with

the purely frictional material (Material 1) are presented in terms of deviatoric stress q

versus axial strain ε1 and volumetric strain εvol versus axial strain ε1 in Fig. 4.3. As can

be seen from this figure, the results obtained with numgeo (solid lines) and Plaxis2DMC-Soil-1 nu 03 Test-i
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Figure 4.3: Deviatoric stresses and volumetric strains during triaxial compression and

extension tests on a frictional material (ϕ = 30◦) simulated using the original Mohr-

Coulomb model (Plaxis2D) and the approximation (θt = 29.5◦, α = 0.05, present study)
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(symbols) are in good agreement. Only very small deviations are observed for the final

deviatoric stress for all ψ/ϕ as well as for the volumetric strains for ψ/ϕ ≥ 0.67. The

differences between the models for triaxial compression (θ = 30◦) and extension tests

(θ = −30◦) can be explained with regard to the shape of the yield surface. Since the

surface (Abbo et al., 2011) is described by rounded corners in the deviatoric plane for

|θ| > θt = 29.5◦, the distance between the hydrostatic axis and the yield surface at TXC

and TXE is smaller, resulting in a reduced ultimate strength. Comparing the results of

numgeo and Plaxis2D for the triaxial compression and extension tests, it is apparent that

the differences with respect to deviatoric stresses and volumetric strains are smaller for

the TXE test, since the shapes of the yield surfaces are in better agreement for θ = −30◦

(Fig. 2.16). Moreover, Fig. 4.3 shows that a good agreement between the results of numgeo

and Plaxis2D is obtained for different dilation angles, which mainly control the volumetric

behavior in triaxial compression and extension tests.

To analyze the performance of the MC implementation under plane strain conditions,

direct simple shear tests were conducted with numgeo and Plaxis2D. The results of the

direct simple shear tests starting from an isotropic (DSSiso) and from a K0 (DSSK0) state

conducted with the purely frictional material (Material 1) are presented in terms of shear

stress τ versus shear strain γ and volumetric strain εvol versus shear strain γ in Fig. 4.4.

It is obvious from this figure that – independent of the initial stress state and the dilation

angle – the results of both models perfectly coincide for the DSS tests. As the Lode angles

associated with the loading and the initial states in the direct simple shear tests are smaller

than the transition Lode angle (|θ| ≤ θt), both models are described by identical yield

surfaces and by identical potential surfaces. Therefore, it should be clear that the same

responses were expected. Considering all element tests conducted with Material 1, it

can be concluded that the implementation of the approximated Mohr-Coulomb model

performs well for purely frictional materials under different stress paths.

To ensure that the implementation also predicts the correct material responses for c >

0 kPa, the same four tests (TXC, TXE, DSSiso and DSSK0) are repeated considering a

cohesive-frictional material (Material 2). Considering a cohesive-frictional material with

c > 0 kPa, it should be noted that the yield surface – with respect to the shape of the

original MC model – is not only modified due to the rounded corners in the deviatoric

plane, but also due to hyperbolic approximation in the meridional plane. In case of the

purely frictional material, the hyperbolic approximation had no effect on the shape of the

yield surface as the shape parameter a = α · c · cotϕ was zero due to c = 0 kPa. The

results of the triaxial compression (TXC) and extension (TXE) tests conducted with the
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Figure 4.4: Shear stresses and volumetric strains during direct simple shear tests starting

from an isotropic and K0 stress state with a frictional material (ϕ = 30◦) simulated

using the original Mohr-Coulomb model (Plaxis2D) and the approximation (θt = 29.5◦,

α = 0.05, present study)

cohesive-frictional material (Material 2) are presented in terms of deviatoric stress q versus

axial strain ε1 and volumetric strain εvol versus axial strain ε1 in Fig. 4.5. It is apparent

from this figure that the deviatoric stresses as well as the volumetric strains compare well

for the benchmark model and the model implemented in the present study. Although

small deviations are observed, it can be stated that the influence of the approximation

– with rounded corners in the deviatoric and a hyperbolic function in the meridional

plane – on the results of both types of triaxial tests is small. A potential reason for this

observation may be attributed to the fact that the shapes of the original and the modified
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yield surface are very similar for compressive stresses, whereas differences may be more

pronounced for stress paths directing towards the tip/apex of the yield surface.

Considering plane strain conditions, direct simple shear tests (DSSiso and DSSK0) were

conducted with numgeo and Plaxis2D for Material 2. As can be seen from the results

presented in the τ versus γ and εvol versus γ plots in Fig. 4.6, very good agreement is

achieved for all simulations, including variations of the dilation angle ψ. Therefore, it

can be concluded that the implementation of the Mohr-Coulomb model in the versionMC-Soil-2 nu 03 Test-i
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Figure 4.5: Deviatoric stresses and volumetric strains during triaxial compression and

extension tests on a cohesive-frictional material (ϕ = 20◦, c = 20 kPa) simulated using the

original Mohr-Coulomb model (Plaxis2D) and the approximation (θt = 29.5◦, α = 0.05,

present study)
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of Abbo et al. (2011) was successful for frictional and cohesive-frictional materials as

well as for associated and non-associated flow rules. However, as the results obtained

with numgeo and Plaxis2D do not perfectly match for triaxial compression and extension

states due to the different shapes of the yield surface, discussion with respect to the effect

of the material parameter θt is provided in the subsequent paragraphs to enhance the

comprehensibility of the implemented model.

To emphasize the influence of the transition angle θt on the ultimate strength defined

with regard to the deviatoric stress q under triaxial compression and extension conditions,MC-Soil-2 nu 03 Test-iii
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Figure 4.6: Shear stresses and volumetric strains during direct simple shear tests start-

ing from an isotropic and K0 stress state with a cohesive-frictional material (ϕ = 20◦,

c = 20 kPa) simulated using the original Mohr-Coulomb model (Plaxis2D) and the ap-

proximation (θt = 29.5◦, α = 0.05, present study)
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additional simulations (TXC and TXE) are performed using both materials and transi-

tion angles in the range of 25◦ ≤ θt ≤ 29.5◦. The ultimate strength obtained in these

simulations is normalized with respect to the ultimate strength of the original Mohr-

Coulomb criterion, qMC. The latter can either be taken from the respective Plaxis2D

simulations or analytically determined using the definition of the Mohr-Coulomb crite-

rion (Eq. 2.18) considering mechanical sign convention with principles stresses ordered

according to σ1 ≤ σ2 ≤ σ3. Rearranging terms with respect to Eq. 2.18, for a triaxial

compression test with σ3 = const representing the lateral stress, the ultimate stress σ1

acting in vertical direction is determined according to Eq. 4.16. In case of a triaxial exten-

sion test, where the lateral stress corresponds to σ1 and the stress σ3 in vertical direction

is sought, Eq. 4.17 can be applied.

σ1,MC,ult = σ3 ·
1 + sinϕ

1− sinϕ
− 2 · c · cosϕ

1− sinϕ
for σ1 ≤ σ2 ≤ σ3 (4.16)

σ3,MC,ult = σ1 ·
1− sinϕ

1 + sinϕ
+

2 · c · cosϕ

1 + sinϕ
for σ1 ≤ σ2 ≤ σ3 (4.17)

The results of this parametric study are presented in Fig. 4.7 in terms of q/qMC versus θt

plots for Material 1 and 2. As can be seen from this figure, the normalized ultimate

strength increases with increasing transition angle, thus, the difference between the orig-

inal and the approximated Mohr-Coulomb model decreases. Independent of the type of

test (TXC, TXE) or the material, it is observed that the maximum deviation between bothImpact-Theta-t-TXC-TXE-Soil1-Soil2
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Figure 4.7: Influence of transition angle θt on normalized ultimate strength q/qMC consid-

ering triaxial compression and extension tests for a purely frictional material (ϕ = 30◦)

(left) and a cohesive-frictional material (ϕ = 20◦, c = 20 kPa) (right)



4.4. Verification 99

models is obtained for θt = 25◦. Comparing q/qMC for triaxial compression and extension

tests, it is apparent that the normalized ultimate strength is significantly smaller for the

former test with minimum values of 0.946 and 0.963 for the frictional and the cohesive-

frictional material, respectively. In contrast, for the triaxial extension test, q/qMC > 0.99

holds for both material parameter sets investigated here. As stated above and depicted

in Fig. 2.16, these larger q/qMC values for TXE can be explained with respect to a closer

fit of the yield surfaces of the original and the approximated models in the deviatoric

plane for triaxial extension conditions with θ = −30◦ compared to triaxial compression

conditions with θ = 30◦.

Analyzing the difference between the models with respect to changing material param-

eters, it should be noted that for triaxial compression conditions (TXC) the normalized

ultimate strength – as a measure of similarity between both models – decreases with

increasing friction angle and increasing distance between the tip of the original and the

approximated MC model (material parameter α). Moreover, a minor decrease of q/qMC

is observed for increasing cohesion values. In contrast, for triaxial extension conditions

(TXE), it is observed that q/qMC increases with increasing friction angle, while the other

trends remain unchanged.

4.4.3. Matsuoka-Nakai model

Although many sophisticated constitutive models make use of the Matsuoka-Nakai cri-

terion, for instance for the definition of the yield surface in the Hardening Soil Small

model (Benz, 2007), the limit state surface in Hypoplasticity (von Wolffersdorff, 1996)

or the bounding surface in Sanisand (Dafalias and Manzari, 2004; Taiebat and Dafalias,

2008), the original linear-elastic, perfectly-plastic Matsuoka-Nakai (MN) model is rarely

implemented in geotechnical finite-element codes. Therefore, it is difficult to find MN

implementations for verification purposes. Potential reasons for the lack of MN model

implementations in these codes may be manifold and are not further discussed here. How-

ever, as finite-element codes such as Abaqus or Plaxis enable the import of user-defined

material routines, verification of the MN model implemented in Incremental Driver and

numgeo was conducted with such a routine. To be more specific, Prof. Franz Tschuchnigg

and Mr. Stephan Rauter from TU Graz kindly provided results of benchmark simulations

that have been performed using a MN implementation called ’Matsuoka-Nakai no hard-

ening (MNnh)’ developed by Prof. Thomas Benz, which was imported as a user-defined

material into the finite-element code Plaxis2D.
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Verification of the current implementation is conducted for the MN model with Drucker-

Prager potential surface considering a cone fitted to the compression corners of the

MC/MN model (i.e. cone ’1’ in Fig. 2.11). Similar to the verification procedure applied

for the MC model, triaxial compression (TXC) and extension (TXE) tests as well as direct

simple shear tests starting from an isotropic state (DSSiso) and from aK0 state (DSSK0) are

simulated for two different materials, a purely frictional material and a cohesive-frictional

material, considering the initial stress conditions reported in Section 4.4.1. Note that

in contrast to the element test simulations with the MC model, the Poisson’s ratio is

calculated from ν = K0/(1 + K0) with K0 = 1 − sinϕ. Regarding the variation of the

dilation angle, three ratios of ψ/ϕ covering values between zero and one are investigated

for verification purposes.

It should be noted here that – in contrast to the verification of the Mohr-Coulomb model

performed in Section 4.4.2 – for the verification of the Matsuoka-Nakai model, no differ-

ences between the results of the MNnh and the MN model should be accepted since both

models have been implemented with the same yield function (Eq. 2.26) and potential

function (Eq. 2.19). Therefore, any deviations observed in the results of the element tests

would indicate errors in the implementations. Moreover, as the Matsuoka-Nakai and the

Mohr-Coulomb criterion should yield identical ultimate shear strength for triaxial com-

pression and extension conditions due to the same size of the yield surface for θ = ±30◦,

results of the latter criterion can also be used for verification purposes.

The results of the triaxial compression (TXC) and extension (TXE) tests conducted with

the purely frictional material (Material 1) are presented in deviatoric stress q versus axial

strain ε1 and volumetric strain εvol versus axial strain ε1 plots in Fig. 4.8. It can be seen

from this figure that the MNnh model imported as a user-defined material into Plaxis2D

(symbols) and the MN model implemented in numgeo (solid lines) yield identical results

in terms of ultimate shear strength as well as volumetric behavior. This observation also

holds for variations of the dilation angle in the range of 0 ≤ ψ/ϕ ≤ 1.0. Comparing

the results of the triaxial tests conducted with the MN model on Material 1 depicted

in Fig. 4.8 with the results of the original Mohr-Coulomb model shown in Fig. 4.3 very

good agreement of the ultimate strength is observed, which can be seen as an additional

indicator for a correct implementation of the Matsuoka-Nakai model.

Investigating the behavior under plane strain conditions in terms of direct simple shear

tests starting from either isotropic or anisotropic stress states on a purely frictional mate-

rial, it can be seen from Fig. 4.9 that the shear stress versus shear strain curves as well as

the volumetric strain versus shear strain curves are identical for the MNnh benchmark sim-
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Figure 4.8: Deviatoric stresses and volumetric strains during triaxial compression and

extension tests on a frictional material (ϕ = 30◦) simulated using two implementations of

the Matsuoka-Nakai (MN) model

ulations and the MN model implemented in numgeo. This applies for the non-associated

cases with ψ/ϕ = 0.0 and ψ/ϕ = 0.5 as well as for the case of an associated flow rule

considering ψ/ϕ = 1.0. Furthermore, analysis of the volumetric strains obtained for the

DSSK0 test reveals that the contractive and the dilative volumetric behavior is captured

precisely. Therefore, it can be concluded that the Matsuoka-Nakai model, which has origi-

nally been formulated for purely frictional soils, has been implemented accurately. Further

simulations are conducted to also verify the implementation of the extended Matsuoka-

Nakai model (Matsuoka and Sun, 1995; Griffiths and Huang, 2009), which enables the

additional consideration of the cohesion.
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Figure 4.9: Shear stresses and volumetric strains during direct simple shear tests starting

from an isotropic and K0 stress state with a frictional material (ϕ = 30◦) simulated using

two implementations of the Matsuoka-Nakai (MN) model

For verification of the extended Matsuoka-Nakai model, triaxial compression (TXC) and

extension (TXE) tests and simple shear tests (DSSiso and DSSK0) are conducted using a

cohesive-frictional material with the shear parameters provided in Fig. 4.2 and a Poisson’s

ratio of ν = K0/(1 + K0) = 0.397. In Fig. 4.10, the evolution of deviatoric stresses and

volumetric strains are presented for TXC and TXE tests. Considering that the MNnh

implementation also incorporates the definitions of the extended Matsuoka-Nakai model,

it is clear from this figure that good agreement between the results of the benchmark

model and the current implementation is obtained for triaxial conditions. This also holds
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Figure 4.10: Deviatoric stresses and volumetric strains during triaxial compression and

extension tests on a cohesive-frictional material (ϕ = 20◦, c = 20 kPa) simulated using

two implementations of the Matsuoka-Nakai (MN) model

for plane strain conditions analyzed in terms of simple shear tests starting from isotropic

and anisotropic stress states with results depicted in Fig. 4.11.

In this section, it has been shown with the help of a series of element test simulations

and comparisons to benchmark simulations that both models, the approximated Mohr-

Coulomb model proposed by Abbo et al. (2011) as well as the extended Matsuoka-Nakai

model (Matsuoka and Sun, 1995; Griffiths and Huang, 2009), have been implemented

accurately into numgeo. The implementations of the models into the latter finite element

code will be further elaborated with regard to strength reduction analyses discussed in

the subsequent chapter.
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Figure 4.11: Shear stresses and volumetric strains during direct simple shear tests starting

from an isotropic and K0 stress state with a cohesive-frictional material (ϕ = 20◦, c =

20 kPa) simulated using two implementations of the Matsuoka-Nakai (MN) model



5. Implementation of strength

reduction analysis

5.1. Motivation

As mentioned in Chapters 1 and 4, the overall objective of the implementation of the

strength reduction method in numgeo is to perform seismic slope stability assessment in

numgeo. To accurately approximate the seismic effects and their spatial and temporal

variations, a dynamic finite element analysis (DFEA) is required that utilizes sophisti-

cated constitutive models capturing effects such as stress/strain history, accumulation

of strains and excess pore water pressures. Utilizing the results of the DFEA, stability

assessment should be conducted based on objective criteria rather than project-specific

limiting/allowable displacements. For this, a subsequent strength reduction finite element

analysis (SRFEA) using a simple elastoplastic model should be performed. Two elasto-

plastic constitutive models, Mohr-Coulomb (MC) and Matsuoka-Nakai (MN), have been

implemented and verified, as already presented in Chapter 4. Accordingly, the implemen-

tation of a SRFEA is presented in this chapter, since this analysis type was not available in

numgeo, so far. Besides a detailed description of the implementation and discussions with

regard to appropriate convergence criteria, verification of the strength reduction method

is conducted for both elastoplastic models (MC, MN), while also considering the influence

of associated and non-associated plasticity. Note that only static conditions are presumed

in this chapter, while discussions with regard to considerations necessary to allow for a

preceding DFEA are included in Section 6.5.

5.2. General concept

The strength reduction method implemented in numgeo can be used in combination with

the Mohr-Coulomb and Matsuoka-Nakai model, so far. Still, the overall concept allows for

105
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further elastoplastic models to be considered in a strength reduction analysis with minor

changes. As described in detail in Section 2.1.3, in SRFEA, the shear strength parameters

of the soil are incrementally reduced in accordance with a strength reduction factor (SRF)

until failure is obtained. The SRF is applied to the tangent of the friction angle and the

cohesion to ensure equal proportion of shear resistances by frictional and cohesive terms

throughout the strength reduction. Assuming that the factor of safety (FoS) is identical

to the SRF, Eq. 2.5 can be rearranged for the determination of the reduced shear strength

parameters cred, ϕred and ψred as follows

cred =
c

FoS
, tanϕred =

tanϕ

FoS
and tanψred =

tanψ

FoS
(5.1)

To control the incremental reduction of the shear strength parameters, an initial value of

the factor of safety (FoS0) and a step size (∆FoS) need to be prescribed in the calculation

type definition, where the latter remains constant throughout the simulation. During a

strength reduction analysis, FoS is incrementally increased, which results in an incremental

reduction of the shear strength parameters. Note that concepts for adaptive step-size

adjustment (Van Langen and Vermeer, 1990; Van Langen, 1991) could be used here,

however, preliminary studies showed less good predictions of the critical FoS obtained

within this framework. To enable strength reduction in specific clusters of the model,

an additional keyword (*Reducible strength) is introduced in numgeo for the material

definition. Thereby, computational costs associated with a shear strength reduction can

be reduced for cases where the area of interest is known a priori. Furthermore, failure

needs to be defined to allow for an automatic evaluation of stable an unstable states.

As described in Section 2.1.3, failure can be detected based on different approaches

in SRFEA, for instance a continuous band of plastic points, large displacements, non-

convergence or other energy-based concepts. To detect non-convergence, convergence

criteria have to be checked, where failure is obtained for cases when, depending on the

definition, one single or multiple convergence criteria could not be met within a pre-

defined number of iterations. In numgeo, force-based, energy-based or solution-based

(i.e. displacement-based) criteria can be applied, either for the average of all types of

degrees of freedom (DoF, e.g. displacement and pore water pressure) or for each DoF

individually.

The global convergence criteria for unbalanced energy, unbalanced forces and maximum

change in solution used in numgeo are given in Eq. 5.2, Eq. 5.3 and Eq. 5.4, respectively,

where ‖ t ‖2 is the Euclidian norm and t(i) refers to the current iteration of the current
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increment.

|
(
r(i)
)T
c(i)| ≤ εe |

(
r(i=0)

)T
∆d(i)| (5.2)

‖r(i)‖2 ≤ εr max
(
‖fext‖2 , ‖fint‖2 , ‖M d̈‖2

)
(5.3)

‖c(i)‖2 ≤ εd ‖∆d(i)‖2 (5.4)

Here, r = fint−fext, c, ∆d denote the residuum of the right-hand side, the correction and

the solution increment, fext, fint and M d̈ refer to the external, internal and inertial load

vectors and εe, εr and εd are the allowable errors for the energy-based, the forced-based

and the solution-based convergence criteria, respectively. To decide which convergence

criterion may serve as the critical one to detect non-convergence in a strength reduction

analysis in numgeo, the suitability of all criteria described above is checked with regard to

reliability and robustness considering different effects. Those effects include dependencies

on the overall model size, the area of interest, the mesh discretization, the allowable

number of iterations to find equilibrium and material effects such as associativity, where

the former two are discussed in this and the following section, while the latter one is

addressed in Section 5.4. Note that analyses with regard to the mesh discretization and

the allowable number of iterations have been studied, but are not explicitly reported here.

A suitable criterion is found in case that for a fixed allowable error, accurate FoS values

are predicted independently of those effects.

Preliminary studies showed that none of the convergence criteria defined above is capable

to accurately predict the FoS for all scenarios investigated. To be more specific, the force-

based criterion (Eq. 5.3) may not serve as a suitable criterion (in its presented form) due

to a decisive dependency on the model size. Although accurate FoS predictions are made

for many examples, the solution-based criterion (Eq. 5.4) is not capable to detect failure

for materials with associated and non-associated flow rule with the same set of allowable

errors. A modified force-based criterion (Eq. 5.5) with εr = 0.01 may resolve most issues

for regular slopes. Moreover, in case additional adjustments are considered for elements

and nodes outside of the area of interest, model size effects can be avoided. Still, in

case the area of interest is large in relation to the size of the individual slopes (e.g. for

stepped slopes), model size dependencies remain, yielding inaccurate FoS predictions.

More reliable results were obtained for a force-based criterion only relating residuum

terms (Eq. 5.6), however, a definition of a constant and reliable allowable error εr was not

possible for all examples analyzed.

‖r(i)‖2 ≤ εr ‖f (i)
ext‖2 (5.5)

‖r(i)‖2 ≤ εr ‖r(i=0)‖2 (5.6)
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Furthermore, it was found that combinations of convergence criteria may yield more

accurate FoS predictions compared to individual convergence criteria. Therefore, a com-

bination of the solution-based criterion (Eq. 5.4) with εd = 0.1, the modified force-based

criterion (Eq. 5.5) with εr = 0.01 and the residuum-based criterion (Eq. 5.6) with εr = 0.9

could be applied. Note that although this combination of convergence criteria yields very

promising FoS predictions, there is no ultimate guarantee that the FoS prediction is cor-

rect for all slope geometries and soil layer setups possible. As discussed in the subsequent

sections, for a few examples, the allowable errors for the convergence criteria are not strict

enough in order to force termination of the simulation due to non-convergence. Additional

engineering judgment is required to identify unrealistic FoS predictions. Note that the

latter fact does not allow to completely automate the determination of the FoS. Moreover,

high sensitivity of the FoS on the allowable errors was observed in trial analyses.

An alternative strategy to detect failure can be followed by evaluation of the FoS ver-

sus maximum displacement curve saved in the numgeo simulation status file (*.sta) dur-

ing SRFEA. Analyzing this data with displacements scaled linearly as depicted in the left

subplot of Fig. 5.1, it is observed that maximum displacements increase with increasing

FoS, however, it is difficult to define failure and detect the critical FoS. In contrast, for

displacements plotted in logarithmic scale (right subplot in Fig. 5.1), it is observed that

the FoS versus displacements curve is characterized by a decisive kink. This kink can

be located analytically by evaluation of the evolution of the slope of this curve, where

the critical FoS corresponds to a significant drop of the slope within a small number of

FoS increments. To automate the evaluation of the FoS using this concept, the largest

reduction of the slope for two consecutive sets of each two points is sought. Similar to

the determination of the ultimate capacity for shallow or deep foundations based on load

displacements curves, two tangents could also be fitted to the curve, where the vertical

coordinate of the intersection point corresponds to the FoS. To reduce computational

costs associated with this approach for the evaluation of the FoS, an additional input pa-

rameter could be defined as an upper limit of maximum displacements ûmax. Once ûmax

is exceeded, SRFEA should be terminated, though evaluation of the FoS would still be

conducted with regard to the displacement-based evaluation discussed above.

To demonstrate the applicability of the displacement-based evaluation of the factor of

safety, an example slope is investigated here. For the slope inclined at β = 30◦ composed

of a homogeneous soil with γ = 20 kN/m3, ϕ = ψ = 30◦ and c = 6 kPa, benchmark

simulations with Plaxis2D and OptumG2 predicted a slope stability of FoS = 1.49. To

conduct the displacement-based evaluation of the FoS, default convergence criteria with
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Figure 5.1: Evaluation of slope stability based on factor of safety versus maximum dis-

placement plot

rather loose allowable errors are considered in the numgeo simulation to evaluate the FoS

solely based on the displacement-based criterion. The FoS versus maximum displacement

curve obtained with numgeo is depicted in Fig. 5.1 with displacements plotted in linear

(left) and logarithmic (right) scale. Using the displacement-based evaluation of the FoS

for this example, slope stability is evaluated as FoS = 1.50, which is in good agreement

with the benchmark results. Note that similar FoS were also obtained using the modified

force-based criterion with εr = 0.01 as well as using a combination of the solution-based

criterion (Eq. 5.4) with εd = 0.1 and the modified force-based criterion (Eq. 5.5) with

εr = 0.01. A potential explanation for similar FoS obtained for this example is that the

area of interest was large compared to the overall model size.

5.3. Preliminary investigations

Effect of model size

To emphasize the impact of the model size on the FoS prediction, a slope with a height

of 10 m and a sloping angle of β = 45◦ is embedded in a large model depicted in Fig. 5.2

composed of three domains, the slope, the subsoil, and the far field with a maximum

model width and height of 250 m and 60 m, respectively. The material behavior of all

domains is described by the Mohr-Coulomb model with material parameters selected as

unit weight γ = 20 kN/m3, Young’s modulus E = 30 MPa, Poisson’s ratio ν = 0.2,

cohesion c = 30 kPa, friction angle ϕ = 30◦ and dilation angle ψ = 30◦. To estimate a
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Figure 5.2: Slope model to study the effect of the model size on the FoS

reference solution of the FoS as a benchmark for the simulations with numgeo, stability

analyses have been conducted with Plaxis2D and OptumG2. Two simulations have been

performed with both software packages, where the far field area is included in the first

and neglected in the second simulation. OptumG2 yields FoS = 1.95 independently of the

model size, while Plaxis2D yields FoS = 1.92 for the small model neglecting the far field

area and FoS = 1.93 for the large model considering the far field area.

Note that only for this example different convergence criteria and combinations thereof

are discussed. Further stability analyses presented in the following sections are evaluated

with regard to the evolution of the FoS versus maximum displacement curve saved in the

numgeo simulation status file (*.sta) during SRFEA.

Conducting SRFEA with the modified force-based criterion (Eq. 5.5) with εr = 0.01,

evaluation of the FoS using numgeo results in FoS = 1.96 and FoS > 2.17 for the small and

the large model, respectively. It is seen that for the small model, very good agreement with

the benchmark solution is obtained, while significant over-prediction of FoS is obtained

for the larger model. This is due to the fact that the area of the slope highlighted

in light gray (Fig. 5.2) only represents 1.21 % of the area of the total model, whereby

the unbalance expressed in terms of the residuum in this area is small compared to the

external forces of the total system. Note that although the large model has not obtained

a failure state for a strength reduction factor of SRF = 2.17, massive displacements are

observed with maximum values of umax = 4.3 m. Thus, although huge displacements of

more than 40 % of the slope height are encountered, failure is not detected based on this

convergence criterion. Note that even worse FoS predictions are obtained when applying

the force-based criterion according to Eq. 5.3 as the norm of the residuum is compared

to ‖fint‖2.



5.3. Preliminary investigations 111

Considering the force-based criterion according to Eq. 5.5 with εr = 0.01 and with ad-

justments of the model in terms of keeping constant the stress and deformation state in

the far field area and neglecting external forces in that part, the influence of the model

size vanishes and SRFEA in numgeo yields FoS = 1.96 for the large model, as well. This

is achieved by applying zero incremental deformation constraints (∆u = 0) to all nodes

in the far field area and additionally neglecting the effect of body forces (gravity) on the

elements in the far field area. Thus, model size effects on the FoS can be avoided when

using the modified force-based criterion (Eq. 5.5) for the slope stability analysis of the

area of interest, while keeping the current state of the surrounding soil. However, this

concept is not applicable for all boundary value problems, for instance stepped slopes that

are characterized by small individual slope sizes in relation to the overall area of interest.

Performing strength reduction analyses for the slope depicted in Fig. 5.2 utilizing the

combination of solution-based criterion (Eq. 5.4) with εd = 0.1, modified force-based

criterion (Eq. 5.5) with εr = 0.01 and residuum-based criterion (Eq. 5.6) with εr = 0.9,

respectively, it is observed that accurate FoS predictions are obtained for simulations

including and neglecting the far field area. In both cases, a slope stability of FoS = 1.95

is determined without any need to fix nodal displacements or neglect body force effects

in the far field area.

Performing SRFEA in numgeo with the default convergence criteria and rather loose

allowable errors (εr = 0.01, εd = 0.1), large displacements are obtained (Fig. 5.3), as

the detection of slope failure based on non-convergence was not successful. Though, a

clear change in the slope of the FoS versus maximum displacement curve is seen for
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Figure 5.3: Evaluation of displacement-based FoS for the example depicted in Fig. 5.2
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displacements plotted in logarithmic scale. Applying the displacement-based evaluation,

an accurate estimation of the slope stability is achieved with FoS = 1.96.

Stepped slope

To study if the displacement-based evaluation provides accurate FoS predictions in case

the area of interest is large in relation to the size of smaller individual slopes, a stepped

slope is investigated, as schematically depicted in Fig. 5.4. Note that the slope has a

general inclination of β = arctan(100 m/373 m) ≈ 15◦, but smaller individual slopes are

inclined up to β4 = 25◦. The material behavior of the soil is described by the Mohr-

Coulomb model with material parameters selected as unit weight γ = 20 kN/m3, Young’s

modulus E = 30 MPa, Poisson’s ratio ν = 0.2, cohesion c = 1 kPa, friction angle ϕ = 30◦

and dilation angle ψ = 30◦. As shear strength is dominated by frictional resistance,

a shallow failure surface is expected. Moreover, a local failure surface located in the

proximity of the steepest slope is expected, rather than a large (global) failure surface

spanning from the slope crest to the slope toe. To determine a reference solution of the FoS

as a benchmark for the simulations with numgeo, stability analyses have been conducted

for the stepped slope model with OptumG2 and Plaxis2D, resulting in FoS = 1.34 and

FoS = 1.35, respectively.

Strength reduction analysis with numgeo yields the evolution of maximum displacements

with increasing factor of safety as shown in Fig. 5.5 in linear (left) and logarithmic (right)

scale. Applying the displacement-based evaluation of the FoS with regard to the right plot,

a slope stability of FoS = 1.37 is predicted. Note that for this example FoS determination

would also be possible based on displacements plotted in linear scale, leading to the

same FoS. In general, very good agreement between the FoS predictions of Plaxis2D,

200 m 227 m

100 m

5 x 20 m
b  = 20°3

b  = 23°1

b  = 21.8°2

b  = 25°4

b  = 15°5

373 m

Figure 5.4: Geometry and dimensions of the stepped slope model
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Figure 5.5: Evaluation of displacement-based FoS for the stepped slope depicted in Fig. 5.4

OptumG2 and numgeo is obtained considering that the discretization of elements in the

proximity of the failure surface is of a better quality for the simulation with OptumG2 due

to adaptive mesh refinement. Still, as seen in Fig. 5.6 the approximation of the failure

surfaces using both FE software packages is in good agreement, as well. Note that, similar

to strength reduction schemes conducted with other FE software packages, the amount

of displacements obtained after SRFEA has no relevance for the slope stability problem

as only the FoS is relevant for the stability judgment.

5.4. Verification

5.4.1. Homogeneous slopes

To further verify the strength reduction method implemented in this thesis, compara-

tive analyses are conducted using results obtained with numgeo and Plaxis2D as well

as simulation results published in literature. Although the main purpose in this thesis

is to do slope stability analyses using the Matsuoka-Nakai model as part of the seismic

slope stability assessment, verification is primarily performed using the Mohr-Coulomb

model due to a lack of sufficient benchmark data available based on simulations with the

MN model. The main reason for this lack of data may be explained by the fact that the

Matsuoka-Nakai model has rarely been implemented in commercial FE software packages.
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Figure 5.6: Failure surfaces obtained with OptumG2 (plastic shear dissipation), Plaxis2D

(displacements |u|) and numgeo (displacements |u|) for the stepped slope depicted in

Fig. 5.4

SRFEA with MC model and associated plasticity

To verify the strength reduction method in combination with the Mohr-Coulomb model

and associated plasticity, comparative analyses are conducted with numgeo and Plaxis2D

for homogeneous slopes with varying sloping angles β and shear strength parameters ϕ and

c. Note that the dilation angle is kept equal to the friction angle to account for associated

plasticity (i.e. associated flow rule, AFR). Results are compared in Fig. 5.7 in terms of

FoS versus normalized cohesion with different curves and subplots referring to different

friction angles and sloping angles. Overall, normalized cohesion is varied in the range

0.0 < c/(γ ·H) ≤ 0.3, with γ and H denoting the soil unit weight and the slope height,

respectively, while friction angles 10◦ ≤ ϕ ≤ 40◦ and sloping angles of 15◦ ≤ β ≤ 60◦

are considered. In numgeo, slope stability is evaluated based on the displacement-based
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Figure 5.7: Comparison of FoS obtained with numgeo and Plaxis2D for various friction

angles, normalized cohesion values and slope inclinations

criterion discussed in the previous section for all case combinations. As can be seen from

this figure, good agreement between numgeo and Plaxis2D is obtained for all simulations.

A decreasing agreement is apparent for increasing slope inclination, leading to slightly

higher FoS using numgeo in particular for β = 60◦.

SRFEA with MC/MN model and non-associated plasticity

To verify the strength reduction method in combination with the Mohr-Coulomb and

Matsuoka-Nakai model considering non-associated plasticity (i.e. non-associated flow rule,

NAFR), comparative analyses are conducted utilizing results of a parametric study re-

ported by Tschuchnigg et al. (2018). In this study, SRFEA has been conducted with

Plaxis2D utilizing the in-built Mohr-Coulomb model and a user-material routine of the

Matsuoka-Nakai model. The slope has a height of H = 10 m and an inclination of
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Figure 5.8: Comparison of FoS obtained with numgeo and reported by Tschuchnigg et al.

(2018) considering the MC and MN model with non-associated plasticity

β = 26.67◦. While friction angle and cohesion are varied, other soil parameters are kept

constant during the parametric study. The latter group includes the soil unit weight,

the Young’s modulus, the Poisson’s ratio and the dilation angle with γ = 16 kN/m3,

E = 30000 MPa, ν = 0.2 and ψ = 0◦, respectively.

The results of the parametric study presented by Tschuchnigg et al. (2018), here referred

to as ’Benchmark’ are compared to numgeo results in terms of the predicted FoS in Fig. 5.8.

It is apparent from both subplots that very good agreement between the benchmark results

and the ones obtained using numgeo are obtained for all case combinations investigated.

Still, further comparative analyses should be conducted with different slope inclinations

and combinations of shear parameters to further check the quality of the FoS predictions.

Nevertheless, it has been demonstrated in this and the previous sections that SRFEA in

numgeo is capable to accurately predict the factor of safety for homogeneous slopes. To

check the quality of the method for layered slopes, additional benchmark problems are

investigated in the following subsection.

5.4.2. Benchmark problems

In this section two benchmark problems are investigated and results are compared to

previous studies in terms of FoS. Since both examples have been already presented and

discussed with regard to the verification of the limit equilibrium method in Section 3.4.4,

only a short summary of the main details is provided here.
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The first example has been investigated, among others, by Liu et al. (2015) and Liu et al.

(2020). The geometry, dimensions, soil layering and soil material parameters are depicted

in Fig. 3.15. The slope consists of four inclined layers, where a thin layer of material

No. 3, characterized by a significantly smaller shear strength compared to the other soil

material sets, has a major influence on the shape of the failure surface. A summary of the

FoS predictions obtained in various studies including Liu et al. (2015), Liu et al. (2020)

and the present study (Plaxis2D) is depicted in Tab. 3.4, suggesting that the critical FoS

should be found in the range of 1.05 ≤ FoS ≤ 1.11. Performing SRFEA with numgeo,

FoS = 1.08 is obtained, which is in good agreement with results reported in literature.

Moreover, analyzing the failure surface observed in numgeo (Fig. 5.9) it is apparent that

large amounts of the slip surface are located in layer No. 3 as the shear resistance in

this layer is significantly smaller compared to the surrounding soil layers. Thus, SRFEA

is also capable to accurately predict the FoS for slopes composed of multiple soil layers.

Moreover, precise approximation of the failure mechanism is observed, even for boundary

value problems with thin bands of weak soils. To further verify the latter statement, a

second example with multiple layers and a thin weak layer is investigated.

Figure 5.9: Failure surface obtained with numgeo (displacements |u|) for a slope composed

of inclined layers depicted in Fig. 3.15

The second example is composed of a homogeneous slope with a horizontal thin weak

layer below the slope toe. The geometry, dimensions, soil layering and soil material

properties are depicted in Fig. 3.13(b). As summarized in Tab. 3.3, slope stability has

been determined in the range of 1.22 ≤ FoS ≤ 1.36. Further results for this benchmark

can also be found in Sloan (2013). Performing SRFEA with numgeo, FoS = 1.22 is
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obtained, which is in good agreement with results reported in literature, especially with

the simulation results of Plaxis2D obtained in the present study. Analyzing the critical

failure surface depicted in Fig. 5.10, it is apparent that the soil failure mass slides on the

weak layer due to its low shear resistance.

Figure 5.10: Failure surface obtained with numgeo (displacements |u|) for a homogeneous

slope with a thin weak layer below the slope toe depicted in Fig. 3.13(b)



6. Approaches for the assessment of

seismic slope stability

6.1. Motivation

For the assessment of the behavior of a slope subjected to seismic loading, a dynamic finite

element analysis (DFEA) should be conducted, utilizing sophisticated constitutive models

that enable capturing relevant effects, for instance accumulation of strains and built-up

of excess pore water pressures. The DFEA provides information about displacements

and potential soil liquefaction that can be used as a first estimate for the seismic slope

stability. To quantitatively evaluate the seismic slope stability based on the results of the

DFEA, judgment based on project specific displacements or strains is necessary, requiring

substantial experience of practitioners. Since practitioners may define different threshold

values, this type of slope stability assessment must be regarded as rather subjective.

Utilizing well-established slope stability approaches subsequent to the DFEA, the question

arises which assumptions are required to approximate spatial distributions of stresses,

accumulated pore water pressures and accelerations. Note that these distributions, as

schematically depicted in Fig. 6.1, vary with regard to location and time.

To overcome this issue, the aim is to develop, apply and compare different approaches

for an objective assessment of seismic slope stability. In this chapter, four approaches

are presented1, including details about their motivation, (implicit) assumptions, advan-

tages and drawbacks as well as potential for further development. These approaches are

based on four different methods, namely the limit equilibrium method (LEM), the fi-

nite element limit analysis (FELA), the strain-dependent slope stability (SDSS) and the

strength reduction finite element analysis (SRFEA). Note that the former two and the lat-

ter approach consider seismic effects based on modifications of the pseudo-static approach

1Note that to emphasize details with regard to the approaches discussed in this chapter, figures linked

to the boundary value problem discussed in Chapter 7 are presented.

119
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(PSA) to incorporate inertial forces caused by accelerations. In contrast, SDSS considers

seismic effects via the dynamic stress state that keeps the system in dynamic equilibrium.

All approaches have in common that they are conducted subsequently to DFEA, thus,

there is no influence of the choice of approach for the slope stability assessment on the

dynamic simulation.

Note that large deformations after a dynamic loading may also occur due to post lique-

faction flow failure (Kramer and Smith, 1997; Machaček et al., 2018; Machaček, 2020),

which requires investigation of the boundary value problem for larger time spans after the

seismic excitation. As excess pore water pressures might redistribute during the consoli-

dation process, scenarios are conceivable in which significant excess pore water pressures

develop in areas that did not liquefy or experience large excess pore water pressures be-

fore. Thereby, the level of safety of a slope expressed in terms of FoS might even be

decreased below the most critical level of safety observed during the dynamic loading.

As computational costs associated with DFEA are large, DFEA are usually performed

until accelerations and velocities have decreased to a negligible level. Afterwards, tran-

sient analyses (e.g. consolidation analyses) can be conducted to determine the evolution

of stresses, strains, state variables, displacements and excess pore water pressures after

a seismic event. As the main difference between dynamic and transient analysis is the

consideration of damping and inertial terms in the former analysis type, all approaches

discussed in this chapter can also be utilized to evaluate slope stability for the latter

analysis type by neglecting contributions of inertial forces.

6.2. Spatial pseudo-static analysis using LEM

A common approach to evaluate the stability of a slope subjected to seismic loading

is the pseudo-static analysis (PSA) summarized in Section 2.2.1, where inertial forces

are considered additionally in the slope stability analysis. Inertial forces are determined

based on soil unit weight and seismic coefficients, the latter representing horizontal or

vertical accelerations normalized by gravity. Application of PSA in combination with limit

equilibrium methods (LEM) allows to consider seismic effects in terms of inertial forces in

each slice. Thus, PSA can be performed considering either constant or spatially varying

pseudo-static coefficients throughout the domain. As spatial distributions of pseudo-

static coefficients are not necessarily available for every boundary value problem, most

commercial LEM codes, such as GGU-Stability, only allow to specify constant pseudo-

static coefficients for the whole domain, thus no import of external spatial distributions
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Figure 6.1: Pseudo-static analysis using the method of slices considering spatial variation

of accelerations and excess pore water pressures

is possible. Other codes, such as Quake/W (GeoStudio, 2020), allow to conduct DFEA

with a limited number of constitutive models to approximate the spatial distribution

of seismic coefficients and excess pore water pressures. Note that excess pore water

pressures may have a decisive impact on the slope stability and should also be considered in

PSA. More accurate spatial distributions of the seismic coefficients and excess pore water

pressures for use in stability analyses can be obtained from a DFEA with sophisticated

constitutive models and proper finite element formulations. However, if available LEM

software packages do not allow to import these distributions, the seismic slope stability

assessment cannot be conducted in an accurate manner.

geoSlice presented in Chapter 3 allows for the import of either a constant value or a

spatial distribution of pseudo-static coefficients (see Section 3.3), the former verified based

on a comparative analysis with GGU-Stability summarized in Fig 3.10. In addition,

spatial distributions of excess pore water pressure can be imported as well. Thereby, as

depicted in Fig. 6.1, seismic slope stability assessment can be conducted utilizing spatial

distributions of accelerations and excess pore water pressures, as for instance obtained

from a DFEA.

Considering a specific slice, as shown in Fig. 6.2, dynamic effects are taken into account

in geoSlice in terms of horizontal and vertical inertial forces ∆Hi and ∆V ±i and the

resulting accumulated excess pore water pressure force ∆Uacc. As it is unknown a priori

whether ∆Vi directed upwards or downwards (±) yields more critical results, slope stability

needs to be evaluated for both directions. In the last subplot of Fig. 6.2 the red and blue

dots represent potential locations at which seismic coefficients (A1 - A3) and excess pore

water pressures (P1 - P3) can be interpolated to allow for an appropriate determination
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Figure 6.2: Slice details with regard to geometry (left), resulting forces (center) and lo-

cation of points for interpolation of seismic coefficients A1 - A3 and excess pore water

pressures P1 - P3 (right)

of average values. Note that the selection of three points each is exemplary and can be

adjusted to consider more or less nodes for interpolation. However, as interpolation has to

be conducted for each node in each slice for each slip surface analyzed, computational costs

increase with increasing number of nodes. Thus, it is advisable to select an appropriate

number of nodes based on the density of the spatial distribution of seismic coefficients

and excess pore water pressures.

6.3. Cluster-based pseudo-static analysis using FELA

6.3.1. General idea

To analyze the evolution of the FoS during earthquake loading, DFEA is followed by a

series of strength reduction analyses within the framework of finite element limit analysis

(FELA) at predefined time intervals of the DFEA. To ensure proper evaluation of the slope

stability, transfer of information from DFEA to FELA is required. The information to be

transferred include the effective stress state, the friction angle and the cohesion (in case of

cohesive soils) to approximate the shear strength, as well as the total stress state and the

pseudo-static coefficients to reproduce the inertial forces. In a preliminary stage, different

FE software packages, among others numgeo, Plaxis2D, Abaqus and OptumG2 have been
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analyzed regarding their ability to perform stability analyses with a proper discretization

of elements close to the failure surface. Even more critical for the decision was the

software’s ability to allow importing stress states as well as spatially varying inertial

forces and material parameters. Based on the preliminary findings, it was concluded

that the requirements are only met in a satisfactory manner by OptumG2 (OptumG2,

2019). Although numgeo and Abaqus meet the requirements regarding the import of state

variables and material properties, no adaptive mesh refinement is available. Note that

other software packages, for instance Plaxis2D, do not allow for an import of spatially

varying data and material parameters in a straightforward way. The application of numgeo

for the dynamic earthquake analysis is necessary because most software packages do not

allow for dynamic analyses together with consideration of consolidation effects, nor do

they offer sophisticated constitutive soil models suitable for cyclic loading.

In OptumG2, stability analyses are conducted based on strength reduction in FELA. As

explained in Section 2.1.4, FELA is based on the limit theorems of plasticity (Drucker

et al., 1952), thus, lower and upper bound solutions are determined, bracketing the ex-

act solution from below and above, respectively. Considering the transfer of information,

OptumG2 allows to import spatial variations of material parameters such as friction angle,

cohesion, or soil unit weights. To preserve information – for instance the stress state to

obtain an initial equilibrium for the stability analysis – spatial approximation of material

parameters (e.g. unit weights) is considered. To accurately approximate failure mecha-

nisms, adaptive mesh refinement can be used in OptumG2. A drawback of the application

of OptumG2 for the herein presented approach is that no direct import of stress states or

inertial forces is possible. To overcome the latter issue, a cluster-based approach is used

as indicated in Fig. 6.3. Further details about the mapping of stresses, inertial forces and

friction angles as well as the consideration of a non-associated flow rule are discussed in

the subsequent sections.

To evaluate the FoS for a specific time step tdyn of the DFEA, the workflow depicted

in Fig. 6.4 is followed to generate a FE model for the strength reduction analysis using

FELA. This model – with all information written in the OptumG2 RUN file – is created with

regard to a OptumG2 BASE file that contains information about the geometry of the slope

and the clusters, the boundary conditions and the calculation type. Placeholders are used

in the BASE file to enable the import of mapping information via Python scripts based

on simulation results of the DFEA, for instance with respect to the friction angle or the

unit weight. Additional placeholders are set with regard to the horizontal and vertical

pseudo-static coefficients for each cluster. The largest effort in the generation of the
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Figure 6.3: Cluster-based pseudo-static analysis using FELA considering spatial variation
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models for the stability analysis is related to the generation of the BASE file/model and

the linking between the individual clusters and the Python scripts using the placeholders.

Once the BASE model is created and the preprocessing of the output data of the DFEA

is conducted, the generation of RUN models is almost identical for different time steps.
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Figure 6.4: General approach for the evaluation of the seismic slope stability by cluster-
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6.3.2. Mapping of stresses

The most comfortable way to map stresses between two FE models would be to use

identical meshes and element types allowing for a direct transfer of state variables from

the integration points of the first model to the corresponding integration points of the

second model. Thereby, a direct transfer of the effective and total stress states from

the DFEA to the finite element model utilized for strength reduction analysis would be

achieved. However, as a direct import of stress states is not possible in OptumG2, a different

strategy is sought. In OptumG2, the unit weight of the unsaturated soil γunsat and the unit

weight of the saturated soil γsat can be prescribed. Considering a fully saturated slope

as presented in Chapter 7, γunsat can be neglected as it has no influence on the analyses,

making γsat the only available parameter for the spatial approximation of stresses. The

effective unit weight γ′ is automatically determined in OptumG2 based on γ′ = γsat − γw,

where γw is the unit weight of water. To approximate the effective stress state with the

results obtained in the DFEA, a spatial distribution of γ′i is back-calculated from the

effective stresses σ′yy,i at each integration point i of the DFEA and its overburden height

hi (Eq. 6.1). This distribution is imported into OptumG2 in terms of γsat = γ′ + γw.

γ′i =
σ′yy,i

hi
(6.1)

Following this approach, the spatial variation of the effective unit weight γ′ obtained from

the DFEA (Section 7.2.2) is depicted in Fig. 6.5 for four different time steps during seismic

loading. As can be seen from this figure an almost homogeneous distribution of γ′ is

obtained for t ≤ 2.0 s, because only hydrostatic pore water pressures exist. With ongoing

excitation, shear waves propagate towards the slope, which results in the build-up of
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excess pore water pressures since the loose material tends to densify under shearing. As a

consequence, the effective stress and thus γ′ decrease. Comparing the spatial distributions

of effective unit weights for different time steps, it is apparent that a significant reduction

to approx. γ′ = 5 kN/m3 is observed along the slope surface at t = 3.0 s. This is intensified

at t = 3.5 s with effective unit weights approaching γ′ = 0 kN/m3. Interestingly, it is seen

that effective unit weights decrease strongest at the slope crest. Note that from a physical

point of view, effective unit weights would not decrease in the same way, but would remain

almost constant. The reduction in γ′ solely results from the need to consider excess pore

water pressures to approximate the overall effective stress state.

To evaluate if the mapping of effective unit weights yields an accurate spatial distribution

of the effective stress state used in the stability analyses, a comparison of stress states

obtained with numgeo and OptumG2 is depicted in Fig. 6.6 in terms of depth profiles of

vertical effective stresses for multiple horizontal coordinates (see Fig. 6.5) along the slope

and time steps. It is apparent from this figure that good agreement between the stress

states in both finite element codes is achieved. Nevertheless, it is observed that close to

the slope crest (x = 1150, 1200 m), the approximation of effective stresses is satisfying

only close to the ground surface, whereas underestimation is seen with increasing depth.

A potential explanation for this observation can be given with regard to the estimation of

unit weights according to Eq. 6.1, which yields an average unit weight with regard to the
FELA-Stress-Profiles-key
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total height. A better approximation could be obtained using an incremental approach

that allows the determination of unit weights with regard to stress variation in close

proximity. Nevertheless, as the slip surface is expected to be located in a shallow depth,

an approximation of the effective stresses is considered appropriate for the entire model.

Considering the mapping of the total stress state, it should be noted that the concept

discussed above may result in an underestimation of the total stresses in those cases where

excess pore water pressures are built up during the earthquake loading. However, as there

is no possibility of importing excess pore water pressures in OptumG2, this underestimation

cannot be avoided. An explanation for this underestimation can be given with regard to

the total unit weight γtot that should be determined based on γtot = γ′ + γw + ∆pw/hw.

However, as only a single unit weight parameter can be prescribed for saturated condi-

tions, either the effective or the total stress state can be approximated well. For this

approach, it was decided to accurately approximate the effective stress state to enable

proper determination of shear resistance. Still, as the total stress state is used to de-

termine inertial forces, underestimation of the latter is to be expected. An approach to

overcome this issue is discussed in the next section.

6.3.3. Mapping of inertial forces

In contrast to material parameters (e.g. unit weights, friction angle), which can be im-

ported to OptumG2 in terms of unstructured table data, it is not possible to import inertial

forces or pseudo-static coefficients in the same way. Instead, pseudo-static coefficients can

only be assigned to predefined areas, referred to as clusters in this study. In order to enable

the mapping of inertial forces, the idea is to define a collection of clusters, calculate aver-

age accelerations within them and assign corresponding pseudo-static coefficients to these

clusters. The inertial forces in the horizontal and vertical direction are determined (in

OptumG2) based on the product of pseudo-static coefficients kh/v and weight W according

to Eq. 2.8 and Eq. 2.9, respectively.

Note that the weight W should be the total weight, such that inertial effects stem from

accelerated soil-water mass. However, the total weight is underestimated in cases where

excess pore water pressures are built up during the earthquake loading since the mapping

concept of the effective stresses (Section 6.3.2) results in an underestimation of the total

unit weight in those cases. As the total unit weight is determined as γsat instead of γtot

to accurately predict γ′ (see discussions above), this underestimation also influences the

determination of the inertial forces. To compensate for the reduced total stresses for the
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determination of the inertial forces, a factor Υ is introduced as the fraction of the total

unit weight γtot and the reduced total unit weight γsat according to Eq. 6.2. This factor is

multiplied with the pseudo-static coefficients to allow for a more accurate approximation

of the inertial forces.

Υ =
γtot

γsat

(6.2)

To account for the spatially variable nature of inertial forces in the simulation, the com-

putational model is divided into a multitude of clusters. As the geometry of the clusters

(e.g. shape and size) may have a significant impact on the quality of the approximation,

preliminary studies have been conducted investigating the effect of different shapes (e.g.

rectangle, parallelogram) and size of clusters on the slope stability. It was found that

approximations via parallelograms with the inclination of the embankment slope yield

reliable results in combination with small cluster sizes that achieve higher accuracy in the

approximation of the inertial forces. Note that drawbacks associated with small cluster

sizes are high computational costs due to larger numbers of finite elements required for the

stability analysis and potential discretization issues. In addition, the effort and complex-

ity to generate the OptumG2 BASE files, including linking of these clusters to the Python

scripts, increases with an increasing number of clusters. Thus, a cluster size should be

selected that balances accuracy and computational costs, yet yielding robust and reliable

estimates of the FoS. A schematic illustration depicting an original distribution of accel-

eration magnitudes obtained from a DFEA together with spatial approximations using

parallelograms of varying sizes is given in Fig. 6.7. Note that parallelograms exceeding

the right edge of the model are cut as only the slope area is considered in the stabil-

ity analysis. Analyzing the quality of the different approximations shown in this figure,

it is apparent that the size of the clusters has a decisive impact on the representation

of the spatial distribution of accelerations. For the stability analyses performed in Sec-

tion 7.3.2, the height and base of the clusters were chosen to be h = 0.05 ·H = 5.0 m

and b = 0.10 ·H = 10.0 m, respectively, where H is the height of the slope, resulting in a

total number of 380 clusters. With this cluster size, a proper approximation of the spatial

distribution of inertial forces is enabled using parallelograms, while computational costs

of the stability analyses do not exceed the capacity of standard desktop computers.

6.3.4. Mapping of friction angle

As the hypoplastic model cannot be used to conduct strength reduction analysis in

OptumG2, a switch of the constitutive model (i.e. model change) is required. In con-
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Figure 6.7: Approximation of the spatial distribution of acceleration magnitudes with

different cluster sizes

trast to the hypoplastic model in which shear strength is not described by a constant

friction angle, in simple elastoplastic models used for stability analyses, shear strength

parameters (cohesion and friction angle) are usually constant. However, the question

arises which friction angle should be used in the stability analyses. A conservative es-

timate would be to apply the critical friction angle ϕcrit for the stability analyses. As

the critical friction angle is a constant material parameter of the hypoplastic model, it

is independent of the boundary value problem or the dynamic loading; thus, it can be

used throughout the whole domain for any time step. Note that applying ϕcrit, density

(pyknotropy) and confining pressure (barotropy) effects are neglected, which may result

in very conservative estimates of the slope stability.

Considering the stress–dilatancy correlations proposed by Bolton (1986), the peak friction

angle ϕmax can be determined based on the critical friction angle ϕcrit, the relative dila-

tancy IR and a constant m according to Eq. 6.3. The relative dilatancy IR is calculated

from the initial relative density ID0, a model parameter Q linked to the particle crushing

strength σc, the effective mean stress p′ and a model parameter R. Bolton (1986) suggests

Q = 10 for quartz and feldspar grains, R = 1.0 for a wide range of sands and m = 5
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and m = 3 for plane strain and triaxial conditions, respectively. More recent studies, for

instance by White et al. (2008), suggest smaller values of m such as m = 1.6 based on

analyses of the vertical bearing capacity of shallow foundations using centrifuge model

tests. Choosing m = 1.6 and an initial relative density ID0 = 0.3, the difference between

peak and critical friction angles would not be larger than ϕmax − ϕcrit = 3.2◦ for mean

stresses p′ ≥ 1.0 kPa. However, this difference increases up to ϕmax − ϕcrit = 10.0◦ when

using the original value of m suggested for plane strain conditions.

ϕmax = ϕcrit +m · IR (6.3)

IR = ID0 · (Q− ln p′)−R (6.4)

Considering the Bolton approach with m = 1.6, the spatial distribution of the friction

angle is depicted in Fig. 6.8 for four different time steps of the dynamic excitation phase.

Note that, in general, increased friction angles are obtained close to the ground surface

due to smaller effective mean stresses. As seen in the last sub-figure, friction angles at

the slope crest further increase with increasing dynamic time as effective mean stresses

decrease due to the seismic loading.

6.3.5. Consideration of a non-associated flow rule

As an associated flow rule is a prerequisite of limit analysis and accordingly also finite ele-

ment limit analysis (FELA), parameter sets used for simulations with FELA are restricted

to a dilation angle that equals the friction angle (ψ = ϕ). However, the stress-strain behav-

ior of soils is not well captured following an associated flow rule as this leads to significant

overestimation of plastic volumetric strains. Therefore, a non-associated flow rule should
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Figure 6.8: Spatial approximation of the friction angle for different time steps



6.3. Cluster-based pseudo-static analysis using FELA 131

be applied. Note that a non-associated flow rule refers to different yield and potential

surface used in the constitutive model, which can be achieved by applying similar func-

tions for both surfaces but using ψ < ϕ. It is important to understand that utilizing a

non-associated flow rule, velocity and stress characteristics denoting lines of major/minor

principle stresses and velocities, respectively, are not parallel anymore. Considering that

it is generally accepted that the velocity characteristics do better approximate the failure

surface compared to the stress characteristics, corresponding shear strength parameters

should be used (Davis, 1968; Roscoe, 1970; Tschuchnigg et al., 2015a). Therefore, Davis

(1968) introduced a strength reduction factor βfailure to derive reduced shear strength pa-

rameters (c∗, ϕ∗) for a given dilation angle ψ following Eqs. 6.5 - 6.7. This approach was

verified by Roscoe (1970), who evaluated direct shear tests.

c∗ = βfailure · c (6.5)

tanϕ∗ = βfailure · tanϕ (6.6)

βfailure =
cosϕ · cosψ

1− sinϕ · sinψ
(6.7)

Analyzing the influence of the dilation angle on slope stability, Tschuchnigg et al. (2015b)

have shown that stability analyses using an associated flow rule lead, especially for fric-

tional soils, to over-prediction of the FoS. This over-prediction increases with increasing

friction angles and decreasing dilation angles, thus with an increasing degree of non-

associativity (Λ = ϕ−ψ). However, it was found that the Davis (1968) approach resulted

in better but slightly conservative predictions of the FoS. Similar observations were also

made for other geotechnical boundary value problems, for instance, the passive earth

pressure problem (Nordal, 2008; Schmüdderich et al., 2022b). Tschuchnigg et al. (2015a)

proposed extensions of the Davis approach (referred to as “Davis B” and “Davis C”)

by consideration of the current FoS for the determination of the updated reduced shear

strength parameters, the former extension given in Eq. 6.8. In contrast to the Davis

A approach, which only required a single stability analysis, three to four iterations are

required when using Davis B to converge to a constant FoS and βfailure.

βfailure =
cos
(
arctan

(
tanϕ
FoS

))
· cos

(
arctan

(
tanψ
FoS

))

1− sin
(
arctan

(
tanϕ
FoS

))
· sin

(
arctan

(
tanψ
FoS

)) (6.8)

The dilation angle must be known in order to conduct analyses based on the Davis A

or B approaches. In general, the sine of the dilation angle can be defined in accordance

with Eq. 6.9 as the ratio between the volumetric strain increment δεvol and the deviatoric

strain increment δεq. However, as the shear strain increment varies strongly during the
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earthquake loading, this effect directly propagates to the dilation angle ψ, potentially

resulting in a large scatter of the FoS.

sinψ =
δεvol

δεq

(6.9)

Based on findings by Bolton (1986) that the rate of dilation is identical for triaxial and

biaxial strain, Schanz and Vermeer (1996) rearranged the terms of the stress–dilatancy

correlations (Bolton, 1986), to determine the dilation angle with regard to the relative

dilatancy IR (Eq. 6.4) as follows

sinψ =
0.3 · IR

2 + 0.3 · IR
(6.10)

This definition is applied for the approach at hand to determine the spatial distribution

of the dilation angle and enable analyses with the Davis approaches.

6.4. Strain-dependent slope stability for earthquake

loading

6.4.1. Motivation

Evaluating the stability of slopes subjected to earthquake loading in terms of a FoS is a

difficult task when not relying on pseudo-static or pseudo-dynamic approaches. As em-

phasized in Section 2.2.4, advanced finite element schemes and sophisticated constitutive

models are required to approximate the dynamic system behavior accurately, including

effects such as damping, strain accumulation or accumulation of excess pore water pres-

sures. However, constitutive models that meet these requirements can usually not be

applied to standard strength reduction analyses because the shear strength is not only

controlled by the friction angle but additional material parameters must be considered.

For this reason, the majority of researchers have not treated the problem of slope stability

under seismic conditions evaluated in terms of FoS considering sophisticated constitutive

models extensively. Most studies in this field have either focused on static problems,

estimation of the FoS utilizing approximate methods such as pseudo-static or pseudo-

dynamic approaches combined with simple elastoplastic constitutive models, estimation

of displacements based on the analogy of a rigid sliding block, or only investigated liq-

uefaction and deformation problems related to earthquake loading without analyzing the

FoS.
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In contrast, the concept of strain-dependent slope stability (SDSS) by Nitzsche and Herle

(2020) enables the evaluation of the FoS considering sophisticated constitutive models.

However, it only allows analyzing slope stability problems for static conditions and has

some drawbacks when tackling dynamic problems. Thus, a valuable contribution to slope

stability evaluation for seismic problems can be made by extension of the original SDSS

(Schmüdderich et al., 2022a), which is proposed in the following. A schematic illustration

of the SDSS and a flow-chart providing further details with regard to the optimization

are given in Fig. 6.9 and Fig. 6.10, respectively.

In this section, discussions are provided with respect to three main aspects of adaption:

the shape of the slip surface, a more precise definition of initial shear stress τ0 used for

normalization and general thoughts about the effect of specific constitutive model features

on conservative and optimistic estimates of the FoS. Subsequently, a new methodology is

developed to significantly enhance the computational efficiency of the strain-dependent

slope stability concept by taking advantage of parallelization of element test simulations

as well as adaption of different machine learning algorithms.

6.4.2. Shape of the slip surface

In the original concept of the strain-dependent slope stability, the shape of the failure

mechanism is assumed to be of a wedge type with a linear slip surface. Nitzsche and

Herle (2020) report that this shape has been chosen as it allows to assume that the simple

shear conditions hold for any point along the slip surface. Thus, the development of shear

strains in terms of direction and magnitude is identical for all points along the slip surface.

By choosing other shapes of the slip surface, for instance circular or log-spiral shapes,
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Figure 6.9: Schematic illustration of the concept of strain-dependent slope stability
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Figure 6.10: Flow chart depicting the general concept of SDSS including optimization to

locate the critical slip surface

different conditions such as triaxial compression or extension could also occur along the

slip surface leading to difficulties in conducting the element tests and evaluating the global

mobilized shear resistance ratio T (γ) as the summation of individual shear stress versus

shear strain curves. Still, it should be noted that the assumption of a linear slip surface

significantly limits the potential boundary value problems to be investigated.

In this approach, a circular slip surface is investigated (Fig. 6.9 and Fig. 6.11). Due to a

rotation of the failure mechanism it is assumed that the rate of shear strains is identical in

magnitude along the slip surface, whereas their direction is tangential to the slip surface.

It should be noted that the assumption of a circular slip surface is, as well, not necessarily

a correct approximation of real case failure mechanisms; however, for most practical cases

it is a better one compared to a linear slip surface. Moreover, it enables the evaluation of

slip surfaces that enter and exit within the sloping area, which is relevant for slopes with

shallow slip surfaces, for instance, gentle slopes composed of sandy material subjected to

earthquake loading, as will be discussed later.

Generation of slip surfaces is performed using the entry-exit method (see Section 3.3) by

definition of entry, exit and radius points. Optimization to find the critical slip surface

can be conducted using different optimization schemes (see e.g. Fig. 6.10), for instance
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Grid Search, Particle Swarm Optimization (PSO) (Clerc, 2013) or Differential Evolution

(DE) (Storn and Price, 1997). Although trial analyses showed that optimization via

DE yields very accurate and reproducible results, brute grid search is chosen for the

majority of the simulations in this study to enable a fair comparison between different

element test simulation schemes based on identical numbers of simulations performed in

every case. Further analyses utilizing machine learning approaches have been conducted

with DE rather than PSO as trial analyses revealed significantly lower scatter for repeated

optimization runs. Similar observations have also been reported by Machaček et al. (2022)

with regard to the automatic parameter calibration of a hypoplastic soil model.

6.4.3. Reference state for normalization

Following the original concept by Nitzsche and Herle (2020), the global mobilized shear

resistance ratio T (γ) shown in Fig. 2.4 is constrained to start at T (γ = 0.0) = 1.0

for any slip surface under investigation, independent of any problem-specific boundary

condition or constitutive model used to simulate the soil behavior. The reason for this

is the normalization approach chosen which enforces division by the sum of the initial

shear stresses which always yields unity for the beginning of the T (γ) curve (see Eq. 2.7).

Although for softening soils the residual factor of safety (FoSres) may drop below unity, the

maximum factor of safety will always be larger than or equal to unity (FoSmax ≥ 1.0) due

to the fact that the initial value of global mobilized shear resistance ratio is always equal to

unity. For soil materials not showing softening behavior, the residual and maximum factor

of safety will always be larger than or equal to unity (FoSres ≥ 1.0 and FoSmax ≥ 1.0).

Therefore, it should be very clear that using the current approach and focusing on FoSmax

as an estimate for the safety at small shear strains, it is not possible to classify slopes as

unstable. In view of a static finite element simulation using advanced constitutive models

(e.g. multisurface bounding plasticity, hypoplasticity), this fact (FoSmax ≥ 1.0) may be of

subordinate importance as long as for unstable slopes numerical instabilities (e.g. large

strains and displacements leading to distorted element shapes) during the construction,

excavation or gravity loading phase of the finite element slope model prohibit finding an

equilibrium state and, thereby, an appropriate initial stress field for further slope stability

analysis2.

2Using constitutive models without failure criterion such as linear elasticity it is also possible to obtain

an initial stress field for “unstable” slopes, which would then be classified as stable using the approach

at hand.
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Figure 6.11: Determination of the global mobilized shear resistance ratio T for different

time steps of the dynamic excitation

It should be emphasized that the equilibrium which needs to be satisfied during the

finite element simulation is a dynamic equilibrium that also includes damping and inertial

effects. Therefore, a priori it is not clear if a slope which is in dynamic equilibrium during

an earthquake loading also satisfies the static equilibrium and should be classified stable or

unstable under static conditions. In this context, the advantage of stress-based approaches

including SDSS is that stresses at different points along the slip surface are elaborated

independently of the overall static equilibrium, whereas strength reduction schemes have

to make assumptions in a way to find a stable equilibrium, for instance approximation of

inertial forces via pseudo-static approaches.

To overcome the drawbacks discussed previously, the approach proposed is to choose

the initial shear stress used to derive the global mobilized shear resistance ratio T (γ)

based on the static equilibrium referred to as time step t0, see Fig. 6.11. Thereby, also

a fair comparison of different time steps is enabled as normalization of the mobilized

shear stresses is performed with respect to a fixed reference time step (t0). The updated

equation to evaluate the global mobilized shear resistance ratio T as a function of the

shear strain γ and the dynamic time tdyn then reads:

T (γ, tdyn) =

∑
i τmob,i(γ, tdyn)∑

i τ0,i(t0)
(6.11)

Compared to the evaluation of the global mobilized shear resistance ratio according to

Eq. 2.7, the computational effort for evaluation of Eq. 6.11 is slightly larger as stresses at
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each point i along the slip surface have to be determined for the current (tdyn) and the

reference time (t0). However, as only the initial shear stress is required at the reference

time, there is no need to also perform an element test. Thus, the increased computational

effort is limited to interpolation and rotation of the stress state at the reference time. In

view of the computational effort related to the computations conducted for the current

time including the simulation of the element test, the additional computational effort due

to evaluation of the stresses at the reference time is almost negligible.

6.4.4. Constitutive model

Nitzsche and Herle (2020) used an elastoplastic constitutive model with Mohr-Coulomb

failure criterion and a strain-softening rule controlling the critical friction angle to show the

effect of softening for SDSS. The current stresses at the points defining the failure surface

were interpolated from an initial stress field obtained using a finite element simulation.

However, no other information (e.g. additional state variables) has been transferred from

the finite element model to the element test simulations, thus, plastic strains controlling

the softening process have been reset to zero at the beginning of the element tests. As

the constitutive model used in (Nitzsche and Herle, 2020) can not properly approximate

the soil’s behavior under earthquake loading, the hypoplastic model with intergranular

strain (von Wolffersdorff, 1996; Niemunis and Herle, 1997) is used herein. Additional state

variables such as the void ratio and the components of the intergranular strain tensor are

interpolated at the points along with the stress state.

Element test simulations are performed with Incremental Driver (Niemunis, 2008). As

the hypoplastic stiffness is influenced by the intergranular strain, the shear stress versus

shear strain behavior under simple shear conditions is affected accordingly. To assess to

what extent IGS affects the evolution of shear stresses in a simple shear test, its influence

is investigated by comparison of the basic version of hypoplasticity (von Wolffersdorff,

1996) with and without the intergranular strain (IGS) extension. Simple shear tests have

been simulated with mean effective stresses of p′ = 5 kPa, p′ = 21 kPa and p′ = 146 kPa.

To investigate the maximum potential deviation between both models, the IGS tensor is

initialized with zero values (h0 = 0) leading to a large increase in the hypoplastic stiffness

at small strain levels. The results are presented in terms of shear stress τ versus shear

strain γ curves in Fig. 6.12. As can be seen from this figure, the stress-strain behavior

under simple shear conditions is significantly influenced by IGS in terms of the general

curve trend for shear strains γ < 0.1, in contrast to shear stresses at residual strains

(γ > 0.2) where the effect of IGS has vanished. Moreover, it is apparent from this figure
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Figure 6.12: Effect of IGS on simple shear test simulations for different mean effective

stresses p′

that IGS has an effect on the maximum shear stress, which is very large for small mean

effective stress levels and decreases with increasing mean effective stresses. For the curves

presented here, the increase in the maximum shear stress is approximately 150 % and 10 %

for small and intermediate mean effective stress levels, respectively, whereas no increase

in the maximum shear stress is observed for large mean effective stress levels.

In light of these findings, it should be clear that the effect of IGS on simple shear tests

also has an impact on the factor of safety obtained using SDSS, at least when the FoS

is determined at small shear strains or when the FoS is based on the maximum shear

stress. However, as the stress points in the slope area are subjected to multiple loading

and unloading cycles during the dynamic loading phase undergoing large strains, it is

expected that the IGS tensor is different from a null state, leading to smaller stiffness

increments during the analysis of FoS using element tests. Yet, if the orientation of the

last loading cycle in the dynamic phase varies significantly from the dip angle of the slip

surface, increased hypoplastic stiffness due to IGS is to be expected. Considering that, in

general, the evaluation of FoS is preferably based on a slightly conservative estimate rather

than a too optimistic one, IGS should thus not be considered in the stability analysis.

6.5. Spatial pseudo-static analysis using SRFEA

In contrast to the approaches proposed in the previous sections, the spatial pseudo-static

analysis using SRFEA aims to conduct the DFEA and the SRFEA using the same software
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package. numgeo software package was selected as main features relevant for this task

(e.g. DFEA and sophisticated constitutive models) have been implemented and verified

in advance of this study. As active coding was welcomed by the numgeo project leaders,

elastoplastic constitutive models (Mohr-Coulomb and Matsuoka-Nakai, see Chapter 4),

the strength reduction method (see Chapter 5) and further additional features have been

implemented in numgeo within the scope of the present thesis. Details about the general

approach, as well as existing and implemented features used to conduct the combined

DFEA and SRFEA are provided in the subsequent paragraphs.

In general, it should be noted that advantages of performing DFEA and SRFEA in one

software package include that the same interpolation schemes, element types and spatial

discretization of elements are used in both analyses. In numgeo, a restart is required to

enable a constitutive model change, for instance from Hypoplasticity with Intergranular

Strain (Hypo+IGS) used in DFEA to Matsuoka-Nakai used in SRFEA, which also enables

the transfer of additional information. In contrast to rough estimates or mapping concepts

applied in previous approaches, the transfer of stress states and state variables as well as

excess pore water pressures and displacements is enabled in the integration points and

nodes, respectively. Moreover, by usage of one software package, there is a huge potential

for automation of the two consecutive analyses. The following new features have been

added to numgeo to enable DFEA with subsequent SRFEA:

Reduction: SRFEA is conducted in numgeo using the calculation type *Reduction in

the step definition. Note that this keyword is followed by a line with two additional

inputs, which are the initial FoS (FoS0) used in the first increment of the SRFEA and the

FoS increment (∆FoS) that is added in each increment of the strength reduction analysis.

Until now, reduction of material shear strength parameters in a SRFEA is enabled only

in combination with the Mohr-Coulomb and Matsuoka-Nakai model, where an additional

flag called *Reducible Strength needs to be activated in the material definition. For

cases where strength reduction should only be applied to a section of the model, separate

parameter sets need to be defined to enable strength reduction in the area of interest

while keeping the original strength parameters outside of that area. Note that the initial

FoS should not be selected too small (FoS < 0.5) in order to avoid unrealistically large

friction angles.

Nodal dynamic force: It is important to note that the system is in a dynamic equilib-

rium during the simulation of a seismic event (e.g. earthquake loading), but slope stability

analyses are commonly performed based on a static equilibrium. To maintain the dynamic

state in the slope stability analysis, inertial forces are considered. In this approach, the
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global nodal dynamic/inertial force vector, which is the product of the mass matrix and

the acceleration vector, is saved together with the nodal and element information during

the dynamic simulation. In SRFEA, this nodal inertial force vector is imported and con-

sidered as additional external force vector. To import inertial forces from a previous step,

the keyword *Nodal dynamic force is used in the step definition.

Boundary, increment: In general, the *Boundary keyword is used to define boundary

conditions at nodes or nodes sets with regard to the solution variables (i.e. degrees of

freedom), where the latter depend on the element type. To maintain the deformed state

of the finite element model after the DFEA, boundary conditions in SRFEA should be

adapted in a way that displacement increments, not total displacements, are set to zero

at the model boundaries. This is achieved by selecting the option increment. Note that

setting total values rather than increments to zero would introduce incremental displace-

ments as the coordinates of the nodes at the model boundaries in the deformed state do

not necessarily match the ones in the undeformed state. The reason for this is that the

dynamic signal applied in terms of displacements/velocities/accelerations or distributed

loads leads to non-recoverable displacements of these nodes during the dynamic excitation

phase. Moreover, the increments of pore water pressures (i.e. the rates) can be set to

zero to maintain the spatial distribution of excess pore water pressures at a given time

step. This is achieved by applying the Boundary, increment keyword for the pore water

pressure (pw) to all nodes of the model.

Restart/Submodel: As mentioned above, SRFEA is conducted using a *Restart anal-

ysis that enables to change the material model and adjust the boundary conditions. A

*Restart analysis allows to restart a finished simulation in a second analysis starting with

the initial state of the first analysis. Note that this strategy is very inefficient and related

to large computational costs. The reason for this is that to analyze the evolution of the

FoS during dynamic loading, many DFEA have to be conducted, where each analysis is

stopped at a different time, intermediate results are saved and SRFEA is conducted via

restart. Considering a constant frequency over the full DFEA for which SRFEA should

be conducted, an equivalent of approx. n/2 DFEA analyses need to be performed, where

n is the number of SRFEA analyses. Thus, as an example, investigating the evolution

of FoS for 500 time steps of the DFEA, computational costs of the dynamic analyses

can be approximated by around 250 times the computational costs of a single DFEA. As

an alternative, *Submodel analyses can be conducted, which enable to conduct restart

analyses at predefined total time steps or frequencies. Note that the main advantage of

*Submodel analyses compared to *Restart analyses is that the original simulation, i.e.
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the DFEA, is not terminated but on hold. Once the SRFEA is finished at a specified time

of the dynamic loading, the original simulation is resumed. Thereby, not considering the

time required for writing the restart files, the computational costs related to the DFEA

performed during submodel analyses are identical to the computational costs of a single

DFEA. For this reason, the spatial pseudo-static analysis using SRFEA is conducted in

terms of DFEA and SRFEA coupled via submodel analyses considering the additional

features mentioned above. Note that the implementation of both features – *Restart

and *Submodel – into numgeo was not part of this work.

6.6. Major differences of the proposed approaches

To enhance the comprehensibility of the discussions in the subsequent chapters, in which

the seismic slope stability is assessed for different boundary value problems, major dif-

ferences of the approaches presented in this chapter are emphasized beforehand. Since

the names used for the approaches are rather long, the following short forms are used

in this section: (PSA-)LEM, (PSA-)FELA, SDSS and (PSA-)SRFEA. Major differences

of LEM, FELA, SDSS and SRFEA are discussed with regard to the approximation of

stresses, inertial forces, equilibrium, shear strength and failure mechanisms.

Approximation of stresses: In LEM, total vertical stresses are determined with re-

spect to the overburden height and the (un-)saturated unit weight of the soil (see Sec-

tion 6.2). Depending on the method applied, lateral stresses and shear stresses are es-

timated differently. Effective stresses are calculated by subtraction of hydrostatic pore

water pressures pw and excess pore water pressures ∆pw from the total stresses, where

pw is calculated based on the phreatic level and ∆pw can be back-calculated from DFEA

results at the nodes and interpolated for the slice bases. In the FELA approach, stress

distributions can not be prescribed directly, but via corresponding unit weights. To-

tal stresses are determined based on the overburden height and the (un-)saturated unit

weight of the soil and lateral stresses are calculated based on the vertical stresses and the

lateral earth pressure coefficient. Shear stresses are calculated in a way to satisfy equi-

librium conditions. Effective stresses are calculated by subtraction of hydrostatic pore

water pressures pw from the total stresses. Note that excess pore water pressures ∆pw

can not be considered separately. Thus, for cases where ∆pw > 0, either the total or

the effective stresses can be approximated properly (see Sections 6.3.2 and 6.3.3). By

ensuring a proper approximation of effective stresses in case of ∆pw > 0, total stresses are

underestimated, which is compensated by consideration of increased seismic coefficients.
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In SDSS and SRFEA, accurate distributions of total and effective stresses are used, since

no mapping concept is required.

Inertial forces: In pseudo-static approaches (PSA, see Section 2.2.1), dynamic effects

are considered in terms of inertial forces, which are the product of mass and seismic coeffi-

cients, the latter denoting accelerations normalized by gravity. At each dynamic time step

of interest during the DFEA, accelerations are saved for each node and seismic coefficients

are calculated. Inertial forces are obtained in a subsequent step during the execution of

the different approaches. In LEM and FELA, horizontal inertial forces are orientated

in driving direction, whereas in SRFEA, horizontal inertial forces are orientated accord-

ing to the DFEA. Furthermore, average inertial forces for each cluster are determined in

FELA, which might filter out very large values considered in LEM and SRFEA. As SDSS

is not based on PSA but only considers stresses and state variables, no inertial forces are

considered.

Equilibrium: Depending on the method selected, in LEM, FoS is determined based on

the global equilibrium of horizontal forces and/or momentum. However, it is not checked

whether the overall system satisfies equilibrium conditions. Similar to LEM, in SDSS, no

equilibrium conditions are enforced. This also refers to the fact that stresses can not be

redistributed in SDSS, for instance from one element to another element along the slip

surface. In FELA, equilibrium conditions need to be satisfied throughout the domain to

obtain a rigorous solution. However, as stresses and inertial forces are roughly estimated,

it can not be ensured that the equilibrium agrees well with the dynamic equilibrium ob-

tained in the DFEA at every time step. In SRFEA, the aim was to accurately maintain

equilibrium by consideration of inertial forces and adjusted boundary conditions. How-

ever, further elaboration is required to verify this approach in depth.

Shear strength: In LEM and FELA, the Mohr-Coulomb (MC) failure criterion is used,

which, compared to the Matsuoka-Nakai (MN) failure criterion, allows for smaller devia-

toric stresses under plane strain conditions. In LEM, consideration of the MN criterion

is rather difficult as the full stress tensor needed to be transferred to LEM. Alternatively,

choosing a fixed Lode angle (e.g. θ = 0◦) an equivalent MC friction angle could be applied

in accordance with the MC model, utilizing design charts as suggested by Griffiths and

Huang (2009) or Jiang and Wang (2011). In FELA, the maximum friction angle following

the Bolton (1986) approach is applied which considers a dependency of the friction angle

on the mean effective stress. Thereby, larger friction angles are obtained for smaller stress

levels. In SDSS, the soil shear strength relevant for the stability analyses is related to

the mobilized shear strength at a given shear strain. Applying sophisticated constitutive
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models, advanced effects, as for instance those of loading history, can be considered by

transfer of state variables. SRFEA can be performed with the MC model or the MN

model, where the latter is preferred in this work as Hypoplasticity used for the DFEA

incorporates the Matsuoka-Nakai limit surface. Note that LEM, FELA and SRFEA could

further be extended in a way to allow for spatially inhomogeneous distributions of the

shear strength parameters, for instance by considering a spatial distribution of the MN

friction angle rather than a homogeneous distribution. For MC models, an additional

factor to account for the equivalent MC friction angle could be used.

Failure mechanism: In LEM and SDSS, the shape of the failure mechanism needs to

be selected prior to the stability analyses. Thereby, the critical failure mechanism may

not be approximated accurately. Note that for LEM, post optimization (see Section 3.3)

allows to detect critical slip surfaces with shapes different from the initial circular shape.

However, using a similar post optimization in SDSS to consider non-circular slip surfaces

(e.g. composite slip surfaces), assumptions need to be made with regard to the magnitude

of shear strain experienced at different nodes. A potential solution to overcome this issue

would be the adaption of a hodograph to ensure kinematic compatibility. In contrast, in

FELA and SRFEA, the shape of the failure mechanism is not prescribed, but is the result

of the optimization process and the strength reduction method, respectively.





7. Saturated opencast slope subjected

to seismic loading

7.1. Motivation

As an application of the proposed methods, the stability of an opencast mine slope under

earthquake loading is investigated. When opencast mines are decommissioned, the resid-

ual pits are frequently refilled with soil or water, resulting in so-called residual lakes. The

enclosing slopes of such lakes are often made of uncompacted material obtained from the

excavation pit whose pores are filled with water. Depending on the drainage conditions,

cyclic shearing of the grain skeleton induced by earthquakes may lead to a build-up of ex-

cess pore water pressures, accompanied by a reduction of effective stress and, consequently,

to a decrease of shearing resistance of the soil. The seismic stability assessments of such

slopes are therefore complex and non-linear problems, often addressed using pseudo-static

approaches that neglect material-induced failures and the role of pore-fluids. They are

thus ideally suited to present the advantages and applicability of the proposed methods

introduced in the previous chapter.

7.2. Dynamic finite element analysis

7.2.1. Finite element model

The finite element software numgeo was used for the analysis of the dynamic excitation

of a water-saturated slope of an open pit mine, where the model is schematically shown

in Fig. 7.1. The model represents an idealized slope of an open pit and consists of two

sections, namely the “Slope” and the ‘Subsoil”. The embankment was created by the

deposition of the waste material during the operation of the open cast mine and consists

of loose sand (Dr0 = 0.3). The subsoil section represents the natural material, composed

145
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Figure 7.1: Geometry and dimensions of the finite element model

of dense sand (Dr0 = 0.7). The FE model consists of about 22,000 elements in total and

approx. 65,000 nodes. The finite element mesh was generated with a mean nodal distance

of ∆x = ∆y ≈ 1.5 m in the area of the slope and the ”Subsoil” beneath it. To improve

the numerical performance and increase the numerical damping to reduce reflections of

waves from the outer boundaries back into the model, the nodal distance in the horizontal

direction was increased with increasing distance from the ”Slope” up to ∆x ≈ 20 m for

the outermost elements. To account for changes in pore water pressure and consolidation

effects during and after the earthquake loading, the solid displacements u and the pore

water pressure pw were discretized at the nodes (so-called u-p elements). The simulations

were performed in an updated Lagrangian framework, using the Zaremba-Jaumann stress

rate.

The hypoplastic constitutive model of von Wolffersdorff (1996) with intergranular strain

(IGS) extension (Niemunis and Herle, 1997) was used to simulate the material behavior

of the ”Slope” and the ”Subsoil”. The material parameter sets used for the ”Slope” and

the ”Subsoil” are summarized in Tab. 7.1 and Tab. 7.2 for the hypoplastic model and

IGS, respectively. As depicted in Fig. 7.1, the bottom layer labeled ”Subsoil (elastic)”

was modeled as a linear elastic material. The selection of an elastic material model was

made as it allows for a direct determination of a constant shear wave velocity based on

the elastic properties, which is essential for the definition of the compliant base boundary

condition applied to the bottom of the model (see explanations given later in this section).

Table 7.1: Parameters of the Hypoplastic model for ”Slope” and ”Subsoil”

Soil ϕc [◦] hs [GPa] n ed0 ec0 ei0 α β

Slope 35.9 0.25 0.23 0.426 0.722 0.83 0.0 2.9

Subsoil 32.8 5.8 0.28 0.568 0.866 0.996 0.13 1.05
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Table 7.2: Parameters of Intergranular Strain for ”Slope” and ”Subsoil”

Soil mT mR R βR χ

Slope 3.0 7.0 10−4 0.1 1.25

Subsoil 5.0 5.0 10−4 0.2 1.0

Following the concept of Wegener and Herle (2012) to determine the shear modulus of the

hypoplastic model with IGS (see also Sec. 2.3.4) and by forcing minor differences in shear

stiffness at the transition from the elastic to the hypoplastic layer, the elastic material

parameters have been back-calculated as a Young’s modulus of E = 609.4 MPa and a

Poisson’s ratio of ν = 0.3. Independent of the layer, a constant hydraulic conductivity of

k = 5 · 10−4 m/s was set into approach.

The simulation was performed in the following steps:

1. Application of gravity while prescribing the solid displacements at all nodes as zero.

In addition, the pore water pressure was prescribed at each node according to a

hydrostatic distribution, considering the phreatic level as given in Fig. 7.1. The

initial void ratio follows Bauer’s equation (Bauer, 1996):

e0(x, ỹ) = e(σ′ii,0 = 0, Dr0) · exp

[
−
(−σ′ii,0

3hs

)n]
, (7.1)

where the parameters hs and n given in Tab. 7.1 are used and ỹ denotes the depth

below the ground surface presented in Fig. 7.1. A lithostatic initial stress distribu-

tion was prescribed, considering the variable overburden height in the area of the

slope. However, no shear stresses, which are required to obtain a static equilibrium

of the slope, were prescribed, since they are unknown. The reaction forces at each

node were saved following the application of gravity. Note that no deformations

occurred in this step.

2. Application of the reaction forces as external forces to each node in the initial

increment, considering a gradual decrease within 100 increments to zero. The dis-

placements of the bottom boundary were constrained in the vertical direction, while

the lateral boundaries were constrained in the horizontal direction. The pore water

pressure was still prescribed according to a hydrostatic distribution in this step.

Initially, when the complete reaction forces are acting, the model is in perfect equi-

librium and no deformations occur. Then the reaction forces are incrementally

reduced, deformations occur and the stresses change such that static equilibrium is
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achieved. The reason for reducing the reaction forces gradually is due to the non-

linearity of the hypoplastic model, which necessitates an incremental application of

changes in loading. At the end of the step, the externally applied reaction forces are

zero. To account for the dead weight of the free water table in the residual lake, an

additional surface load was applied in this step and kept constant for the following

step. In addition, a surface pressure of 1 kPa was applied perpendicular to the

entire ground surface in order to avoid very small mean effective stresses leading to

numerical problems with the hypoplastic model. The reaction forces at the lateral

boundaries were saved at the end of the step.

3. Excitation of the model base in horizontal direction in a dynamic step. In order

to avoid any reflections by waves traveling back to the bottom, the excitation was

applied by a compliant base boundary condition. In this case, the excitation is

applied by a von Neumann rather than a Dirichlet boundary condition (Machaček,

2020). The imposed velocity-time history in the horizontal direction at the bottom

of the model is described by a rising sine function shown in Fig. 7.2. The Hilber-

Hughes-Taylor time integration scheme (α = −0.05) was used and a fixed time

increment of 10−3 s was set. A constant hydrostatic pore water pressure was assigned

to all nodes at the top and the sides of the model, allowing for drainage. The reaction

forces of the lateral boundaries were imposed at the beginning of the step and kept

constant throughout the step. Except for the bottom of the model, which was

constrained in the vertical direction, no Dirichlet boundary conditions were applied

to the solid displacement.
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7.2.2. Results

Prior to the evaluation of the seismic slope stability in terms of a factor of safety, the

results of the DFEA are discussed. The simulation was terminated at approximately 5.5

s of dynamic excitation due to excessive deformations, indicating a failure of the slope.

The slope’s tendency to become unstable near the end of the simulation can also be seen

by evaluating the maximum lateral and vertical accelerations, velocities, and displace-

ments in the slope area as depicted in Fig. 7.3. It is apparent from the accelerations and

velocities shown in this figure that the dynamic evolution of the slope stability can be

split and analyzed into three segments. During the first second of earthquake excitation

(tdyn ≤ 1.0 s), the slope is not influenced as the dynamic signal is still propagating upwards

towards the slope area. For 1.0 ≤ tdyn ≤ 3.5 s, a semi-stable state is observed indicated

by moderate to large accelerations and velocities with peak values up to ax/y ≈ 2 m/s2

and vx/y ≈ 0.5 m/s, respectively. Ultimately, for tdyn ≈ 3.6 s, accelerations and velocities

increase rapidly, whereby increasing displacements are observed shortly after, as well. Al-

though a FoS can not be determined in DFEA without specifying threshold accelerations,

velocities or displacements, it is expected that an unstable state of the slope is reached

latest at tdyn ≈ 3.6 s.
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Figure 7.4: Acceleration magnitudes in the slope at different time steps

To identify critical locations in the slope area that are prone to slope failure events, spatial

distributions of acceleration magnitudes are evaluated in Fig. 7.4 for four different time

steps. As can be seen from this figure, maximum accelerations were detected close to the

slope toe for 1.5 s ≤ tdyn ≤ 2.0 s and at larger elevations along the slope for later time

steps. Note that for all time steps investigated the critical accelerations were located in

shallow depth. For tdyn = 3.0 s, acceleration magnitudes larger than 1 m/s2 are detected

along the slope surface in the range of 900 m ≤ x ≤ 1100 m. Taking into consideration

that slope failure is also triggered by the accumulation of excess pore water pressures

that lead to a reduction of effective stresses, spatial distributions of normalized excess

pore water pressures are analyzed in Fig. 7.5. It is apparent from this figure that – in

contrast to the evolution of accelerations – no significant excess pore water pressure was

built-up within the first two seconds. Although not depicted here explicitly, it should be
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noted that also effective normal stresses only show small variations within the same time

period. Still, for tdyn ≥ 2.5 s it is observed that excess pore water pressures accumulated

along the slope surface. Further significant increase of ∆pw is seen with increasing time,

showing critical locations with high excess pore water pressures close to the slope toe and

at the slope crest. Note that values of ∆pw/p′0 > 1.0 seen in this figure are possible due

to changing mean stresses resulting from the seismic loading.

7.3. Assessment of seismic slope stability

As reported in Section 7.2.2, the dynamic finite element analysis (DFEA) was termi-

nated at approx. 5.5 s of the excitation phase. However, it should be noted that the

termination of DFEA might not be a precise indicator of the loss of stability. This is be-

cause in dynamic analyses, a material failure does not necessarily lead to the termination

(non-convergence) of the analysis. The inertial forces prevent the system from becoming

kinematic. Analogous to any other analysis involving large deformations, the simulation

can run well beyond the point of failure. Subsequent slope stability analyses are essential

for a quantitative assessment of seismic slope stability in terms of a factor of safety (FoS).

7.3.1. Spatial pseudo-static analysis using LEM

To evaluate the seismic slope stability, the spatial pseudo-static analysis (PSA) using the

limit equilibrium method (LEM) presented in Sec. 6.2 is applied to the current boundary

value problem. Stability analyses are conducted for the slope area defined in Fig. 7.1 with

time increments of ∆tdyn = 0.05 s until tdyn = 5.5 s at which the DFEA was terminated.

For each time increment, respective spatial distributions of horizontal and vertical seismic

coefficients are imported into geoSlice. The effect of accumulated excess pore water

pressures ∆pw on the evolution of the FoS is investigated by performing simulations with

and without import of it. As depicted in Fig. 6.2, for each distribution (inertial forces

and excess pore water pressure), three nodes per slice are utilized for interpolation of

representative values. LEM is performed in accordance with Bishop (1955) and Janbu

(1954) for slip surfaces of circular shape. For four case combinations of excess pore water

pressure and stability method, analyses were performed for 111 different time steps. To

limit computational costs associated with the stability analyses, the shape of potential

slip surface was restricted in a way that very shallow and small shapes were neglected

by making use of MinWidth and MinHeight (see Sec. 3.3). Based on experiences gained
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during trial analyses, brute grid optimization was chosen over differential evolution as

the spatial distribution of seismic coefficients and excess pore water pressures renders the

optimization problem a highly non-linear one. The material properties of the slope have

been selected in accordance with the DFEA as follows: unit weight of the saturated soil

γsat = 20.2 kN/m3, friction angle ϕ = 39.89◦ and cohesion c = 0.1 kPa.

In contrast to SDSS and SRFEA utilizing Matsuoka-Nakai as limit or yield surface, re-

spectively, stability analyses based on LEM are conducted applying the Mohr-Coulomb

failure criterion in the slip surface (see Section 2.1.1). For plane strain problems with Lode

angles of 0◦ ≤ θ ≤ 10◦, for instance the 2D slope stability problem, applying MC results in

smaller allowable deviatoric stresses compared to Matsuoka-Nakai, which ultimately leads

to smaller FoS. In this section, an equivalent Mohr-Coulomb friction angle (Griffiths and

Huang, 2009; Jiang and Wang, 2011) of ϕ = 39.89◦ evaluated at a Lode angle of θ = 0◦

is determined to compensate effects related to differences between the Mohr-Coulomb

and Matsuoka-Nakai surfaces. Moreover, a stabilizing distributed load was used in the

DFEA, which was also considered in FELA, SDSS and SRFEA. To ensure comparable

assumptions, a distributed load of 1 kPa acting perpendicular to the slope is applied also

in the LEM analysis.

The results of the stability analyses with spatial PSA and LEM are depicted in Fig. 7.6.

It is apparent from this figure that the applied seismic signal has a decisive impact on the

FoS of the saturated opencast mine slope. Considering analyses with Bishop’s method and
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with excess pore water pressures (left subplot, blue curve), the evolution of the FoS with

increasing dynamic time can be summarized as follows: initially, for static conditions

(tdyn = 0 s), a slope stability of FoS ≈ 3.18 is determined that remains unchanged for

tdyn ≤ 1.1 s. As soon as the shear waves enter the slope area, their impact can also be

seen on the FoS evolution curve by a fast drop down to FoS ≈ 1.8 for 1.1 s ≤ tdyn ≤ 1.5 s.

After a slight recovery, a steady decrease of the FoS down to zero is observed for 2.0 s ≤
tdyn ≤ 3.2 s, which remains at FoS ≤ 0.2 until the end of the DFEA. A similar trend is

obtained for analyses applying Janbu’s method (right subplot, blue curves) considering

circular slip surfaces. Comparing analyses with and without ∆pw it is seen that excess

pore water pressures have a strong impact on the evolution of the FoS. Although all curves

ultimately reach FoS ≈ 0.0, major differences are observed for 2.0 s < tdyn ≤ 5.0 s, where

simulations without ∆pw result in non-conservative estimates of the slope stability. This

refers to the absolute FoS values as well as the critical time at which the FoS curve drops

below unity.

7.3.2. Cluster-based pseudo-static analysis using FELA

Finite element model

Slope stability analyses were conducted in terms of strength reduction analyses with finite

element limit analysis (FELA) for the slope section of the finite element model (Fig. 7.1)

used in the DFEA. The geometry and dimensions of the model are shown in Fig. 7.7. The

model’s mechanical boundary conditions were chosen so that deformations are restricted

in normal and tangential directions at the bottom and the inclined edge at the right side

of the model. To incorporate spatial variations of inertial forces, clusters were introduced

in accordance with the discussions provided in Section 6.3.3. Identical to the DFEA, the

water level is assumed to be at the slope crest level for all stability analyses.

As the hypoplastic model with intergranular strain cannot be used in combination with

typical strength reduction schemes, an elastic perfectly plastic material model with Mohr-

Coulomb yield surface is utilized. The Young’s modulus E and the Poisson’s ratio ν

describing the isotropic elasticity were selected constant throughout the analyses (E =

30 MPa, ν = 0.25) as their effect is negligible in strength reduction finite element limit

analysis. As discussed in Section 6.3.2, spatial variations of the effective and total unit

weights were considered, where the initial values of γ′0 = 10.2 kN/m3, γsat,0 = 20.2 kN/m3

were selected in accordance with the DFEA. The unsaturated unit weight γunsat was

unchanged in this study as it did not have an effect on the simulation due to a constant
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water level at the slope crest level. The shear strength is defined with respect to the

cohesion and the friction angle, the former chosen to be constant (c = 0.1 kPa). A

value close to zero has been selected as the slope is composed of loosely deposited sandy

material. However, a non-zero value helps to avoid numerical instabilities and very shallow

failure surfaces. As the shear strength due to friction is not constant in hypoplasticity,

the approach discussed in Section 6.3.4 is followed, yielding a spatial distribution of the

friction angles obtained from the DFEA in accordance with Bolton’s approach (Bolton,

1986). Due to the prerequisite of an associated flow rule in FELA, the dilation angle was

chosen equal to the friction angle (ψ = ϕ) throughout all safety analyses. To investigate

the effect of a non-associated flow rule on the factor of safety for different time steps

of the earthquake loading, simulations following the Davis A and B approaches (Davis,

1968; Tschuchnigg et al., 2015a) were conducted additionally with dilation angles obtained

in accordance with Section 6.3.5. Although its effect on the factor of safety should be

negligible, the lateral earth pressure coefficient K0 was chosen with respect to the friction

angle via K0 = 1− sinϕcrit in accordance with (Jaky, 1944).

In the strength reduction analysis based on FELA, rigorous lower and upper bound so-

lutions are obtained by selection of correct element types (Sloan, 2013). In this thesis

3-node and 6-node triangular elements have been used for lower and upper-bound simula-

tions, respectively. Furthermore, adaptive mesh refinement has been applied to improve

computational effort and enhance the accuracy for the determination of the critical fail-

ure mechanism. In general, adaptive mesh refinement is a powerful tool used to reduce

computational costs and to accurately evaluate limit states in terms of the critical shear

strength in slope stability problems or the limit load in active or passive earth pressure or

bearing capacity problems. Utilizing adaptive mesh refinement, the approximation of the

failure mechanism is enhanced by adjustment of element sizes based on an indicator of

450 m

b�=�15°

b �≈�30°2

100 m

Figure 7.7: Schematic representation of the slope geometry, dimensions and spatial dis-

tribution of inertial forces using the cluster approach with parallelograms
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plasticity in the system, for instance, the plastic shear dissipation. Thereby, element sizes

are decreased or increased in areas with large or small shear dissipation, respectively. The

optimal-mesh-adaptive technique was proposed by Almeida et al. (2000) and, among oth-

ers, further developed by Lyamin et al. (2005). Advantages of adaptive mesh refinement

were shown for many geotechnical applications, such as slope stability analyses (Ober-

hollenzer et al., 2018; Mahmoudi et al., 2020), the earth pressure problem and retaining

walls (Lyamin et al., 2013; Krabbenhoft, 2019; Schmüdderich et al., 2020d, 2022b) or the

bearing capacity problem (Lyamin et al., 2013; Schmüdderich et al., 2020a,b, 2021).

Effect of excess pore water pressure and orientation of inertial forces

A parametric study investigating the effect of excess pore water pressure and orientation

of inertial forces on the stability of the slope presented in Section 7.2.1 was conducted

following the concept presented in Section 6.3. The two effects were investigated by

evaluation of the slope stability for simulations with and without (w/o) excess pore water

pressures ∆pw and vertical components of inertial forces directed upwards or downwards.

Similar to pseudo-static analyses performed with the limit equilibrium method, the latter

effect was studied as it is unknown a priori whether upwards or downwards-directed

inertial forces yield the critical FoS. The FoS is evaluated with a time interval of ∆t =

0.05 s. In total, stability analyses of the full-time series (111 time steps), with each a lower

and upper bound analysis, were conducted for all case combinations.

The results of the stability analyses are presented in terms of FoS versus time during the

dynamic excitation tdyn in Fig. 7.8, with the different colors indicating analyses with and

without excess pore water pressures and separate sub-figures denoting different vertical

orientation of inertial forces. Note that the FoS values reported herein are evaluated as

the mean values from lower and upper bound finite element analyses. As can be seen from

this figure, the stability of the static case (i.e. initial time step) of FoS ≈ 2.84 is obtained

for all cases. This is slightly larger compared to the fast estimate of tanϕc/ tan β =

tan 35.9◦/ tan 15◦ = 2.70 for an infinite planar slope failure. Analyzing the overall trend

of the slope stability versus time for all cases, it is observed that all curves yield FoS =

2.84 for tdyn ≤ 1.0 s, show a decisive drop down to FoS ≈ 1.7 for 1.0 s ≤ tdyn ≤ 1.5 s,

remain at this level until tdyn ≈ 2.5 s, separate thereafter, but ultimately yield FoS ≤ 0.5

at tdyn = 5.5 s. Although these trends are clearly identified, scattering is observed for

consecutive time steps, which may result from the dynamic loading, the cluster approach

and changes in the shape of the critical failure mechanism. All cases predict slope failure

by defining the stability loss as the first drop below FoS = 1.0. However, the dynamic



156 7. Saturated opencast slope subjected to seismic loading

FELA-Bolton-accv-pwp

0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5

F
ac

to
r

of
S

af
et

y,
F

oS
[–

]

Time, tdyn in s

w/o ∆pw

with ∆pw

FELA, av ↑

∆tdyn

F
ac

to
r

of
S

af
et

y,
F

oS
[–

]
Time, tdyn in s

w/o ∆pw

with ∆pw

FELA, av ↓

∆tdyn

Figure 7.8: Evaluation of FoS with respect to excess pore water pressure and orientation

of inertial forces

time at the loss of stability varies between tdyn = 3.5 s and tdyn = 4.5 s. Considering

cases with excess pore water pressures only, a critical dynamic time of 3.5 s ≤ tdyn ≤ 3.7 s

is observed. The latter observation is in good agreement with the results of the DFEA

depicted in Fig. 7.3, where an evaluation of maximum accelerations shows that the slope

turns into an unstable state indicated by a significant increase of ax/y,max for tdyn ≥ 3.5 s.

Although the effects of excess pore water pressure and direction of vertical inertial forces

on the FoS can clearly be seen, it should be noted that – for this boundary value problem

and the dynamic loading applied – the effect of the horizontal component of the inertial

forces dominates over the other effects as it dictates the evolution of the FoS with respect

to the loading time under dynamic conditions. Still, as significant differences can be

seen in the evolution of the slope stability with regard to the different cases, individual

assessment of the effects is conducted, as well. Comparing the evolution of FoS with

dynamic time for av directed upwards with the one pointing downwards, it is clear that

the former predicts significantly lower slope stability with FoS approaching zero for 4.0 s ≤
tdyn ≤ 5.0 s. In contrast, an almost steady decline of FoS with dynamic time is seen for

the latter case, approaching 0.25 ≤ FoS ≤ 0.5 at tdyn = 5.5 s. Note that the impact of the

orientation of the vertical component of the inertial forces is negligible for tdyn < 3.0 s.

A potential explanation for this can be given with regard to the dynamic signal applied,

which is orientated parallel to the bottom edge of the DFEA model (i.e. in the horizontal

direction). As vertical accelerations develop mainly from reflections at the slope surface,
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the earthquake signal needs to first reach the ground surface before any impact on the

FoS curves can be detected.

Similarly, it can be seen from Fig. 7.8 that excess pore water pressures have a decisive

impact on the slope stability for tdyn > 2.5 s, where non-conservative FoS predictions are

obtained in case excess pore water pressures are neglected in the stability analyses. The

largest deviation between curves considering and ignoring ∆pw is obtained at tdyn ≈ 3.7 s

with maximum values ranging between ∆FoS = 0.79 and ∆FoS = 1.40. Note that the

largest differences are obtained for simulations with the vertical component of the inertial

forces directed upwards. Considering the point of time related to the loss of stability,

a time difference ranging between ∆tdyn ≈ 0.25 s and ∆tdyn ≈ 0.7 s is obtained. Thus,

neglecting excess pore water pressures may result in significantly larger FoS and later (if

at all) observation of the loss of stability.

Assessment of the quality of the FELA results

The quality of the FELA results can be evaluated by quantification of the gap between

the lower and upper bound solution in terms of the worst case error defined as εwc =

(UB − LB) / (UB + LB) (Krabbenhoft, 2018; Schmüdderich et al., 2020d) with LB and

UB denoting the lower and upper bound results, respectively. However, this measure may

produce misleading results in case limit loads or factors of safety approach very small

values. Therefore, assessment of the quality of the FELA results is conducted based

on the absolute rather than the relative error by evaluation of the distance between the

mean value and the lower/upper bound solution. The evolution of the absolute error

Λ = (UB − LB) / 2 with respect to the dynamic loading time is shown in Fig. 7.9 for all

case combinations.

In this figure, different colors refer to simulations with and without excess pore water

pressures, while different subplots are used to denote the influence of the direction of the

vertical inertial forces. It is apparent from this figure that the lower and upper bound

solutions are in good agreement indicated by a small Λ value for tdyn ≤ 1.0 s. Since the

shear waves did not reach the slope body within this time span, the equilibrium state

is still comparable to the static case without any impact of accelerations or excess pore

water pressures. For tdyn ≥ 2.0 s, the gap between the lower and upper bound solution

varies with time and shows decisive differences in short time spans. This observation

may be explained by the temporal and spatial variation of excess pore water pressures

and inertial forces as a result of the dynamic excitation as well as reflections of the shear

waves from the (inclined) ground surface back into the model.
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Figure 7.9: Evolution of the gap between lower and upper bound solution in terms of the

deviation Λ from the mean value

In contrast to analyses conducted without (w/o) consideration of excess pore water pres-

sures ∆pw, which resulted in Λ < 0.05, deviations of up to Λ ≈ 0.4 are observed for

analyses with consideration of excess pore water pressures ∆pw. Thus, excess pore water

pressures not only reduce the FoS, but also lead to a larger gap between lower and upper

bound solutions. Note that very large Λ values are mostly related to a sudden drop of

the lower bound solution, whereas the upper bound solution follows the same trend with

a small time delay. This can also be seen by the sudden decrease of Λ as soon as the

maximum is reached.

Effect of non-associated flow rule

As limit analysis and finite element limit analysis (FELA) need to fulfill the requirements

of the normality rule, an associated flow rule is considered as a prerequisite. However,

as discussed in Section 6.3.5, this assumption may lead to a non-conservative estimation

of the stability of the slope. To overcome this limitation and indirectly consider a non-

associated flow rule with a dilation angle smaller than the friction angle, the Davis (Davis,

1968) approach – referred to as ’Davis A’ – and the Davis B approach (Tschuchnigg et al.,

2015a) are applied. To evaluate the importance of a non-associated flow rule on the slope

stability for this boundary value problem, FoS values obtained based on the Davis A and

B approach are compared to the original simulations (FELA with associated flow rule,

AFR) for 7 different time steps considering analyses with excess pore water pressures and
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Figure 7.10: Influence of the flow rule (associated, non-associated) on the FoS

vertical inertial forces directed upwards. The comparison depicted in Fig. 7.10 reveals

that, compared to the analyses with AFR, smaller FoS values are obtained applying

the Davis A approach, leading to maximum deviations of ∆FoS = 0.45. However, as

previous studies (Tschuchnigg et al., 2015b, 2019; Schmüdderich et al., 2022b) showed that

the latter approach might be very conservative when compared to actual finite element

analyses using a non-associated flow rule, the present results should also be considered

conservative. A more appropriate estimation of the FoS with regard to a non-associated

flow rule is obtained following the Davis B approach. Comparing the results of Davis

B and AFR, it is apparent that the indirect consideration of a non-associated flow rule

leads to smaller FoS values, deviating by 0.05 ≤ ∆FoS ≤ 0.12. Setting the non-associated

flow rule into context with the effects discussed above, it is seen that – for the boundary

value problem investigated here – the influence of the former is of subordinate importance

as inertial forces and excess pore water pressures primarily dictate the FoS versus time

evolution. Nevertheless, considering a non-associated flow rule will always result in smaller

FoS, where the gap between AFR and NAFR increases with increasing difference between

friction angle and dilation angle (Tschuchnigg et al., 2015b,a).

7.3.3. Strain-dependent slope stability for earthquake loading

Slope stability analyses are conducted applying the modified concept of strain-dependent

slope stability (SDSS) developed in Section 6.4 to the boundary value problem investigated

in Sections 7.2.1 and 7.2.2 considering the first 5.5 seconds of the dynamic loading phase
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(0.0 s ≤ tdyn ≤ 5.5 s). As a first step, element test simulations are performed with

the basic version of the hypoplastic model, where the transfer of information from the

finite element model to the element tests included the spatial distribution and temporal

evolution of stresses and void ratios. The evaluation is based on the maximum factor of

safety (FoSmax). For the determination of FoSmax every ∆tdyn = 0.05 s, the time series

depicting the evolution of FoSmax with the dynamic time requires stability analyses for 111

time steps. Considering a grid search algorithm with approximately 3,500 potential slip

surfaces analyzed to find the critical slip surface and a discretization of the slip surface

using 15 points, a total of 5.8 · 106 element test simulations are performed using the

Incremental Driver software (Niemunis, 2008). Additional simulations with ∆tdyn = 0.5 s

are performed to investigate the influence of the intergranular strain extension (IGS) on

the strain-dependent slope stability. Therefore, three different assumptions are compared:

stability analyses via simulation of element tests using (1) the basic hypoplastic model,

(2) the hypoplastic model with the IGS tensor initialized with zero values (h0 = 0) and

(3) the hypoplastic model with IGS utilizing the IGS tensor as obtained from the finite

element slope model for the current time step of the dynamic loading phase. In the latter

case, additional transfer of information from the finite element model to the element

tests included the IGS tensor. In summary, 2 × 630,000 = 1.26 · 106 additional element

test simulations are conducted to analyze the effect of IGS on the strain-dependent slope

stability.

The results of the full time series are presented in Fig. 7.11 in terms of the maximum

factor of safety (FoSmax) obtained using the modified concept of strain-dependent slope

stability versus the time step of the dynamic loading phase. As can be seen from the

solid line in this figure, the FoSmax considering the basic version of the hypoplastic model

is almost constant for tdyn ≤ 2.0 s, reduces significantly for tdyn ≥ 2.0 s, drops below the

critical value of FoS = 1.0 at tdyn ≈ 3.0 s, and reduces further with a decreasing rate down

to FoS = 0.5 at tdyn = 5.5 s. These results of the FoSmax are in good agreement with the

development of excess pore water pressures depicted in Fig. 7.5, which also indicates that

the effect of the dynamic loading is small for tdyn ≤ 2.0 s, whereas it increases significantly

between 2.0 s ≤ tdyn ≤ 3.0 s. Moreover, as the rate of displacements increases with time

for 2.5 s ≤ tdyn ≤ 4.5 s (Fig. 7.3), strong evidence is given that this is accompanied by a

continuous decrease in FoS, which can also be seen in Fig. 7.11.

Analyzing the general trend of the FoSmax obtained using the hypoplastic model, it is

apparent from Fig. 7.11 that the evolution of the FoS with respect to time is not resembled

by a smooth curve, but rather shows small variations. A potential reason for this trend
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Figure 7.11: FoS at different times of the dynamic simulation for different specifications

of the IGS in the simple shear tests

can be given with respect to the results depicted in Fig. 7.5 also showing fluctuations of

the excess pore water pressure, which indicate fluctuations of the stress states used for

the stability analyses. As the stresses slightly increase or decrease, it is expected that this

fluctuation also propagates to the FoS. Moreover, it should be noted that the location

and size of the critical slip surface vary due to the evolution of the excess pore water

pressures and mean effective stresses. This fact increases the complexity for locating the

critical slip surface using a simple grid optimization as it was done in creating Fig. 7.11,

where based on a predefined grid always the same slip surfaces are analyzed for each

time step. Thus, if the critical slip surface is not well captured by the slip surfaces

analyzed, an overestimation of the FoS is expected. As the number of slip surfaces used

for each analysis had to be limited due to the computational costs related to the concept

of SDSS, it is possible that the critical slip surface associated with a (slightly) smaller

FoS is not found exactly. However, this drawback can be overcome by utilizing machine

learning algorithms combined with advanced optimization techniques, as will be discussed

in Chapter 9.

Comparable to the basic hypoplastic model, a similar trend is observed if the IGS tensor is

initialized in the Incremental Driver simulations with the values obtained from the finite

element simulation for the current time step of the dynamic loading phase (solid diamond

symbols). This indicates that the magnitude of the strain level has almost reached the

maximum mobilized value of IGS (i.e. parameter R) during the dynamic loading phase.

Hence, the hypoplastic stiffness is only slightly increased due to the contribution of IGS,
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leading to a marginal increase in the maximum shear stress and the maximum factor of

safety. Moreover, good agreement between all cases is seen for tdyn ≤ 2.0 s. However,

significant differences are evident for tdyn ≥ 2.0 s for the case of an IGS tensor initialized

with null values (h0 = 0). An explanation for these differences has already been given in

Sections 6.4 and 7.2.2. As excess pore water pressures increase due to the dynamic loading,

effective stresses reduce. Thereby, simple shear tests are performed at a smaller stress

level where IGS initialized with null values leads to significantly larger maximum shear

stresses. The gap between the FoSmax obtained with the basic version of the hypoplastic

model and the one with IGS initialized with null values develops in accordance with

the trend of the excess pore water pressures that are small for tdyn ≤ 2.0 s and increase

thereafter.

To further elaborate on the results presented in Fig. 7.11, the evolution of the global

mobilized shear resistance ratio (T ) and the factor or safety (FoS) with applied shear

strain (γ) is analyzed for the critical slip surfaces at five selected time steps (tdyn = 1.5 s,

2.5 s, 3.0 s, 3.5 s, 4.5 s). The main objective here is to identify how IGS influences the

shape of the FoS versus γ curves, as exemplary depicted in Fig. 2.5(a) and (b) for purely

contractive behavior and contractive behavior followed by strain softening, respectively.

Moreover, these curves allow for evaluation of the difference between the maximum and

the residual factor of safety (FoSmax, FoSres). The results associated with the stability

analyses discussed in Fig. 7.11 are presented in Fig. 7.12 in terms of (a,c) T (γ) and (b,d)

FoS(γ) for element test simulations with (a,b) the basic hypoplastic model and (c,d) the

hypoplastic model with IGS initialized as h0 = 0. It is apparent from Fig. 7.12(b) that

the FoS versus γ curve using the basic hypoplastic model can be approximated well with

a constant line indicating negligible differences between the maximum and residual factor

of safety. An explanation for this trend can be given with regard to the evolution of the

global mobilized shear resistance ratio (T ) depicted in Fig. 7.12(a), which is monotonously

increasing until reaching the critical state.

In contrast, Fig. 7.12(d) shows a significant decrease of the FoS for element tests using the

hypoplastic model with IGS initialized with null values (h0 = 0) for shear strains in the

range of 0 ≤ γ ≤ 0.05 and time steps tdyn ≥ 3.0 s. As large differences between FoSmax

and FoSres are obtained in these analyses, it should be noted that minor shear strains

result in a large reduction of the factor of safety. An explanation for the FoS trend can be

given with respect to the T versus γ curve displayed in Fig. 7.12(c) showing a very stiff

initial response in the simple shear tests as a result of increased hypoplastic stiffness due

to IGS followed by a rapid decrease of T with increasing shear strain until reaching the
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Figure 7.12: Global mobilized shear resistance ratio (T ) and factor of safety (FoS) curves

with respect to applied shear strain (γ) considering (a,b) the basic hypoplastic model and

(c,d) the hypoplastic model with IGS initialized with null values (h0 = 0) for different

time steps during the dynamic excitation phase

critical state. It should be noted that Tres and FoSres obtained in these simulations are

slightly larger compared to simulations without IGS (Fig. 7.12(a,b)) since the objective

function in the optimization was linked to FoSmax rather than to FoSres.

With respect to the discussion in Section 6.4.4 on the expected influence of the intergran-

ular strain extension on the factor of safety considering the concept of strain-dependent

slope stability, it was shown with this academic example that consideration of IGS can
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lead to a non-conservative estimate of FoSmax. As computational costs for element test

simulations with IGS are also significantly larger compared to simulations without IGS (≈
50 % in time), IGS should not be considered for the analysis of the SDSS. However, for the

dynamic FE simulations, which are the basis for these stability analyses, the consideration

of the IGS is mandatory to capture the soil behavior under cyclic loading. Moreover, it

is worth noting that the FoS curve trends discussed here are not only influenced by the

state variables (e.g. stress state, void ratio, IGS tensor) but also by the parameter sets

used for the constitutive model. Thus, slight variations of these curve trends are to be

expected for different parameter sets.

7.3.4. Spatial pseudo-static analysis using SRFEA

To evaluate the evolution of the FoS based on the spatial pseudo-static analysis using

SRFEA, submodel analyses (see Section 6.5) are conducted, in which the DFEA is put on

hold whenever a SRFEA is performed. For the SRFEA, the current stress state, (excess)

pore water pressures and inertial forces are imported from the DFEA. During the SRFEA,

(excess) pore water pressures and inertial forces are kept constant. The material behavior

is approximated using the Matsuoka-Nakai model with the friction angle chosen to be

identical to the critical friction angle (Tab. 7.1). SRFEA is performed for time intervals

of ∆tdyn = 0.05 s considering an initial factor of safety of FoS0 = 0.5 and an incremental

increase of ∆FoS = 0.01. The critical FoS was obtained based on a sudden change in the

FoS versus displacement plot with displacements displayed in logarithmic scale, following

the approach discussed in Section 5.2. To avoid unrealistically large friction angles in the

stability analyses, SRFEA was conducted with FoS0 = 0.5, thus, theoretical FoS values

below this threshold (FoS ≤ 0.5) will be displayed as FoS = 0.5. To study the influence of

the inertial forces, the full FoS time history is investigated with and without consideration

of inertial forces.

The results of the stability analyses with SRFEA are depicted in Fig. 7.13 in terms of

FoS versus tdyn. As can be seen from this figure the seismic excitation has a significant

impact on the stability of the opencast slope. Focusing on the simulations without inertial

forces (green curve, left subplot), under static conditions (tdyn = 0.0 s), the opencast

slope can be classified as stable with FoS ≈ 3.25. Besides small fluctuations in FoS,

this level of safety remains unchanged up to tdyn = 1.7 s. After a drop to FoS = 3.0

(tdyn = 1.85 s) and an increase up to FoS = 3.36 (tdyn = 2.05 s), a steady decrease of the

FoS is observed down to FoS ≈ 0.5 (tdyn = 3.65 s). Thereafter, the level of safety remains

unchanged, though, it should be clear that FoS < 0.5 can not be reached as FoS0 = 0.5
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Figure 7.13: Evolution of FoS with spatial pseudo-static analysis using SRFEA: (left)

influence of consideration of inertial forces on FoS and (right) critical FoS based on sim-

ulations with and without inertial forces

was selected. Significant deviations between the simulations with and without inertial

forces are observed for 1.7 ≤ tdyn ≤ 2.8 s, where (except for a peak at tdyn ≈ 1.8 s) the

former simulations result in lower FoS predictions. For tdyn ≥ 2.8 s similar FoS trends

are obtained in both simulations due to a higher importance of accumulated excess pore

water pressures, which are considered in both simulations. Overall, it can be concluded

that once an unstable state is obtained, the opencast slope remains unstable until the

DFEA was terminated.

7.3.5. Discussion

To enable a direct comparison of the results obtained using LEM, SDSS, FELA and

SRFEA, the evolution of the FoS during the dynamic loading is summarized in Fig. 7.14.

Note that differences in the results of the four seismic slope stability approaches are

obtained with regard to the static FoS (tdyn = 0.0 s), the point in time from which the

slope stability is affected by the seismic loading, the time at which FoS < 1.0 and the

FoS at the end of the simulation. As for this example the frequency of the input signal is

rather small, no significant oscillations in the FoS are observed1.

1Note that significant larger oscillations in the FoS are observed for seismic stability analyses conducted

for centrifuge model tests discussed in Chapter 8 due to input signals with higher frequencies.
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Figure 7.14: Comparison of the FoS predictions for the opencast slope based on LEM,

FELA, SDSS and SRFEA

Analyzing the initial stability of the slope, it is apparent from Fig. 7.14 that LEM and SR-

FEA predict almost identical FoS, whereas FELA and SDSS predict significantly smaller

FoS. The good agreement of LEM and SRFEA can be explained by the fact that the

latter uses the Matsuoka-Nakai (MN) model and the former applies an equivalent Mohr-

Coulomb (MC) friction angle ϕMC that ensures a similar size of the yield surface of MC

and MN at a Lode angle of θ = 0◦ corresponding to plane strain conditions. As the

FELA is based on the Bolton (1986) approach, a different friction angle – in this case, a

smaller one compared to ϕMC – is used in combination with the MC model, which results

in less shear resistance along the slip surface and a smaller FoS. Although it could be

expected that SDSS predicts a similar FoS compared to LEM and SRFEA, it is observed

that SDSS yields the smallest FoS under static conditions. A possible reason for this

observation are large deformations occurring prior to the dynamic excitation of the slope

that lead to large shear strains and shear stresses during the iterations to achieve a static

equilibrium2.

Considering the time from which the slope stability is affected by the seismic loading, it

is noted that FoS predictions of LEM and FELA are influenced first at tdyn ≈ 1.15 s and

SRFEA is affected shortly after (tdyn ≈ 1.25 s), while SDSS is not influenced significantly

before tdyn ≈ 2.25 s. The differences in the time from which the slope stability is affected

by the seismic loading are directly related to the way in which the different approaches

2Note that better agreement of FoS values under static conditions are obtained for the centrifuge models

investigated in Chapter 8 using LEM, SRFEA and SDSS
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are influenced by accelerations/inertial forces and excess pore water pressures ∆pw. As

the dynamic signal reaches the slope before significant ∆pw could accumulate, stability

approaches considering inertial forces show an earlier impact of the seismic excitation.

Moreover, as LEM and FELA consider inertial forces with their horizontal components

always directed in driving direction, smaller FoS values are predicted compared to SRFEA

that considers inertial forces directed in the way that dynamic equilibrium is achieved. As

in SRFEA inertial forces may be directed in driving and stabilizing direction at different

locations at the same time, rather than only directed in driving direction, destabilizing

effects are smaller compared to LEM and FELA. In contrast to the former three ap-

proaches, SDSS does not explicitly consider inertial forces but only the current stress

state. The FoS determined with SDSS is rather influenced by ∆pw that accumulated for

tdyn > 2.0 s and ultimately led to a decisive reduction of effective stresses. Note that ∆pw

also significantly affected the FoS obtained with LEM, FELA and SRFEA.

Investigating the time at which slope stability drops below FoS = 1.0, differences are

obtained for the different approaches. In LEM, the opencast slope is classified unstable

at tdyn = 2.6 s, while FELA almost reaches an unstable state (FoS = 1.04) at tdyn = 3.1 s

but ultimately predicts an unstable state for tdyn ≥ 3.6 s. SDSS and SRFEA predict a

drop below FoS = 1.0 at tdyn = 3.0 s and tdyn = 3.25 s, respectively. Although, despite

the initial offset, the general FoS curve trends of LEM and FELA are comparable within

the first 2 seconds, FELA yields larger FoS predictions compared to LEM as soon as

acceleration amplitudes increase and the spatial distribution of accelerations becomes

more heterogeneous throughout the slope. As in FELA seismic coefficients are averaged

throughout the clusters, which are required to create spatial distributions of accelerations,

local peak values (minimum or maximum) are damped or even filtered out, leading to

smaller inertial forces that could destabilize the slope. Still, it should be noted that FoS

values obtained using FELA drop to zero as accelerations increase rapidly at tdyn ≈ 3.7 s

(see Fig. 7.3). Comparing FoS predictions by FELA and SRFEA, it is clear that FELA

yields smaller FoS values for most of the seismic excitation time, which mostly results

from a Mohr-Coulomb friction angle smaller than ϕMC and horizontal inertial forces that

are always directed in driving direction. Still, SRFEA yields smaller FoS predictions for

3.1 s ≤ tdyn ≤ 3.7 s, which results from damped peak accelerations due to averaging in the

clusters and less accurate excess pore water pressures estimates in FELA.

Analyzing the FoS at the end of the simulation, it is seen that all approaches clearly

predict a slope failure with FoS ≤ 0.5. Though, it is observed that, except for SRFEA,

approaches considering inertial forces yield very small FoS values for tdyn ≥ 4.0 s, while
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SDSS ends up at FoS ≈ 0.5. Note that SRFEA yields FoS = 0.5 corresponding to the

initial FoS value in the strength reduction procedure, which should be interpreted in a

way that the slope fails at this FoS or even smaller ones. Thus, selecting smaller initial

FoS may result in smaller FoS predictions using SRFEA, which agree better with LEM

and FELA predictions.

To evaluate the quality of the FoS predictions obtained using the four stability approaches

and to categorize the results from conservative to optimistic, discussion regarding limita-

tions of the individual approaches is required. This discussion is necessary as the boundary

value problem under investigation is a synthetic one, where no experimental results can

be taken into consideration. Note that all four approaches applied here have their indi-

vidual advantages and drawbacks that may have different effects on the FoS predictions

for different boundary value problems under investigation.

In LEM, shear strength is approximated using the Mohr-Coulomb criterion with a friction

angle calibrated using the concept of equivalent Mohr-Coulomb friction angle (Griffiths

and Huang, 2009; Jiang and Wang, 2011) considering a fixed Lode angle of θ = 0◦. How-

ever, as θ is not constant throughout the domain, the actual Lode angle may differ from

θ = 0◦ at different locations within the slope. Though, it should be clear that for this

example, the major impact on the FoS should be attributed to the inertial forces and

the excess pore water pressures. LEM with spatial distributions of accelerations/inertial

forces and excess pore water pressures as utilized here can be considered to yield con-

servative estimates to the FoS as horizontal inertial forces are always directed in driving

direction. Classification of the FELA-based approach should be considered conservative

in case sufficiently small clusters are used to approximate the spatial distribution of in-

ertial forces. The main reason for this is that, similar to LEM, horizontal inertial forces

are always considered pointing in driving direction. Still, in case cluster sizes are too

large, over-estimation of the FoS is possible due to damped peak accelerations as a result

of the averaging approach within the clusters. SRFEA can be considered to yield rather

realistic FoS predictions due to consideration of accurate stress states and excess pore

water pressures, inertial forces orientated in accordance with the dynamic equilibrium

and soil shear strength based on the Matsuoka-Nakai failure criterion. Note that SRFEA

might yield slightly conservative results as the critical friction angle ϕc is considered in the

strength reduction method, which might be smaller than the current mobilized friction

angle. Still, it should be clear that the Matsuoka-Nakai model cannot predict an accu-

rate stress-strain behavior and take into account stress history, barotropy and pyknotropy

compared to more sophisticated constitutive models, for instance the hypoplastic model.
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As the latter constitutive model is utilized in SDSS and relevant state variables are trans-

ferred from the DFEA to the SDSS, the FoS predictions can be considered rather realistic.

Note that up to now, SDSS has only been applied in combination with wedge or circular

slip surfaces which may result in over-prediction of the FoS for layered soils, especially for

boundary value problems with thin weak layers as discussed in Sections 3.4.4 and 5.4.

Besides the similarities and differences in the approaches for the assessment of the slope

stability under seismic loading, evaluation of computational costs related to the different

approaches should also be considered. For this boundary value problem considering a

single time step, it is observed that LEM only requires a few seconds, whereas FoS pre-

dictions based on FELA require 30 minutes, and SRFEA and SDSS take up to 2 and

4 hours, respectively. Note that the computational costs related to LEM and SDSS in-

crease with increasing numbers of slip surfaces to be investigated. In SDSS, the largest

computational costs can be attributed to the simulation of element tests, which is further

addressed in Chapter 9. In FELA and SRFEA, computational costs are mainly influenced

by the number of elements, thus, the number of nodes and integration points. Thus, for

boundary value problems discretized with less elements, computational costs associated

with FELA and SRFEA are reduced, as will also be discussed with respect to stability

analyses conducted for centrifuge model tests in Chapter 8.





8. Centrifuge model tests

8.1. Overview

To demonstrate the applicability and robustness of the methods proposed in Chapter 6,

the stability of two centrifuge model tests under earthquake loading is investigated. The

first centrifuge model test has been performed within the framework of the Verification

of Liquefaction Analyses by Centrifuge Studies (VELACS). In model scale, it is a non-

symmetric dam of 10 cm height with two differently inclined slopes of 1:3 and 1:1.75.

The second centrifuge model test (LEAP-UCD-2017) belongs to the series of Liquefaction

Experiments and Analysis Projects (LEAP), where centrifuge tests with identical material

and test setups have been conducted worldwide at different facilities. Information about

the test setups for both centrifuge model tests are provided in the following sections.

Among others, more in depth information about the VELACS and the LEAP model tests

can also be found in Muraleetharan et al. (2004) and Kutter et al. (2020), respectively.

To assess the evolution of the stability of both centrifuge model tests during the dynamic

excitation, two consecutive steps are performed, which include dynamic finite element

analyses (DFEA) and subsequent evaluation of the factor of safety (FoS) using the stability

approaches introduced in Chapter 61. Note that as the focus of this work is the assessment

of the slope stability rather than performing the DFEA, the latter are conducted in

accordance with previous studies (Machaček et al., 2018; Machaček, 2020; Triantafyllidis

et al., 2022). For this reason, only selected details and explanations about the finite

element models, constitutive models and calculation phases applied in the DFEA are

summarized in the respective sections, whereas the reader is referred to the previous

studies for additional detailed information.

1Note that the cluster-based pseudo-static analysis using FELA is not applied to assess the slope stability

for the centrifuge model tests since the applicability of the approach has already been shown in

Chapter 7.
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8.2. Verification of Liquefaction Analyses by Centrifuge

Studies (VELACS)

8.2.1. Dynamic finite element analysis

Centrifuge model tests have been conducted at Rensselaer Polytechnic Institute (RPI)

as part of the Verification of Liquefaction Analyses by Centrifuge Studies (VELACS).

Among others, Muraleetharan et al. (2004) documented these tests, out of which one

centrifuge model test is assessed with regard to the factor of safety in this section. The

geometry and dimensions of the model in centrifuge model scale are schematically shown

in Fig. 8.1. As the centrifuge tests are conducted at 50 g, the size of the dam model placed

into the centrifuge is approximately 51.5 cm in width and 10 cm in height, with the water

table located at 11 cm height. For the selected test, oven-dried Nevada Sand is pluviated

into the model container to form the dam with a relative density of Dr = 43 %. After

the dam is placed, the water-level is increased up to the final height and the centrifuge

is accelerated to 50 g. As information about the degree of saturation is limited, different

assumptions can be found in literature, for instance Sw = 1.0 (Muraleetharan et al., 2004)

or 0.96 ≤ Sw ≤ 0.98 (Machaček et al., 2018; Hleibieh and Herle, 2019b; Triantafyllidis

et al., 2022). Finally, the dynamic loading is conducted, applying lateral acceleration to

the bottom of the model in accordance with the input motion depicted in Fig. 8.2. Note

that the time axis used in this figure also refers to the centrifuge model scale.

The finite element software numgeo was used for the analysis of the dynamic excitation

of the VELACS centrifuge model test. As the simulation was performed in model scale,

increased gravity (50 g) was considered. The mechanical behavior of Nevada sand is mod-

eled using Hypoplasticity with Intergranular Strain (IGS) with the parameters provided

ACC 1
ACC 2

ACC 3
ACC 4 ACC 5

ACC 6 ACC 7

ACC 8

PPT A PPT B PPT C

PPT D PPT E PPT F
10 cm11 cm

4 cm30 cm 17.5 cm

51.5 cm

LVDT

Figure 8.1: Geometry and dimensions of the VELACS dam model in centrifuge model

scale (Muraleetharan et al., 2004)
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Figure 8.2: Input motion at the bottom of the VELACS model

in Table 8.1. The FE model consists of about 1089 elements and 3417 nodes. The finite

element mesh was generated as a quad-dominated mesh (1055 quad elements with each

eight nodes and nine IPs2, 34 triangular elements with each six nodes and three IPs) with

a mean nodal distance of ∆x ≈ 2.5 mm and ∆y ≈ 2.0 mm. To account for changes in

the pore water pressure and consolidation effects during and after the earthquake load-

ing, so-called u-p elements are used, discretizing the solid displacements u and the pore

water pressure pw at the nodes. The simulations are performed in an updated Lagrangian

framework, using the Zaremba-Jaumann stress rate. In accordance with Machaček et al.

(2018), viscous stresses are considered to stabilize the stress-strain behavior at small stress

states. In this simulation, viscous stresses are limited to 2 kPa.

The simulation was performed in the following steps:

Geostatic: Application of gravity with a magnitude of 1 g while the displacements of

the bottom boundary were constrained in horizontal and vertical direction. In addition,

the pore water pressure was prescribed at each node according to a hydrostatic distribu-

tion, considering the phreatic level as given in Fig. 8.1. In accordance with the degree of

saturation reported in the literature, Sw = 0.98 is assumed with a corresponding fluid

bulk modulus of Kw = 5.0 MPa. The initial void ratio follows Bauer’s equation (Bauer,

1996). A lithostatic initial stress distribution was prescribed, considering the variable

overburden height in the dam. As shear stresses are unknown a priori, they develop

during the iteration process as they are required to obtain a static equilibrium of the

2Integration points
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Table 8.1: Parameters of the Hypoplastic model (ϕc - β) with intergranular strain (IGS,

mT - χ) for Nevada sand (Triantafyllidis et al., 2022)

ϕc ν hs n ed0 ec0 ei0 α β mT mR R βR χ

[◦] [–] [MPa] [–] [–] [–] [–] [–] [–] [–] [–] [–] [–] [–]

31 0.24 755 0.328 0.511 0.883 1.05 0.34 0.9 4.5 9.0 10−4 1.4 0.48

model. To account for the dead weight of the free water table, an additional surface

load was applied in this step and kept constant for the following steps. In addition,

a surface pressure of 1 kPa was applied perpendicular to the ground surface to avoid

very small mean effective stresses leading to numerical problems with the hypoplastic

model.

Spin-up: Gravity is increased from 1 g to 50 g in small increments to approximate

the spin-up phase. Note that the unit weight of the soil and the water are affected

by the increased gravity. To account for the latter, increasing pore water pressure was

prescribed at each node in accordance with the increased gravity. Moreover, increased

water pressure of the free water above the soil top surface (i.e. dead weight of the free

water table) is considered in accordance with the increased gravity.

Dynamic loading: Excitation of the model base in horizontal direction in a dynamic

step. In this case, the excitation is applied by a Dirichlet boundary condition, im-

posing the acceleration-time history in the horizontal direction at the bottom of the

model in accordance with Fig. 8.2. The Hilber-Hughes-Taylor time integration scheme

(α = −0.05) was used and a fixed time increment of 5 · 10−5 s was set. A constant

hydrostatic pore water pressure was assigned to all nodes at the top of the model, al-

lowing for drainage. Except for the bottom of the model, which was constrained in the

vertical direction, no further Dirichlet boundary conditions were applied to the solid

displacement.

Results

To assess whether the DFEA using Hypoplasticity with Intergranular Strain (IGS) is

capable to reproduce the results of the centrifuge model test, comparisons of vertical dis-

placements, acceleration and excess pore water pressure time histories at the positions of

the respective sensors depicted in Fig. 8.1 are undertaken. For this, the vertical displace-

ments measured at the center point of the crest (LVDT 1), the acceleration time histories
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recorded at the accelerometers ACC 3, ACC 6, ACC 7 and ACC 8 as well as the excess

pore water pressure time histories back-calculated from the pore pressure transducers

PPT A – PPT F summarized in Muraleetharan et al. (2004) are considered.

The evolution of vertical displacements uy at the center point of the crest (LVDT 1)

obtained from the experiment and the numerical simulation during the dynamic excitation

are depicted in Fig. 8.3. Note that displacements related to the installation and spin-

up process are not included in this plot. For the experiment as well as the numerical

simulation, no displacements are obtained up to t ≈ 0.03 s as the dynamic loading of the

VELACS model starts with very small amplitudes (Fig. 8.2). As soon as the amplitudes

of the dynamic signal increase, displacements increase as well, showing an almost linear

evolution with ongoing dynamic loading until t ≈ 0.4 s. Afterwards, the displacement

rate decreases. For t > 0.45 s almost no change in displacements is seen in the experiment

while small changes are still observed in the numerical simulation. An explanation for this

can be given with regard to the dissipation of excess pore water pressures that is slower

in the numerical simulation, as discussed in the subsequent paragraphs. Overall, good

agreement of the displacements obtained in the experiment and the numerical simulation

is seen during the entire time of the test. Considering the assessment of the stability,

a factor of safety could be defined with regard to a threshold displacement. However,

this assessment should be considered rather subjective. Still, as the final displacements
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at LVDT 1 from the experiment (Muraleetharan et al., 2004)
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of 1.5 cm are equivalent to an average of 15 % vertical strain, it should be clear that this

magnitude of strain is certainly beyond any acceptable threshold values.

Analyzing the horizontal accelerations in terms of seismic coefficients from the experiment

and the numerical simulation, it is apparent from Fig. 8.4 that very good agreement is

obtained close to the bottom of the model (ACC 3) with some spikes for which larger

values are obtained in the experiment compared to the numerical simulation. Slight

deviations in the acceleration time histories are seen for accelerometers at the left and right

slope surfaces (ACC 6 and ACC 7) with larger magnitudes recorded in the experiment.

Close to the dam crest at accelerometer ACC 8, larger accelerations are obtained in the
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numerical simulation, especially for tdyn ≤ 0.2 s. Regarding the assessment of the slope

stability during the dynamic loading with pseudo-static analyses, it should be noted that

underestimation of accelerations (or seismic coefficients) may also result in overestimation

of the FoS.

Comparing excess pore water pressures in Fig. 8.5, larger differences can be seen between

the experiment and the numerical simulation, where ∆pw recorded in the experiment

shows a faster build-up and a faster dissipation of excess pore water pressure as well as

larger magnitudes. In contrast to pore pressure transducers PPT A - PPT C that yield

∆pw = 0 for tdyn ≥ 0.5 s, it is apparent from the results of PPT D - PPT F that increased

pore water pressures of about 2.0 kPa ≤ ∆pw ≤ 4.0 kPa remain after the test. This can

be explained with regard to deformation of the soil and the transducers placed inside the

dam, as due to the displacements, the transducers are finally located at a deeper position,

at which hydrostatic pore water pressures are larger. Note that, in general, lower excess

pore water pressures are obtained in the numerical simulation compared to the experiment.

With regard to the assessment of the slope stability, this means larger effective stresses,

leading to larger shear resistance and, potentially, a higher FoS prediction. Thus, the FoS

predictions should be considered optimistic rather than conservative.

Besides the comparison of the predicted and measured accelerations and excess pore

water pressures, accelerations obtained from DFEA are analyzed in terms of maximum

positive and negative seismic coefficients (see Eq. 2.8) obtained in the whole soil domain

during the dynamic loading. The time histories of the maximum horizontal and vertical

seismic coefficients are depicted in Fig. 8.6. A clear similarity between the input seismic

coefficients (Fig. 8.2) and the peak horizontal and vertical seismic coefficients in the soil

domain (Fig. 8.6) is observed. Still, larger seismic coefficients are obtained in the soil

domain compared to the input signal. This is due to amplification of the accelerations

in the soil domain and reflections at the top surface and the model boundaries. Overall,

an amplification of about 50 % is seen for kh, while large vertical seismic coefficients are

obtained, as well, with peak values ranging up to kv,min /max ≈ 0.4.

8.2.2. Assessment of seismic slope stability

Spatial pseudo-static analysis using LEM

In contrast to SDSS and SRFEA utilizing Matsuoka-Nakai as limit or yield surface, re-

spectively, stability analyses based on LEM are conducted applying the Mohr-Coulomb
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failure criterion in the slip surface (see Section 2.1.1). For plane strain problems with

Lode angles of 0◦ ≤ θ ≤ 10◦, for instance the 2D slope stability problem, applying MC

results in smaller allowable deviatoric stresses in the latter case, which ultimately leads

to smaller FoS. In this section, an equivalent Mohr-Coulomb friction angle (Griffiths and

Huang, 2009; Jiang and Wang, 2011) of ϕ = 34.75◦ evaluated at a Lode angle of θ = 0◦ is

set into approach to compensate effects related to differences between the Mohr-Coulomb

and Matsuoka-Nakai surfaces. Moreover, a stabilizing distributed load of 1 kPa was used

in the DFEA, which was also considered in SDSS and SRFEA to ensure comparable

assumptions.

As a rough estimate of the slope stability applying the PSA with LEM, a constant seismic

coefficient can be assumed for the whole soil domain. Following Hynes-Griffin and Franklin

(1984) and Kramer and Smith (1997), an acceptable approach would be to calculate the

horizontal seismic coefficient according to kh = 0.5 · amax/g, where amax is the maximum

bedrock acceleration. Hleibieh and Herle (2019a) suggested to determine kh based on

60 % of the maximum acceleration as a result of amplification within the soil domain.

Additionally, in line with Hleibieh and Herle (2019a), a vertical seismic coefficient is

assumed in the order of kv ≈ 1/3 · kh. In both approaches, a homogeneous distribution of

the seismic coefficient is assumed and accumulated excess pore water pressures resulting

from the dynamic loading are neglected. For the input motion used in the excitation phase

of the VELACS model (Fig. 8.2), following the above mentioned recommendations would

result in kh = 0.240 (Hynes-Griffin and Franklin, 1984; Kramer and Smith, 1997) up to
VELACS-kx-ky

−1

−0.5

0

0.5

1

0 0.1 0.2 0.3 0.4 0.5 0.6

−0.4

−0.2

0

0.2

0.4

0 0.1 0.2 0.3 0.4 0.5 0.6

S
ei

sm
ic

co
effi

ci
en

t,
k
h

Time, tdyn in s

kh,max

kh,min

S
ei

sm
ic

co
effi

ci
en

t,
k
v

Time, tdyn in s

kv,max

kv,min

Figure 8.6: Peak (min/max) seismic coefficients in the soil domain during dynamic loading

of the VELACS model



180 8. Centrifuge model tests

kh = 0.289 and kv = 0.096 (Hleibieh and Herle, 2019a). Applying these seismic coefficients

in PSA with LEM (Bishop) using geoSlice, FoS = 0.647 and FoS = 0.477 are obtained,

respectively. Therefore, the VELACS model dam would be classified as instable. Note

that based on these approaches it is not possible to determine the evolution (time history)

of the stability of the dam as the spatial and temporal distribution of the accelerations

are not taken into consideration.

To analyze the VELACS model with regard to the evolution of the slope stability during

dynamic loading, spatial pseudo-static analyses with LEM introduced in Section 6.2 are

conducted. With time increments of ∆t = 0.001 s and two potential directions of failure

(i.e. slip surfaces along the left and right face of the slope), 1200 stability analyses are

performed in total. Spatial distributions of seismic coefficients and excess pore water pres-

sures are accounted for using three nodes for interpolation. Horizontal seismic coefficients

(inertial forces) are always considered as acting in the direction of the driving forces and

vertical seismic coefficients are varied to automatically determine the critical direction.

To account for the increased gravity, corresponding unit weights of the soil and the water

are determined.

The results of the spatial pseudo-static analyses using LEM are depicted in Fig. 8.7 in

terms of FoS versus dynamic time for the left and right slope face individually and for the

critical slip surface, where the latter refers to the lower FoS of the former two. Analyzing

the stability under static conditions (at tdyn = 0.0 s), it can be seen that the stability of
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the left and right slope with FoS = 2.45 and FoS = 1.55 indicate that the model dam is

stable initially. Note that the right face yields a smaller FoS compared to the left face

since the inclination of the former slope is larger. As soon as the dynamic excitation

starts and the shear waves approach the dam top surface, a significant reduction of the

FoS is observed for both faces. Note that due to a rapid variation of the accelerations

in the model, the FoS undergoes rapid changes, as well, where, depending on the spatial

distribution of accelerations, the critical slip surface associated with the lowest FoS is

found at the left or the right face of the dam. Furthermore, it is seen that the amplitude

of the FoS variation slightly decreases with increasing dynamic time. This trend is in good

agreement with the applied input signal (Fig. 8.2) and the amplified peak accelerations

observed in the dam (Fig. 8.6), however, it may also be associated with the accumulation

of excess pore water pressures (Fig. 8.5) that further destabilize the dam by decreasing

effective stresses. After the dynamic loading finished at tdyn ≈ 0.5 s and also accelerations

in the dam decreased (Fig. 8.4), the FoS increases with increasing time as a result of

dissipation of excess pore water pressure. Note that the initial level of safety is not fully

recovered at tdyn = 0.6 s as ∆pw has not decreased to zero in the whole model (see e.g.

PPT B/E in Fig. 8.5).

Evaluation of the right subplot of Fig. 8.7 allows to state that the VELACS model reaches

an unstable state (FoS < 1.0) as soon as the dynamic excitation begins. As the FoS does

not recover a stable state after the first drop until the dynamic loading finished, approaches

based on the permanent-displacement analysis (e.g. Newmark’s method) would predict

large displacements as a result of accelerations exceeding the yield acceleration. To be

more specific, a yield acceleration of ay ≈ 54 m/s2 is determined using LEM for this model

(model scale) and a slope failure towards the right side. Applying Newmark’s method, a

similar displacement versus time trend as depicted in Fig. 8.3 is seen with a maximum

displacement of about 1 cm. This is in good agreement with the displacements observed

in the experiment (Muraleetharan et al., 2004) that ultimately led to a decrease in the

height of the model dam in the experiment of about 1.5 cm, corresponding to 15 % of the

model dam height.

Strain-dependent slope stability for earthquake loading

To assess the stability of the VELACS model considering an advanced constitutive model

and an accurate spatial distribution of the effective stress state and the state variables,

the extended strain-dependent slope stability (SDSS) described in Section 2.1.6 and Sec-

tion 6.4 is utilized. Similar to the DFEA, the hypoplastic model in the version of von
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Wolffersdorff (1996) is applied, however, in line with the discussions in Section 6.4, inter-

granular strain (IGS) proposed by Niemunis and Herle (1997) is deactivated in SDSS to

avoid overestimation of the shear stresses and the FoS. For this reason, in addition to the

stress tensor only the void ratio is transferred from the DFEA model to the element test

simulations. SDSS is conducted in terms of direct simple shear (DSS) tests for 15 nodes

along a potential slip surface, where the stress tensor at each node is rotated onto the

slip surface before the DSS test is performed. Evaluation of the global mobilized shear

resistance ratio T (γ) is conducted in accordance with Eq. 6.11, where the summation of

the shear stress versus shear strain curves is normalized by the sum of the initial shear

stresses at tdyn = 0.0 s, which resembles the static equilibrium. The FoS curve is obtained

in accordance with the descriptions in Section 2.1.6. Similar to the seismic slope stability

assessment conducted for the opencast slope using SDSS (Section 7.3.3), slope stability is

assessed in terms of FoSmax. Note that different to the aforementioned slope, two different

directions of failure need to be investigated for the VELACS dam model. For this reason,

SDSS had to be applied for both the left and the right face of the VELACS model. As the

computational costs associated with SDSS are significantly larger compared to LEM (≈ 2

orders of magnitude), stability analyses are conducted for time increments of ∆t = 0.005 s,

resulting in 121 analyses per face (i.e. per direction of failure).

The results of the analyses applying SDSS are presented in Fig. 8.8 in terms of the

FoS versus dynamic time for the individual assessment of the left and right slope (first

subplot) and the critical slope (second subplot). It can be seen from this figure that,
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initially (tdyn = 0.0 s), the right face yields a smaller FoS compared to the left face

since the inclination of the former slope is larger. During the dynamic loading, the initial

difference between the stability of the left and the right face is not maintained but reduces

significantly. This observation may be related to the fact that the slopes are differently

affected by the dynamic loading due to the type of the input motion. Note that the

critical FoS is not always associated with the same face (i.e. always the left or right

slope), but changes for different time steps. Analyzing the critical FoS, it is observed that

the dynamic loading destabilizes the VELACS model significantly with a drop of the FoS

below unity at tdyn ≈ 0.1 s. Despite slight temporary re-increases of the slope stability, an

overall decreasing trend of the FoS is seen with a minimum of FoS = 0.38 at tdyn ≈ 0.25 s.

After reaching this minimum, slight increases and decreases of the FoS are observed for

0.25 s ≤ tdyn ≤ 0.46 s. As soon as the amplitude of the dynamic signal reduced and finally

vanished (tdyn ≥ 0.5 s), the FoS is partly recovered as a result of dissipating excess pore

water pressures and increasing effective stress levels. Note that the initial FoS is not

reached as a result of a modified stress state and remaining excess pore water pressures

∆pw > 0 in the model at tdyn = 0.6 s. In line with the high frequency oscillations of

the input signal, it is observed that also the FoS predictions with SDSS are characterized

by oscillations, though, the amplitude of these oscillations is smaller compared to those

obtained with LEM.

In general, evaluation of the seismic slope stability based on the concept of strain-

dependent slope stability indicates that the VELACS centrifuge model test reaches and

contains a state of failure shortly after the dynamic loading started. This observation is

in good agreement with the results obtained with LEM. Note that higher frequencies and

amplitudes of the oscillations of the FoS during the dynamic loading might be seen when

decreasing the time interval of the stability analyses.

Spatial pseudo-static analysis using SRFEA

To evaluate the evolution of the FoS based on the spatial pseudo-static analysis using

SRFEA, submodel analyses (see Section 6.5) are conducted, in which the DFEA is put on

hold whenever a SRFEA is performed. For the SRFEA, the current stress state, (excess)

pore water pressures and inertial forces are imported from the DFEA. During the SRFEA,

(excess) pore water pressures and inertial forces are kept constant. The material behavior

is approximated using the Matsuoka-Nakai model with the friction angle chosen to be

identical to the critical friction angle (Tab. 8.1). SRFEA is performed for time intervals

of ∆t = 0.001 s considering an initial factor of safety of FoS0 = 0.5 and an incremental
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increase of ∆FoS = 0.01. The critical FoS was obtained based on a sudden change in the

FoS versus displacement plot with displacements displayed in logarithmic scale, following

the approach discussed in Section 5.2. Technically, SRFEA could also be started with

smaller FoS values, however, a value of 0.5 was selected here to avoid unrealistically large

friction angles. For this reason, it should be clear that values of FoS ≤ 0.5 will be displayed

as FoS = 0.5, since in those cases slope failure has been detected either way.

The results of the analyses applying SRFEA are presented in Fig. 8.9 in terms of the

FoS versus dynamic time for two cases, where inertial forces (denoted in the plot as

nodal dynamic forces, NDF) are considered in one case and ignored in the other case.

Focusing on the initial FoS after the spin-up at first, SRFEA yields FoS = 1.6, which

is comparable to the one obtained using LEM (FoS = 1.55). During dynamic loading,

significant oscillations of the FoS were observed in this figure that can be attributed to

large oscillations in the dynamic signal, which leads to oscillations in the inertial forces as

well as in the excess pore water pressure. Note that significant differences in the predicted

FoS are obtained for simulations considering and neglecting inertial forces, where the

former predominantly yield smaller (i.e. more critical) factors of safety. Thus, neglecting

the contribution of inertial forces may yield to non-conservative FoS estimates.

Considering the evolution of the critical FoS defined as the minimum FoS for simulations

with and without inertial forces displayed in the right subplot, it is apparent that initially,

the VELACS model is in a stable state for the first time steps investigated. However, at t ≈
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0.03 s a sudden decrease of the safety is obtained down to FoS = 0.66 with further reduction

within the following time increments down to FoS = 0.5 at t ≈ 0.037 s. Afterwards,

large oscillations of the FoS are detected. For 0.03 s ≤ t ≤ 0.54 s, the VELACS model is

classified as unstable for (almost) the entire time span. Note that a continuous increase in

the FoS is seen for t ≥ 0.45 s as a result of vanishing inertial forces and increasing effective

stresses, the latter related to the dissipation of excess pore water pressures. Compared to

the results of the LEM, larger FoS values are predicted using the SRFEA for most of the

time steps. These differences may be attributed to the consideration of inertial forces. In

contrast to LEM, inertial forces in SRFEA are not strictly directed into driving direction

but in line with the DFEA to ensure the analysis of an equilibrium state that is very

similar to the dynamic equilibrium.

Discussion

To enable a direct comparison of the results obtained using LEM, SDSS and SRFEA,

the evolution of the FoS during the dynamic loading, individually plotted in Fig. 8.7,

Fig. 8.8 and Fig. 8.9, respectively, is summarized in Fig. 8.10. It is obvious from this

figure that the three approaches do not yield identical predictions of FoS versus tdyn,

however, further elaboration is needed to enable an assessment of the approaches. For

this reason, discussion is conducted with regard to similarities, differences, reliability and

computational costs.
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As can be seen from Fig. 8.10, all approaches result in similar FoS under static conditions

(t = 0.0 s). Moreover, all approaches show a decisive drop of the FoS at t ≈ 0.03 s,

which agrees well with the time at which the amplitude of the dynamic signal increased

to kh ≥ 0.2 for the first time. During the dynamic loading, LEM yields small FoS values,

whereas SDSS and SRFEA predict larger FoS values. Note that FoS in SRFEA are

restricted to FoS ≥ 0.5 to avoid unrealistically large friction angles in the constitutive

model routine. Using a smaller initial FoS in SRFEA, it is possible that also smaller FoS

values would be detected. Still, it is noteworthy that all approaches classify the VELACS

model as unstable for at least 75 % of the test duration. Considering the last 0.1 s of

the centrifuge test, it is observed that FoS determined based on all approaches increases

significantly as a result of (almost) zero accelerations and dissipation of excess pore water

pressures ∆pw. The FoS at the beginning of the dynamic loading is not fully recovered

at t = 0.6 s due to ∆pw ≥ 0 kPa in the model (see e.g. PPT B/E in Fig. 8.5).

To evaluate the reliability related to the different approaches and to categorize them from

conservative to optimistic, stress states, shear strength and approximation of the critical

slip surface are discussed. In LEM, the shape of the slip surface is prescribed and the

total stress state is approximated only roughly. The effect of excess pore water pressures

is captured accurately, while shear strength is approximated based on the concept of the

equivalent Mohr-Coulomb friction angle (Griffiths and Huang, 2009; Jiang and Wang,

2011). The impact of inertial forces is overestimated by considering horizontal seismic

coefficients that always act in driving direction. As for slopes without soil layering (see

e.g. Section 3.4.4) the last two aspects are more important than the former two, LEM is

regarded to yield conservative estimates for the VELACS model. In SDSS, effective (and

total) stress states are captured accurately and shear strength is approximated realistically

due to the use of advanced constitutive models for the stability analyses. The shape of the

slip surface and the discretization of nodes along the slip surface need to be prescribed,

where the former requires an optimization to detect the critical slip surface and sensitivity

analyses with regard to the latter should be conducted to evaluate the impact of the

discretization on the FoS. Note that in contrast to SRFEA, stress redistribution during the

stability analysis is not possible in SDSS as each node is considered isolated. Furthermore,

stresses and strains after the element tests are not transferred back to the finite element

model and overall equilibrium is not checked. SDSS is considered to give a more reliable

prediction of the stability of the VELACS model in comparison with LEM as the spatial

distribution of stresses is more accurate and shear strength is defined based on an advanced

constitutive model taking into account the current stress state, the loading history and

the soil density.
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In SRFEA, an accurate distribution of stresses is considered and equilibrium is ensured

during the strength reduction procedure. Setting these aspects into context with the pre-

vious approaches, the former is only captured in SDSS and the latter is neither considered

in LEM nor in SDSS. Comparable to LEM and SDSS, ultimate shear strength in SRFEA

is governed based on the Matsuoka-Nakai (MN) model that also accounts for the inter-

mediate principal stress. Predictions based on SRFEA are considered to be slightly more

accurate compared to LEM as shear strength in the latter approach is approximated based

on the equivalent MC friction angle. However, as the MN model with perfect plasticity

(i.e. without hardening and softening) used in SRFEA does not take into consideration the

effect of the strain level on the ultimate shear strength, for instance by a strain-softening

rule related to plastic strains, the description of shear strength should be regarded more

accurate in SDSS as strain-dependency is considered and more sophisticated constitutive

models can be applied. In contrast to LEM and SDSS, the approximation of the criti-

cal slip surface in SRFEA does not require predefined slip surfaces but the location and

the shape of the critical slip surface are part of the outcome of the strength reduction

procedure. Note that for slopes composed of a single material (i.e. no soil layering) and

homogeneously distributed material parameters (i.e. no variation within soil domain), the

shape of the critical slip surface should be of subordinate importance provided a circular

shape was assumed. Therefore, comparable to the SDSS, SRFEA is considered to give a

reliable prediction of the stability of the VELACS model.

Besides the similarities and differences in the approaches for the assessment of the slope

stability under seismic loading, evaluation of computational costs related to the different

approaches should also be considered. In general, stability analyses based on LEM are

very fast. Although, depending on the optimization technique, the number of slip sur-

faces to be investigated may vary significantly, LEM analyses require only a few seconds

to predict the FoS. This also holds for the assessment of the stability of the VELACS

model, where slip surfaces considering a failure both along the left and the right slope

face needed to be analyzed. Note that the consideration of spatial distributions of ac-

celerations (inertial forces) and excess pore water pressures increases the computational

costs associated with LEM, though, this approach is still fast when compared to SDSS

and SRFEA. Performing SDSS with a basic grid optimization technique, the number of

simulations to be conducted is independent of the level of safety, but it is only related

to the number of slip surfaces specified. Similar to LEM, the left and the right slope of

the VELACS model need to be analyzed independently. Considering analyses for both

slopes, SDSS requires approximately 1 hour to evaluate the stability for one time step.

In SDSS, the largest fraction of the computational costs is related to the simulation of
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the element tests, which is also addressed in Chapter 9. Depending on the level of safety

and, thereby, the number of increments conducted, SRFEA requires a few seconds up to

2 minutes for each time step. Note that the time to conduct SRFEA is strongly related

to the number of nodes, elements and integration points in the model. As the number

of elements used to discretize the VELACS model is rather small, SRFEA is significantly

faster in comparison to SDSS.

8.3. Liquefaction Experiments and Analysis Projects

(LEAP)

8.3.1. Dynamic finite element analysis

Finite element model

The Liquefaction Experiments and Analysis Projects (LEAP) aim to investigate the re-

peatability and reliability of experimental data obtained from centrifuge model tests at

different facilities. It is a series of centrifuge model tests that started with LEAP-GWU-

2015, followed by LEAP-UCD-2017 and LEAP-ASIA-2019, where the focus here is on the

second event. In total, 24 centrifuge tests were performed at 9 centrifuge facilities located

in various countries around the world. The results of the experimental and numerical

analyses related to LEAP-UCD-2017 are summarized in Kutter et al. (2020). The slope

under investigation is inclined by 5◦ and is composed of medium dense Ottawa sand. Ac-

cording to Kutter et al. (2020), a degree of saturation in the range of 0.994 ≤ Sw ≤ 0.998

was obtained. A schematic illustration of the centrifuge model test is depicted in Fig. 8.11.

Among the 9 facilities, centrifuge model tests were also conducted at National Central

University (NCU) in Taiwan with the results used as a benchmark for the numerical

analyses conducted in this chapter. Note that further numerical analyses of the LEAP

centrifuge model test were conducted by Triantafyllidis et al. (2022).

The finite element software numgeo was used for the analysis of the dynamic excitation of

the LEAP centrifuge model test. As the simulation was performed in prototype scale, no

increased gravity was considered. The mechanical behavior of Ottawa sand was modeled

using Hypoplasticity with Intergranular Strain (IGS) with the parameters provided in

Table 8.2. The FE model consists of about 822 elements and 2,620 nodes. The finite

element mesh was generated as a quad-dominated mesh (810 quad elements, 12 triangular

elements) with a mean nodal distance of ∆x = ∆y ≈ 0.15 m. To account for changes in
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Figure 8.11: Geometry and dimensions of the LEAP model in prototype scale

the pore water pressure and consolidation effects during and after the earthquake loading,

u-p elements were used, discretizing the solid displacements u and the pore water pressure

pw at the nodes. Similar to the VELACS model, in this simulation, viscous stresses limited

to 2 kPa were considered to stabilize the stress-strain behavior at small stress states.

The simulation was performed in the following steps:

Geostatic: Application of gravity while the displacements of the bottom boundary

were constrained in the horizontal and vertical direction. Additionally, displacements

at the lateral boundaries were constrained in horizontal direction. The pore water

pressure was prescribed at each node according to a hydrostatic distribution, considering

the phreatic level as given in Fig. 8.11. The initial void ratio follows Bauer’s equation

(Bauer, 1996). A lithostatic initial stress distribution was prescribed, considering the

variable overburden height in the slope. As shear stresses are unknown a priori, they are

obtained during the iteration process as they are required to obtain a static equilibrium

of the model. To account for the dead weight of the free water table, an additional

surface load was applied in this step and kept constant for the following steps. In

addition, a surface traction of 1 kPa was applied perpendicular to the ground surface

Table 8.2: Parameters of the Hypoplastic model (ϕc - β) with intergranular strain (IGS,

mT - χ) for Ottawa sand (Triantafyllidis et al., 2022)

ϕc ν hs n ed0 ec0 ei0 α β mT mR R βR χ

[◦] [–] [MPa] [–] [–] [–] [–] [–] [–] [–] [–] [–] [–] [–]

32 0.2 304.8 0.54 0.508 0.777 0.894 0.145 3.5 2.5 3.5 10−4 1.3 1.0
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to avoid very small mean effective stresses leading to numerical problems with the

hypoplastic model.

Release pore water pressure boundary condition: To allow for changes in the

pore water pressure during the dynamic loading step, the pore water pressure boundary

condition is removed in this step. This applies to all nodes except for those at the top

surface, for which the hydrostatic pore water pressure boundary condition is kept to

allow for drainage at the top surface

Dynamic loading: Excitation of the model base and the model sides in horizontal

direction in a dynamic step. In this case, the excitation is applied by a Dirichlet bound-

ary condition, imposing the acceleration-time history in the horizontal direction at the

bottom and at the sides of the model in accordance with Fig. 8.12. The Hilber-Hughes-

Taylor time integration scheme (α = −0.05) was used and a fixed time increment of

5 · 10−3 s was set. A constant hydrostatic pore water pressure was assigned to all nodes

at the top of the model, allowing for drainage. Except for the bottom of the model,

which was constrained in the vertical direction, no further Dirichlet boundary conditions

were applied to the solid displacement.

The input signal used in the numerical analyses refers to the NCU-3 test in Kutter et al.

(2020). Note that the target input signal defined as a sine function scaled by an increasing

ramp (up to 10 s) and a decreasing ramp (after 10 s) and the one measured outside of the

model (AH11, AH12) differ significantly (Fig. 8.12). The measured signal is characterized

by larger peak amplitudes and additional higher frequency fluctuations compared to the
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Figure 8.12: Target and measured input signal at the bottom of the LEAP model



8.3. Liquefaction Experiments and Analysis Projects (LEAP) 191

sine function. Based on numerical analyses with the target and the measured signal,

Triantafyllidis et al. (2022) reported that the values of the excess pore water pressure ∆pw

were significantly underestimated with the former, while better agreement was obtained

with the latter signal. For this reason, the measured signal was applied in the numerical

simulations.

Results

To assess whether the DFEA using Hypoplasticity with Intergranular Strain (IGS) is ca-

pable to reproduce the results of the centrifuge model test, a comparison of acceleration

and excess pore water pressure time histories at the position of the respective sensors

(Fig. 8.11) is undertaken. For this, the acceleration time histories recorded at the ac-

celerometers AH1, AH2, AH5 and AH8 as well as the excess pore water pressure time

histories back-calculated from the pore pressure transducers P1, P2 and P4 – P7 sum-

marized in Kutter et al. (2020) are considered. Note that vertical displacements are

not compared due to the lack of measurements. Horizontal displacements have not been

recorded but back-calculated by double integration of the difference of the accelerations

recorded at AH1 and AH4.

Analyzing the accelerations in terms of seismic coefficients from the experiment and the

numerical simulation, it is apparent from Fig. 8.13 that good agreement is obtained for

AH1 and AH8, which are the two accelerometers inside the soil domain located closest

to the bottom of the model. With increasing elevation, as depicted for instance for AH2

and AH5, the differences between the experiment and the numerical simulation are more

obvious, as peak values are not well captured. Although not explicitly shown here, dis-

crepancies further increase with increasing elevation, thus, with decreasing overburden

height. In general, the numerical simulation predicts smaller seismic coefficients com-

pared to the recorded data of the experiment. Regarding the assessment of the slope

stability during the dynamic loading with pseudo-static analyses, it should be noted that

underestimation of accelerations (or seismic coefficients) may result in overestimation of

the FoS.

Comparing excess pore water pressures in Fig. 8.14, differences can be seen between the

experiment and the numerical simulation. Although a similar fast build-up of ∆pw is

recorded in the experiment and the numerical simulation, larger magnitudes and a slower

dissipation of excess pore water pressure are obtained in the experiment. The difference

in the maximum excess pore water pressures at the pore pressure transducers P1, P2 and
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P4 – P7 is found to be up to 10 kPa for 5 s ≤ tdyn ≤ 15 s. At P7, even larger differences are

seen for tdyn ≥ 15 s. Note that, in general, lower excess pore water pressures are obtained

in the numerical simulation compared to the experiment. With regard to the assessment

of the slope stability, increased effective stresses are considered, leading to larger shear

resistance and, potentially, a higher FoS prediction. Thus, the FoS predictions should be

considered optimistic rather than conservative.

The evolution of horizontal displacements ux obtained from the experiment and the nu-

merical simulation during the dynamic excitation is depicted in Fig. 8.15. For the exper-

iment as well as the numerical simulation, no displacements are obtained up to t ≈ 7.5 s,
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Figure 8.13: Comparison of accelerations obtained from numgeo with measurements AH1,

AH2, AH5 and AH8 from the experiment (Kutter et al., 2020)
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although the dynamic loading of the LEAP model started at t ≈ 4 s (Fig. 8.12). A poten-

tial explanation for this can be given with regard to the concept of yield acceleration, below

which no significant displacements are accumulated. As soon as the amplitudes of the

dynamic signal increase, displacements increase as well, showing large difference between

the experiment and the numerical simulation, where large displacements are accumulated

in the former and only a comparatively small magnitude of displacements is observed in

the latter case. Note that overall a poor agreement of the displacements obtained in the

experiment and the numerical simulation is seen from t ≈ 7.5 s up to the end of the test.

Triantafyllidis et al. (2022) reported a similar poor agreement between the experiment

and simulations with Hypoplasticity with IGS but also noted that better predictions were

obtained with the Sanisand model (Dafalias and Manzari, 2004). Considering the reports

summarized in Kutter et al. (2020) it should be noted that large variations related to the

LEAP-UCD-2017 project were obtained in both, the experimental results of centrifuge

model tests conducted at different facilities and the numerical simulations. Although the

displacements are not well captured with Hypoplasticity with IGS, the applicability of

the approaches for the assessment of the stability of slopes under seismic loading is shown

in the following section.

Besides the comparison of accelerations and excess pore water pressures at the accelerom-

eters and pore pressures transducers, accelerations are also analyzed in terms of maximum

positive and negative seismic coefficients obtained in the whole soil domain during the
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Figure 8.16: Peak (min/max) seismic coefficients in the soil domain during dynamic load-

ing of the LEAP model

dynamic loading. The time histories of the maximum horizontal and vertical seismic co-

efficients are depicted in Fig. 8.16. While the input seismic coefficients (Fig. 8.12) and

the peak horizontal and vertical seismic coefficients in the soil domain (Fig. 8.16) are

similar, larger seismic coefficients are obtained in the soil domain compared to the input

signal. This is due to amplification of the accelerations in the soil domain and reflections

at the top surface and the model boundaries. Overall, an amplification of about 50 % to

100 % is seen for kh, while large vertical seismic coefficients are obtained as well, with

peak values ranging up to kv,min /max ≈ 0.3. Note that spikes with even larger magnitudes

are observed for kh as well as for kv.

8.3.2. Assessment of seismic slope stability

Spatial pseudo-static analysis using LEM

Similar to the assessment of the seismic slope stability of the VELACS model based on

LEM, stability analyses based on LEM are conducted using an equivalent Mohr-Coulomb

friction angle (Griffiths and Huang, 2009; Jiang and Wang, 2011) of ϕ = 35.81◦ to com-

pensate effects related to differences between the Mohr-Coulomb and Matsuoka-Nakai

surfaces and a distributed load of 1 kPa acting perpendicular to the slope. Moreover,

rough estimates of the FoS are determined considering homogeneous seismic coefficients

for the entire soil domain with the magnitude determined as a portion of the peak values
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of the dynamic input signal (Hynes-Griffin and Franklin, 1984; Kramer and Smith, 1997;

Hleibieh and Herle, 2019a). For the LEAP model, applying kh = 0.125 (Hynes-Griffin

and Franklin, 1984; Kramer and Smith, 1997) and kh = 0.149 and kv = 0.05 (Hleibieh

and Herle, 2019a) in a PSA with LEM (Bishop) using geoSlice yields FoS = 2.42 and

FoS = 1.96, respectively. Thus, the LEAP model is classified stable in both cases, though

spatial and temporal distribution of the accelerations are not taken into consideration and

excess pore water pressures are neglected.

To analyze the LEAP model in terms of the evolution of the slope stability during dynamic

loading, spatial pseudo-static analyses with LEM introduced in Section 6.2 are conducted.

With time increments of ∆t = 0.05 s, 380 stability analyses are performed in total. Spatial

distributions of seismic coefficients and excess pore water pressures are accounted for using

three nodes for interpolation. Horizontal seismic coefficients (inertial forces) are always

considered acting in the direction of the driving forces and vertical seismic coefficients are

varied to automatically determine the critical direction. The full time series is investigated

four times to analyze the impact of excess pore water pressures and the optimization

concept, where the latter refers to differences in the horizontal expansion of the slip

surface, which is free in the first case (’global optimization’) and restricted to the maximum

size for the second case (’fixed entry/exit points’), as emphasized in Fig. 8.17.

The results of the spatial pseudo-static analyses using LEM are depicted in Fig. 8.18 in

terms of FoS versus dynamic time for analyses with and without ∆pw as well as the two

optimization concepts. Analyzing the stability under static conditions (at tdyn = 0.0 s), it

can be seen that the stability of the slope is FoS = 9.4. As soon as the dynamic excitation

starts and the shear waves approach the ground surface, a significant reduction of the FoS

is observed. Note that due to the oscillations of the input signal, the FoS undergoes rapid

changes, though, an almost monotonously decreasing trend of the FoS is observed for

3.0 s ≤ tdyn ≤ 7.2 s. As seismic coefficients decrease after the peak dynamic loading (e.g.

for 8.0 ≤ tdyn ≤ 13.0 s), corresponding inertial forces to be considered in LEM decrease as

Global Optimization Fixed entry/exit points

Figure 8.17: Schematic illustration of two optimization concepts used for the assessment

of the FoS via spatial pseudo-static analysis using LEM
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Figure 8.18: Impact of excess pore water pressures and optimization concept on the FoS for

the LEAP model based on spatial PSA+LEM considering time increments of ∆t = 0.05 s

well, leading to increasing FoS values. At the end of the test, at tdyn = 19 s, accelerations

have vanished (Fig. 8.13), which results in FoS values similar to the static case.

Due to the accumulation of excess pore water pressures (Fig. 8.14), the model is further

destabilized by decreasing effective stresses. In addition, a delay in the increase of the

FoS can be seen after the peak dynamic loading when comparing analyses with and

without ∆pw. This can be explained by slowly dissipating excess pore water pressures

still present at tdyn = 19 s. Considering the two optimization concepts under investigation,

it is apparent from Fig. 8.18 that slightly smaller FoS values are obtained in case entry and

exit points of the slip surface are varied in addition to the radius. However, the general

trend is very similar for both cases, which allows to state that a proper consideration of

spatial distributions of accelerations/seismic coefficients and excess pore water pressures

is of higher importance.

With regard to the initial analyses based on homogeneously distributed seismic coeffi-

cients, it should be noted that the predicted factors of safety (FoS = 2.42 and FoS = 1.96)

can be considered reasonable estimates for cases where no accumulated excess pore water

pressures ∆pw are to be expected. However, as the consideration of ∆pw leads to a deci-

sive reduction of the slope stability with FoS < 1.0 for short terms, this effect should not

be neglected. Still, as the FoS only indicates an unstable state for a short period of time,

small permanent displacements are to be expected, which is in line with the displacements
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observed in the numerical simulation but in contrast to the displacements obtained from

the experiment (Kutter et al., 2020).

Strain-dependent slope stability for earthquake loading

To assess the stability of the LEAP model considering an advanced constitutive model as

well as an accurate spatial distribution of the effective stress state and the state variables,

the SDSS described in Section 2.1.6 and Section 6.4 is utilized. Similar to the DFEA, the

hypoplastic model in the version of von Wolffersdorff (1996) is applied, however, in line

with the discussions in Section 6.4, intergranular strain (IGS) (Niemunis and Herle, 1997)

is deactivated in the element tests to avoid overestimation of the shear stresses and the

FoS. For this reason, in addition to the stress tensor only the void ratio is transferred from

the DFEA model to the element test simulations. SDSS is conducted in terms of direct

simple shear (DSS) tests for 15 nodes along a potential slip surface, where the stress

tensor at each node is rotated onto the slip surface before the DSS test is performed.

Evaluation of the global mobilized shear resistance ratio T (γ) is conducted in accordance

with Eq. 6.11, where the summation of the shear stress versus shear strain curves is

normalized by the sum of the initial shear stresses at tdyn = 0.0 s, which resembles the

static equilibrium. The FoS curve is obtained in accordance with the descriptions in

Section 2.1.6. Similar to the seismic slope stability analyses conducted for the opencast

slope and the VELACS model using SDSS (Section 7.3.3 and Section 8.2.2), slope stability

is assessed in terms of FoSmax. As the computational costs associated with SDSS are

significantly larger compared to LEM, stability analyses are conducted for time increments

of ∆t = 0.25 s, resulting in 77 analyses.

The results of the analyses applying SDSS are presented in Fig. 8.19 in terms of the factor

of safety versus dynamic time. It is apparent from this figure that the safety of the slope

is very large initially but a decisive decrease for 3 s ≤ tdyn ≤ 7.5 s down to FoS ≈ 3.4 is

observed. Within the following four seconds the slope stability varies between FoS ≈ 3.2

and FoS ≈ 5.0, until it increases again. For tdyn ≥ 15 s up to the end of the test, a

steady increase of the FoS is observed, which can be attributed to dissipating excess pore

water pressures and increasing effective stress levels. Note that decreasing accelerations

do not have a direct impact on the SDSS as only the effective stress state and the void

ratio are considered. In general, it can be stated that the evaluation of the seismic slope

stability based on the concept of strain-dependent slope stability indicates that the LEAP

centrifuge model test shows a decisive reduction in the FoS but does not reach a state of

failure.
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Figure 8.19: Evaluation of the FoS for the LEAP model based on SDSS considering time

increments of ∆t = 0.25 s

Spatial pseudo-static analysis using SRFEA

To evaluate the evolution of the FoS based on the spatial pseudo-static analysis using

SRFEA, DFEA and SRFEA were conducted using submodel analyses. For the SRFEA,

the current stress state, (excess) pore water pressures and inertial forces are transferred

from the DFEA to the SRFEA. During the SRFEA, (excess) pore water pressures and

inertial forces remain unchanged. The material behavior is described using the Matsuoka-

Nakai model with the friction angle chosen to be identical to the critical friction angle

(Tab. 8.2). SRFEA is performed for time intervals of ∆t = 0.05 s considering an initial

factor of safety of FoS0 = 0.5 and an incremental increase of ∆FoS = 0.01. The critical

FoS was obtained based on a sudden change in the FoS versus displacement plot with dis-

placements displayed in logarithmic scale, following the approach discussed in Section 5.2.

SRFEA was started at a value of FoS = 0.5 to avoid unrealistically large friction angles.

As FoS = 0.5 was chosen as lower bound, FoS = 0.5 would also be reported for cases

where the actual slope stability based on SRFEA might be smaller and equilibrium could

not even be obtained for a friction angle of ϕ = arctan [tan(ϕc)/0.5] = 51.3◦.

The results of the SRFEA are presented in Fig. 8.20 in terms of the FoS versus dynamic

time, where inertial forces (denoted in the plot as nodal dynamic forces, NDF) are con-

sidered in one case and neglected in the other case. Focusing on the initial FoS, in both

cases SRFEA yields FoS ≈ 9.4, which is similar to the one obtained using LEM. Dur-

ing the dynamic loading for 3.5 s ≤ t ≤ 7.9 s, the evolution of the FoS is characterized
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Figure 8.20: Evaluation of the FoS for the LEAP model based on SRFEA considering

time increments of ∆t = 0.05 s

by high frequency oscillations in accordance with the dynamic signal. Note that there

are significant differences between FoS values obtained with and without consideration of

inertial forces, where the former also yields FoS ≥ 20 for a few time steps, whereas the

latter shows an almost steady decreasing trend of the FoS. Further elaboration of these

large FoS values when considering inertial forces is provided in the following paragraph.

Considering the critical FoS displayed in the right subplot, for t ≤ 12.5 s, oscillations of

the slope stability in the range of 0.7 ≤ FoS ≤ 4.6 are observed, while the mean value

remains almost constant at FoS ≈ 2.5. For t ≥ 12.5 s, an increasing trend of the FoS

is observed with the magnitude of oscillations decreasing in line with the dynamic input

signal. Note that the continuous increase in the FoS is a result of vanishing inertial forces

and increasing effective stresses, the latter related to the dissipation of excess pore water

pressures. In general, the LEAP model can be classified as stable for (almost) the entire

time span, where only for very short time spans FoS ≤ 1.0 is obtained.

In contrast to the boundary value problems (opencast slope, VELACS model) investigated

with SRFEA in Sections 7.3.4 and 8.2.2, very large FoS values are frequently obtained for

the LEAP model when considering inertial forces. To illustrate this case, two time steps at

tdyn = 4.9 s and tdyn = 5.45 s are investigated in more detail. SRFEA with consideration

of inertial forces yields FoS = 4.68 and FoS = 22.36, while LEM yields FoS = 4.85

and FoS = 4.78 for both time steps, respectively. The reason for very large FoS values

obtained with SRFEA in this case can be attributed to horizontal inertial forces, which

are primarily directed in stabilizing direction. As the stabilizing effect of the inertial
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Figure 8.21: Distribution of horizontal accelerations at two different time steps during the

dynamic excitation

forces is almost large enough to keep the system in equilibrium with no contribution of

resisting frictional forces, due to a slope inclination which is very small (β = 5◦), the

FoS during the strength reduction procedure can be increased up to very large values

without a significant accumulation of displacements and development of a failure surface.

To further emphasize the differences in the two time steps under investigation, the spatial

distributions of accelerations for tdyn = 4.9 s and tdyn = 5.45 s are depicted in Fig. 8.21. It

can be seen from this figure that accelerations are directed in negative horizontal direction

for tdyn = 4.9 s and in positive horizontal direction for tdyn = 5.45 s. As inertial forces

act in opposite direction of the accelerations, inertial forces act in driving direction in the

former case and in stabilizing direction in the latter case. Thus in SRFEA, consideration

of inertial forces leads to a reduction of FoS at tdyn = 4.9 s, but to an increase in FoS

at tdyn = 5.45 s. This explanation is also in good agreement with the results of an LEM

analysis at tdyn = 5.45 s considering inertial forces in stabilizing direction, which led to

FoS = 27.2 instead of FoS = 4.78 considering inertial forces directed in driving direction.

Discussion

To evaluate the results obtained using LEM, SDSS and SRFEA, the evolution of the FoS

during the dynamic loading, individually plotted in Figs. 8.18, 8.19 and 8.20, respectively,

is summarized in Fig. 8.22. Very good agreement of the FoS obtained with all three

approaches is observed at the start and the end of the test. Considering the overall

evolution of the FoS, it is apparent from Fig. 8.22 that all approaches show a decisive

decrease of the FoS until t ≈ 7.0 s, which agrees well with the time at which the amplitude

of the dynamic signal increased to about kh ≈ 0.2 for the first time. For 7.0 s ≤ t ≤ 12.5 s,
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the FoS (in case of SDSS) or the mean value of the FoS (in case of LEM and SRFEA)

is almost constant and increases thereafter as a result of small to negligible accelerations

and dissipation of excess pore water pressures ∆pw. Note that the initial FoS is not fully

recovered at t = 19.0 s as ∆pw ≥ 0 kPa in the model. In general, decisive oscillations

of the FoS are observed in LEM and SRFEA, resulting from the high frequency input

signal. Note that oscillations of the FoS with smaller amplitudes are obtained with LEM

in comparison to SRFEA. A potential reason for this can be given with regard to the

direction of inertial forces in LEM that are always oriented in driving direction. In SDSS,

oscillations with smaller frequencies are observed. This may be due to larger time intervals

investigated as well as due to neglecting inertial forces that change rapidly during the

seismic excitation. Overall, LEM and SRFEA show a pronounced decrease in the FoS as

soon as the dynamic signal reaches the slope, where as SDSS predicts a delayed reduction

in the FoS. Moreover, it is noteworthy that only LEM classifies the LEAP model as

unstable for a short period of time, whereas SRFEA only predicts a few spikes with

FoS ≤ 1.0 and SDSS classifies the slope as stable.

Considering the discussion about the approaches with regard to the stability of the

VELACS model, similar conclusions can be drawn for the LEAP centrifuge model test. As

inertial forces are always directed in driving direction, the LEM approach yields slightly

conservative estimates of the FoS. SDSS and SRFEA consider accurate stress distribu-

tions as obtained from DFEA and make use of the Matsuoka-Nakai surface to describe the

soil’s shear strength, which is more accurate compared to the concept of the equivalent

Mohr-Coulomb friction angle (Griffiths and Huang, 2009; Jiang and Wang, 2011). As the
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Figure 8.22: Comparison of the FoS of the LEAP model based on LEM, SDSS and SRFEA
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dynamic input signal is characterized by rapid changes of the acceleration, it is expected

that the time history of the FoS shows similar tendencies, though, the magnitude of the

oscillations can be questioned. Following pseudo-static approaches, larger oscillations as

a result of the consideration of inertial forces are seen, whereas significantly less oscilla-

tions are observed for SDSS that uses the current stress state and the state variables to

determine slope stability rather than inertial forces.





9. Enhanced strain-dependent slope

stability using machine learning

9.1. Motivation

In the SDSS approach, the search for the critical slip surface requires evaluation of element

tests for many potential slip surfaces each with multiple points along the slip surface.

Depending on the optimization scheme chosen for this search and the desired accuracy

for identifying the critical location of the slip surface, 10,000 to 100,000 element test

simulations may be a realistic choice. Assuming that a single element test simulation

takes 1.5 seconds, which is an optimistic estimate, the total evaluation time for a single

time step considering the number of element tests given above would be 4.17 hours to

1.74 days, respectively. As a single element test simulation does not fully exploit the

CPU, in a first attempt multiple element test simulations have been started in parallel.

In fact, parallel simulation of element tests reduces computational time required for a

single element test to approximately 0.5 seconds. However, the number of element tests

performed within a parallel scheme can not be increased too much as the efficiency reduces

if too many parallel simulations are performed.

Taking into consideration that the evolution of the shear stress during a simple shear

test (Fig. 6.12) for a given hypoplastic parameter set is only dependent on the current

stress state and the additional state variables (void ratio, intergranular strain tensor),

the idea is to use machine learning techniques and train a machine learning algorithm

to mimic the actual simulation of an element test. Considering the general concept of

the strain-dependent slope stability, application of machine learning is utilized according

to the general procedure depicted in Fig. 9.1. Reducing the additional state variables

to be considered in this approach to the void ratio based on the discussion given in

Section 6.4.4, the number of input parameters for the machine learning process reduces to

five parameters: the normal stresses σx̄x̄, σȳȳ and σz̄z̄ and the shear stress τx̄ȳ in the rotated

configuration and the void ratio e. It should be noted that further reduction of the number

205
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Figure 9.1: Flow chart depicting the general concept of SDSS with ML algorithms

of input parameters could be considered by identification of the most relevant input

parameters beforehand. This can be achieved by local and global sensitivity analyses, as

discussed for instance in Saltelli et al. (2008), Zhao et al. (2019) and Schmüdderich et al.

(2020c). Note that the applicability of the approach is demonstrated for the saturated

opencast mine slope subjected to seismic loading investigated in Chapter 7 with the only

difference that the nlgeom1 feature was not active.

9.2. Sampling strategy

To train a machine learning algorithm for the problem at hand, sampling of training

data including definition of parameter ranges and constraints is of high importance. To

define parameter ranges for the sampling, evaluation of representative input parameter

combinations based on the sloping area of the finite element slope model is conducted.

Collecting information from the slope model (e.g. stress states and multiple rotations of it

together with the void ratio), a data base composed of 7.3× 106 unique input parameter

1nlgeom is an optional feature in numgeo to consider non-linear geometrics. The current configuration

is used for the determination of all quantities and integration is carried out in the deformed state.
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sets is obtained. Projecting this data onto 2D planes, convex hulls2 of representative

combinations can be examined for each combination of input parameters (e.g. σx̄x̄ - σȳȳ

or τx̄ȳ - e), yielding convex hulls for 10 different 2D projections in total. These hulls, as

exemplary shown together with a subset (≈ 3 − 4 %) of the data points in Fig. 9.2, are

further elaborated as constraints within the sampling process.

In general, a sampling method needs to ensure that samples are well-distributed over the

input parameter space, keeping a minimum distance between individual samples to avoid

potential singularities in the machine learning algorithm. Among many others, popular

2Projections including the void ratio e have been approximated by concave hulls as depicted in

Fig. 9.2(d).

SDSS-Definition-Hulls

−800

−600

−400

−200

0

−600 −400 −200 0

−300

−200

−100

0

−600 −400 −200 0

−300

−200

−100

0

100

−600 −400 −200 0

0.5

0.6

0.7

−600 −400 −200 0

σ
ȳ
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Figure 9.2: Representation of a subset (≈ 3−4 %) of the analyzed data and 2D projection

hulls for (a) σx̄x̄ - σȳȳ, (b) σx̄x̄ - σz̄z̄, (c) σx̄x̄ - τx̄ȳ and (d) σx̄x̄ - e planes
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sampling methods are uniform or grid sampling, Latin hypercube sampling (McKay et al.,

2000), Hammersley sequence sampling (Kalagnanam and Diwekar, 1997) and Monte Carlo

sampling (Metropolis and Ulam, 1949). In this study, a modified grid sampling approach

with approximately 2.4 × 107 initially generated samples is chosen utilizing quadratic

spacing for normal stress-related input parameters and linear spacing for the shear stress

and void ratio parameter. Taking into account the constraints defined above in terms of

the 2D projection hulls and allowing only for valid combinations in the void ratio versus

mean effective stress space via Bauer’s law (Bauer, 1996), 71,059 valid samples have been

created as training data for the machine learning algorithms. Examples of these samples

and the constraint hulls projected on four different planes are depicted in Fig. 9.3. As
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can be seen from this figure, the quadratic spacing utilized for normal stress-related input

variables ensures a larger proportion of samples at smaller stresses.

9.3. Replacement of simple shear tests

Utilizing the samples generated above as training data, different machine learning tech-

niques are evaluated for case representative test data in terms of accuracy of the shear

stress versus shear strain curves obtained for the simple shear test and performance with

respect to the time required for training and prediction. As the machine learning algo-

rithm has to provide proper estimates for a wide range of input parameter combinations,

the challenge is to find an algorithm which is capable to handle five input parameters

(σx̄x̄, σȳȳ, σz̄z̄, τx̄ȳ, e) and large training data sets. The four schemes identified as most

applicable for the problem investigated in this study considering the number of input

parameters and the size of the training data set are Radial Basis Function (RBF) inter-

polation, Random Forest (RF) regression, distance weighted K-Nearest Neighbor (KNN)

regression and Multi-Layer Perceptron (MLP) regression. The settings of the machine

learning algorithms as applied in this study are summarized in Appendix C. As these

models are well-established and have been widely used in many scientific studies, detailed

explanation are not provided here but can be found elsewhere (Broomhead and Lowe,

1988; Breiman, 2001; Altman, 1992; Hinton, 1990; Hopgood, 2021). Moreover, it should

be noted that the machine learning techniques applied in this study stem from the open

source python libraries scipy (RBF) and scikit-learn (RF, KNN and MLP).

To investigate the accuracy of the machine learning algorithms for approximating the

simple shear test, different combinations of stress states and void ratios have been selected

from the slope model and predictions of the algorithms have been compared with the

original response of the hypoplastic model. Typical trends for the evolution of the shear

stress with increasing shear strain can be seen in Fig. 9.4. Although only a few selected

test samples are depicted here, general trends can be described which hold for the majority

of the samples investigated. For intermediate and large stress levels (Fig. 9.4(b) and (c)),

all machine learning algorithms are capable to approximate the stress-strain behavior

of the soil in a good manner, only showing small deviations for the maximum shear

stress and the general trends. For small stress levels, the stress-strain behavior using

the different machine learning algorithms shows less good agreement with the benchmark

curve obtained using the hypoplastic model. Moreover, it is clear from Fig. 9.4(a) that

the RBF model has an almost perfect fit for γ = 0 and γ ≥ 0.15, whereas for many
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Figure 9.4: Comparison of shear stress evolution in simple shear test derived via Hy-

poplastic model (benchmark) and trained machine learning algorithms (RBF, RF, KNN

and MLP) for test samples at different stress states

samples a peak state followed by softening down to the correct shear stress is observed.

The RF and KNN models predict significantly different curve trends for 0 ≤ γ ≤ 0.1

but yield a tolerable deviation from the benchmark curve for γ > 0.1. In general, the

MLP model does not predict a smooth curve trend but shows scattering of the prediction

of about 0.5 kPa which is very dominant for small stress-levels (see also Appendix C).

Moreover, a peak and softening behavior is observed for small stress-levels with significant

over-estimation of shear stresses for 0 ≤ γ ≤ 0.15. Considering the relevant factors of

safety to be evaluated for the slope stability problem, it can be projected from the curve

trends shown in Fig. 9.4(a) that all machine learning algorithms might over-predict the

maximum shear stress and, thus, also the maximum factor of safety for small stresses. For

the curves depicted in Fig. 9.4 the deviation of the maximum shear stresses from the curve

obtained with the hypoplastic model varies between (a) 12.98 % - 75.40 %, (b) 0.01 % -

12.35 % and (c) 0.43 % - 3.57 %. While the largest deviations are seen for 0 ≤ γ ≤ 0.1,

reasonably better agreement is obtained for larger shear strains and can, therefore, also be

expected for the prediction of the residual factor of safety. Still, it should be emphasized

that, considering the large input parameter space with stresses ranging between 0 kPa

and 500 kPa, all four algorithms (RBF, RF, KNN and MLP) are capable to predict shear

stresses with a tolerable deviation from the benchmark data.

To quantitatively elaborate the accuracy of the machine learning algorithms, normalized

root mean squared errors εNRMSE are calculated comparing the evolution of shear stresses

obtained from the hypoplastic model with the predictions given by the four algorithms
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under investigation. For 1000 random test samples, predictions with the RF and KNN

algorithms led to εNRMSE,RF/KNN ≤ 5 %, whereas predictions using the MLP and RBF

models led to εNRMSE,MLP ≤ 2 % and εNRMSE,RBF ≤ 1 %, respectively. Therefore, the eval-

uation of εNRMSE is in good agreement with the curve trends shown in Fig. 9.4, indicating

that the RBF model best resembles the benchmark simulations using the hypoplastic

model. It should be noted that increasing the sample size of the training data can im-

prove the accuracy of machine learning algorithms. However, depending on the type of

algorithm, this increase will have an impact on performance, as will be discussed further

in the following paragraph.

Training time for all algorithms increases approximately linearly with the size of train-

ing samples. However, the time required to train the RBF and KNN models is 2 - 3

orders of magnitude smaller compared to that of the RF and MLP models (Tab. 9.1).

Furthermore, trial analyses using the algorithms investigated in this study revealed that

the time required to evaluate test samples is independent of the size of the training data

set. A potential explanation for the negligible effect of the training data size on the time

required for test evaluation is that all models incorporate a parameter that limits the

number of training data points used for the evaluation of a specific test data set. In the

case of RBF and KNN, a predefined number of neighbors is defined, whereas in the RF

approach a predefined number of decision trees representing the forest controls the time

required for the evaluation of test samples. In MLP, training data is only used to find

appropriate weighting factors and is not used for the evaluation of test data. Note that

Table 9.1: Total time required for training and test evaluation of simple shear test for

different machine learning algorithms considering a training data set of ∼ 71,000 samples

Model training time required [s] for evaluation of N test samples

time [s] N = 10 100 1,000 10,000 100,000

RBF∗ < 0.1 ∼ 0.4 ∼ 4.7 ∼ 47.3 ∼ 495.7

RF∗∗ ∼ 310.5 ∼ 0.2 ∼ 0.3 ∼ 0.7 ∼ 6.7 ∼ 60.2

KNN† ∼ 0.2 ∼ 0.1 ∼ 0.1 ∼ 0.2 ∼ 0.3 ∼ 2.9

MLP‡ ∼ 14.2 < 0.1 < 0.1 < 0.1 < 0.1 ∼ 0.4

∗Radial Basis Function, ∗∗Random Forest, †K-Nearest Neighbor

‡Multi-Layer Perceptron
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for the latter algorithm it is sometimes necessary to halt the training process before no

further reductions in error are possible. This is because it is possible to overtrain the

perceptron, causing it to become expert at producing the correct output for training data

but less skilled at dealing with new data (Hopgood, 2021). However, in terms of the

time required for the evaluation of test samples, the four algorithms show significantly

different behavior with respect to the size of the test samples. As shown in Tab. 9.1, the

time required to evaluate test samples using machine learning algorithms increases with

increasing sample size; however, only for the RBF model, the increase in time is linearly

proportional to the increase in test sample size. When the efficiency of the algorithms is

defined as the fraction of the number of test samples and the time required for evaluation

(unit: samples/s), it is observed that the efficiency increases significantly with increasing

test sample sizes (except for RBF); for example, the efficiency of the RF model increases

from 50.0 to 1661.1 [samples/s] for N = 10 and N = 100, 000 samples, respectively.

The effect of sample size on the performance of the machine learning algorithm should be

considered, taking into account the optimization process required to identify the critical

slip surface for the slope stability problem. However, since more advanced optimization

algorithms require the evaluation of the objective function (FoS) in order to adapt the

evolution of the optimization algorithm or the optimal search space, these optimization

algorithms cannot fully benefit from the increased efficiency of machine learning algo-

rithms because evaluation is only performed for a limited number of test samples. Simple

optimization schemes, on the other hand, such as a brute grid search, which does not

require exchanging information about the current local or global most critical slip sur-

face during the optimization process, can fully benefit from the increased efficiency by

clearly separating data collection and test evaluation using a machine learning algorithm.

Thereby, utilizing the RF, KNN or MLP model, a very fine grid search could still be faster

and potentially more accurate compared to an advanced optimization algorithm. In this

study, the following strategy is pursued: 1) collect all input data sets, i.e. rotated stress

states and void ratios for each point along the slip surface, for every slip surface to be

investigated during a brute grid search and 2) perform a single evaluation of the machine

learning algorithm with all gathered test samples.

9.4. Assessment of seismic slope stability

This section assesses the accuracy of machine learning algorithms in relation to the re-

sults of the strain-dependent slope stability obtained with the hypoplastic model for the
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dynamic finite element simulation discussed in Sections 7.2.1 and 7.2.2. Furthermore,

the performance of the stability analyses is investigated in terms of the time required

for the conventional and adopted approaches, which use element test simulation, and the

approximation via the previously discussed algorithms, respectively. Training of the ma-

chine learning algorithms is performed in accordance with the sampling strategy discussed

in Section 9.2. Based on the suggestions given in Section 9.3, the algorithms were trained

at the beginning of the analysis and the test samples generated by a brute grid search

optimization were evaluated once per time step. For each time step, about 2,000 slip

surfaces each having 15 points along the slip surface (∼ 30,000 samples) are investigated.

The results are presented in Fig. 9.5 in terms of the maximum factor of safety for the first

six seconds of the dynamic loading step.

As can be seen from Fig. 9.5, the general trend of the maximum factor of safety (FoSmax)

with respect to the dynamic time is well captured using all algorithms under investigation.

All models predict a significant drop of the factor of safety for 2.0 s ≤ tdyn ≤ 3.0 s and a

loss of safety, defined as a drop below unity, for 3.0 s ≤ tdyn ≤ 4.0 s. To further evaluate the

accuracy of the predicted factors of safety, the deviations with respect to the benchmark

results obtained using the hypoplastic model are considered. Analysis of the average

absolute deviation yields values between ∆FoSmax = 0.05 (RBF) and ∆FoSmax = 0.16
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(MLP), whereas maximum absolute deviations obtained for tdyn = 3.0 s are larger ranging

from ∆maxFoSmax = 0.29 (RBF) to ∆maxFoSmax = 0.51 (MLP). Thus, the worst prediction

deviates by ∆FoSmax = 0.51 from the benchmark results. An explanation for larger

deviations at tdyn ≥ 3.0 s can be given with respect to the stress states and the shape of the

critical slip surfaces observed for these time steps. As described in Sections 7.2.1 and 7.2.2,

excess pore water pressures are accumulated considerably during the dynamic loading

phase as a result of propagating shear waves towards the surface of the slope. Effective

stresses and, thereby, the shear resistance close to the ground surface tend to decrease

towards zero, increasing the risk for liquefaction and large displacements. Subsequently,

shallow slip surfaces become critical due to significant loss of shear strength. Given that

all machine learning algorithms demonstrated less good agreement with the hypoplastic

model for small stress levels with a tendency to over-predict the maximum shear stress of

an individual element test, in exceptional cases greater than 75 % for very small stresses

(see Section 9.3), it is interesting to note in Fig. 9.5 that this over-prediction of shear

stresses at small stress levels does not affect the prediction of the factor of safety for the

strain-dependent slope stability in the same way. The reason for less over-prediction of

the FoSmax compared to the over-prediction of the shear stresses at certain points along

the slip surface is the normalization which considers the shear stresses related to the static

equilibrium (Eq. 6.11) which are large compared to the deviations of the shear stresses

at the current time step. Still, it should be noted that further improvement of the ML

predictions for SDSS can be achieved by using modified sampling approaches, as recently

shown by Shakya et al. (2024). When evaluating the strain-dependent slope stability at

higher strain levels (e.g. relating to FoSres), it is worth noting that the hypoplastic model

and the machine learning algorithms agree even more. This hypothesis is supported by

the discussions in Section 9.3 and has also been verified in additional analyses that are

beyond the scope of this study.

To conclude the discussions with respect to the applicability of different machine learning

algorithms for the concept of strain-dependent slope stability, the performance of the

simulations conducted to obtain the factor of safety (Fig. 9.5) is evaluated in terms of the

time required to perform a single test, tests within a time step and the full time series (25

time steps). The results are presented in Tab. 9.2 for the hypoplastic model using serial

and parallel test simulations as well as for Radial Basis Function (RBF) interpolation,

Random Forest (RF) regression, distance weighted K-Nearest Neighbor (KNN) regression

and Multi-Layer Perceptron (MLP) regression. As can be seen from this table, the time

required to investigate the problem at hand varies strongly with the approach utilized for

simulation. Thereby, results of the total time series have been obtained within several
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Table 9.2: Comparison of simulations with the hypoplastic model and different machine

learning algorithms in terms of the time required to evaluate the time- and strain-

dependent slope stability during earthquake loading

Hypoplasticity Machine learning algorithm

serial parallel RBF∗ RF∗∗ KNN† MLP‡

training – – < 0.1 [s] 5.18 [min] 0.2 [s] 14.16 [s]

single test 1.561 [s] 0.474 [s] 0.0395 [s] 0.00064 [s] 0.00022 [s] 0.00019 [s]

time step 13.17 [h] 4.0 [h] 20.0 [min] 19.34 [s] 6.82 [s] 5.84 [s]

time series 13.72 [d] 4.17 [d] 8.3 [h] 8.06 [min] 2.84 [min] 2.43 [min]

∑
13.72 [d] 4.17 [d] 8.3 [h] 13.24 [min] 2.84 [min] 2.67 [min]

∗Radial Basis Function, ∗∗Random Forest, †K-Nearest Neighbor

‡Multi-Layer Perceptron

days (hypoplastic model), hours (RBF) or minutes (RF, KNN and MLP). Considering

that the generation of the training data required 71,000 element test simulations using

the hypoplastic model, additional 9.5 hours (0.474 s times the amount of training data

samples) could be added to the total estimation time of the machine learning algorithms.

However, as long as the parameter set remains unchanged, this effort is only required once.

Considering the accuracy of the factors of safety determined using the different machine

learning algorithm as well as the time required for evaluation, it is clear that all machine

learning algorithms investigated in this study provide very good results. However, the

most preferable algorithm might be RBF interpolation if the accuracy of the factor of

safety is important or KNN regression if a fast but slightly less accurate evaluation is

preferred.

9.5. Influence of optimization technique

The optimization via grid search was chosen up to this point to enable a fair comparison

between different simulation approaches in terms of computational costs. However, as

the grid search is not a very adequate optimization technique, the critical slip surface
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and the corresponding factor of safety (FoSmax) have only been approximated in a rough

manner. To check whether a more advanced optimization algorithm enables to identify

a more critical slip surface with a smaller factor of safety, additional simulations using

the machine learning algorithms RBF, KNN, RF and MLP have been conducted using

”Differential Evolution” (DE) (Storn and Price, 1997) as optimization technique. It should

be noted here that the usage of DE prohibits evaluation of large data sets of failure surfaces

at once as the evolution process during the optimization requires assessment of fitness at

each mutation stage to enable mutation and recombination. Thereby, the efficiency of

the machine learning algorithms is reduced and the optimization process takes more time

(≈ 1 order of magnitude). The increased computational work is attributable to scaling

effects of machine learning techniques as well as a higher number of simulations necessary

in the DE optimization.

The results are presented in terms of a bar plot (Fig. 9.6) comparing the factor of safety

(FoSmax) obtained using the grid search and DE optimization approach for different time

steps (tdyn = 1.0 s, 2.0 s, . . . , 6.0 s). Although it is apparent from this figure that the

general trends seen for both optimization approaches are very similar, using DE over grid

search systematically yields slight improvement for tdyn ≥ 3.0 s. Interestingly, it is seen
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Figure 9.6: Comparison of factor of safety obtained using machine learning algorithms

(RBF, KNN, RF, MLP) coupled with grid search and the DE optimization approach at

different time steps
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for tdyn = 1.0 s, that DE predicts larger FoS for KNN and RF compared to the grid search.

A potential explanation for this might be that the initial population within DE was not

large enough or not well distributed in the parameter space. However, as this observation

is only made in two cases, the general applicability and success using DE is not questioned

in this study. In fact, although DE reduces the computational efficiency of the machine

learning algorithms by forcing multiple evaluations of small data sets instead of a single

evaluation with a large data set (when using grid search), it is recommended to combine

the concept of strain-dependent slope stability with advanced optimization techniques to

enhance the quality of the FoS prediction.

9.6. Evaluation of failure mechanisms

To investigate if the critical slip surfaces obtained from the analysis of the strain-depen-

dent slope stability using the machine learning algorithms resemble failure mechanisms

reasonably, slip surfaces and associated factors of safety obtained from the stability anal-

yses are compared to displacement magnitudes identified in the slope area during the

dynamic finite element simulation (Fig. 9.7). For the concept of strain-dependent slope

stability and the information transferred from the dynamic finite element simulation to

the element test simulations, it should be noted that displacements and shear strains are

not directly considered in this approach. Thus, displacements and shear strains may also

not necessarily indicate the location of the critical slip surface obtained from the stability

analysis. Still, in an indirect way these factors do affect the stability analyses as the

current stress state is influenced by the current strain state, the strain history and − if

considered in the analysis − the intergranular strain.

Fig. 9.8 shows slip surfaces and associated factors of safety obtained from the strain-

dependent slope stability analyses using the KNN algorithm coupled with the grid opti-

mization for tdyn = 3.0 s, 3.5 s and 6.0 s. In general, it is seen from this figure, that for

all time steps the most critical slip surfaces associated with the lowest factors of safety

resemble a shallow slope failure. In contrast to slip surfaces obtained for time steps at

the beginning of the dynamic loading, which enter and exit close to the crest and the toe

of the slope, the critical slip surfaces are significantly smaller and mostly enter and exit

along the slope surface as soon as the shear waves induced by the dynamic loading reached

the slope area. Comparing the spatial distribution and the temporal evolution of the slip

surfaces associated with the lowest FoSmax values with the displacement patterns obtained

from the dynamic finite element simulation, it is apparent that the area of large displace-
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Figure 9.7: Results of the finite element simulation in terms of displacement magnitudes

for different time steps during the dynamic loading phase

ments (Fig. 9.7) is well approximated by the location of the few most critical slip surfaces

obtained within the stability analysis. This observation holds for tdyn = 3.0 s where the

critical area is located close to the crown of the slope as well as for for tdyn = 3.5 s and

6.0 s, where a shallow sliding body is observed that almost fully covers the slope surface.

Although small factors of safety are also determined via the machine learning algorithms

for slip surfaces located close to point P2, the critical slip surface is mostly located close to

point P3 (Fig. 9.7). An explanation for this can be given with respect to the development

of large excess pore water pressures and significant reduction of effective mean stresses at

P3. As the stress level has a decisive impact on the strain-dependent slope stability, it

is clear that the critical slip surface will also be located close the area with the highest

reduction of effective stresses.
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Figure 9.8: Factors of safety associated with different slip surfaces investigated using KNN

algorithm for different time steps during the dynamic loading phase
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10.1. Summary

Stability analyses are used to evaluate the level of safety for slopes, earth dams or other

geotechnical structures in terms of a single scalar value – the factor of safety (FoS). Con-

sidering slopes subjected to seismic loading, many assumptions are required in common

stability approaches, whereby accurate incorporation of effective stresses, excess pore wa-

ter pressures or accelerations is not ensured among many of them. The current thesis was

motivated by the lack of sophisticated and objective approaches for seismic slope stability

assessment. While this topic was assessed in preceding works based on simplified stability

approaches or with the focus on deformations and liquefaction susceptibility, the present

work focuses on the development of seismic slope stability approaches performed parallel

or subsequent to dynamic finite element analyses, which can provide accurate spatial and

temporal distributions of stresses, excess pore water pressures and accelerations during a

seismic event.

The first part of this work focused on the implementation and verification of tools required

for the development of approaches to assess the seismic slope stability. A new software

package (geoSlice) for limit equilibrium analyses based on the concept of the method of

slices was developed and verified via comparative analyses with well-established LEM soft-

ware packages (GGU-Stability and GeoStudio). Three elastoplastic constitutive models

– the Mohr-Coulomb model, the Matsuoka-Nakai model and the General Classic Plasticity

model – and a strength reduction scheme were implemented in the finite element software

package numgeo. Verification was conducted based on simulations of element tests and

different boundary value problems, respectively, using benchmark data obtained with two

commercial finite element software packages (Plaxis2D and OptumG2).

The second part of this work was devoted to the development of four approaches for the

assessment of seismic slope stability to be applied parallel or subsequent to dynamic finite

element analyses (DFEA). The spatial pseudo-static analysis using LEM used the

221
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new LEM software package (geoSlice), which allows the consideration of spatial distri-

butions of accelerations and accumulated excess pore water pressures in slope stability

analyses. In the cluster-based pseudo-static analysis using FELA, slope stability

analyses are conducted using OptumG2 with seismic effects approximated in terms of spa-

tial distributions (effective unit weight and shear strength) and clusters (accelerations).

Accurate approximations of the failure surface are possible by use of adaptive mesh re-

finement. The concept of strain-dependent slope stability (SDSS) addressed slope

stability analyses by determination of the FoS with regard to the response of element

test simulations conducted for nodes along a potential slip surface. Changes in density

(pyknotropy) and confining pressure (barotropy), stress/strain history as well as accumu-

lation of strains are considered by utilizing sophisticated constitutive models and transfer

of state variables to the stability analyses. The extension of SDSS for time-dependent

problems (e.g. earthquake loading) enables to evaluate FoS time histories. Utilizing the

elastoplastic models and the strength reduction scheme implemented in the first part of

this work, the spatial pseudo-static analysis using SRFEA is concerned with the

determination of the FoS in numgeo, which was also used for the DFEA. By performing

DFEA and SRFEA in the same finite element software package, accurate and automatic

transfer of stresses, excess pore water pressures and inertial forces is ensured.

The third part of this work dealt with the application of the seismic slope stability ap-

proaches developed in part two of this work for boundary value problems of different scales.

To investigate the applicability of the approaches for small and large models, DFEA and

subsequent stability analyses were conducted for an opencast slope and two centrifuge

model tests. Different effects were studied, for instance the influence of excess pore water

pressures on the FoS (LEM, FELA), the orientation of inertial forces (FELA), the con-

sideration of intergranular strain (SDSS), and details regarding the optimization process

(LEM, SDSS). Comparison of results obtained from the experiments and the numerical

simulations (DFEA) was conducted for both centrifuge model tests.

The last part of this work was concerned with the application of machine learning (ML)

approaches within the concept of SDSS. As multiple thousand to a few million element

test simulations, for instance direct simple shear (DSS) tests, are required during stability

analyses, computational costs related to SDSS may be huge. Replacing these element test

simulations by trained ML algorithms, computational costs were significantly reduced.

Besides evaluation of accuracy and performance of ML algorithms on the element test

level, SDSS with and without ML were compared for the stability assessment of the

opencast mine slope subjected to seismic loading.
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10.2. Conclusions

In the present work, four approaches based on LEM, FELA, SDSS and SRFEA were

developed or extended to enable a more accurate assessment of the seismic slope stability.

Stability analyses using all approaches are conducted parallel or subsequent to a DFEA

adopted for the determination of realistic stress states and accelerations during earthquake

loading. Independent of the boundary value problem under investigation (e.g. opencast

mine slopes, centrifuge model tests), the following key aspects are to be noted with regard

to the different approaches:

• In contrast to conventional approaches, the approaches developed in this work allow

to investigate the evolution of the FoS during the dynamic loading by performing

stability analyses at different times of the dynamic loading step. Thereby, slope

failure can be evaluated based on the difference between the current and critical

FoS, the time span for which the current FoS dropped below the critical FoS and

the number of times the current FoS dropped below the critical FoS.

• LEM enables a fast estimation of the FoS during seismic loading. Contrary to

conventional LEM software packages, seismic effects are taken into consideration in

terms of spatial distributions of accelerations and excess pore water pressures. As

inertial forces are considered to be always orientated in driving direction, LEM yields

conservative estimates for the FoS. Note that commercial LEM software packages

do not allow the import of the aforementioned pre-calculated seismic effects in the

stability analyses, highlighting the advantages of the developed program geoSlice.

• The FELA approach allows to account for spatial distribution of seismic effects using

mapping concepts and a division of the model in clusters. However, two shortcom-

ings of the approach need to be emphasized here as they have counteracting impacts

on the FoS. Similar to LEM, inertial forces are orientated in driving direction, while

the concept of averaging of accelerations inside clusters leads to a disregard of local

peak accelerations, where the former might yield a conservative estimate of the FoS

and the latter might result in an overestimation of the FoS. As it is not clear a priori

which effect is dominant, both need to be evaluated with regard to the boundary

value problem under investigation.

• SDSS is based on the coupling of DFEA and element test simulations, where the

latter allow a realistic approximation of the stress–strain behavior in potential slip

surfaces by utilizing advanced constitutive models. Compared to existing method-
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ologies, such as pseudo-static analyses, SDSS delivers a more comprehensive slope

stability assessment during earthquake loading.

• A salient feature of the SDSS is that the same constitutive model can be applied

in the dynamic and the stability analysis. This allows to incorporate important

aspects of soil behavior in the stability analysis such as the influence of the current

stress state, the strain history or the evolution of the soil density. Contrary to

conventional approaches for the determination of the slope stability, this approach

is not limited to simple elastic, ideal-plastic constitutive models but is applicable to

any advanced constitutive model, such as the hypoplastic model used in this work.

• Replacement of the element test simulations required for SDSS by different machine

learning algorithms provided good approximations of the actual stress–strain be-

havior of the soil during shearing while reducing computational costs of the overall

stability analyses by 2–3 orders of magnitude.

• The SRFEA approach ensures that dynamic and safety analyses are conducted using

the same software package, while the submodel feature in numgeo allows to auto-

mate stability analyses for multiple time steps during a seismic event. Due to the

former, accurate transfer of total and effective stresses is enabled. Inertial forces are

orientated in line with the DFEA to ensure static equilibrium in the stability analy-

ses. During a stability analysis, the spatial distributions of inertial forces and excess

pore water pressures remain constant. Note that different constitutive models are

required for the dynamic and the stability analyses, for instance Hypoplasticity with

Intergranular Strain and Matsuoka-Nakai for the former and latter, respectively.

Stability analyses using the approaches developed in the present work were applied to

three boundary value problems subjected to seismic loading: a synthetic large opencast

mine slope and two real case centrifuge model tests performed in the framework of the

VELACS and LEAP projects. These boundary value problems were chosen to demon-

strate the applicability of the developed stability approaches, to discuss the advantages

and drawbacks as well as implicit assumptions of the approaches and to evaluate the com-

putational costs associated with the approaches. Based on the assessment of the seismic

slope stability applying LEM, FELA, SDSS, and SRFEA, the following conclusions can

be drawn:

• Investigation of the slope stability of a large opencast mine slope subjected to earth-

quake loading has demonstrated that slope failure detected based on LEM, FELA,

SDSS, and SRFEA is observed considerably earlier than the termination of the



10.2. Conclusions 225

DFEA. This is because the termination of the DFEA is not a precise indicator of

the loss of stability. In dynamic analyses, a material failure does not necessarily

lead to the termination (non-convergence) of the analysis since the inertial forces

prevent the system from becoming kinematic. Analogous to any other analysis

involving large deformations, the simulation can run well beyond the point of fail-

ure. Therefore, subsequent slope stability analyses are essential for a quantitative

assessment of seismic slope stability in terms of FoS.

• Study of a large opencast mine slope and two centrifuge model tests indicated that

stability analyses considering inertial forces (LEM, FELA, SRFEA) show an influ-

ence of the seismic excitation at an earlier point in time compared to approaches not

explicitly accounting for inertial forces (SDSS). This is because shear waves prop-

agate to the slope and have an impact on the slope stability prior to a significant

accumulation of excess pore water pressures.

• Contrary to conventional approaches neglecting the influence of accumulated excess

pore water pressures ∆pw, it was observed in all three boundary value problems

that ∆pw has a decisive impact on the seismic slope stability. Disregard of ∆pw in

the stability analyses leads to an overestimation of the FoS and an unsafe design.

• Stability analyses of the VELACS and LEAP centrifuge model tests showed that

high frequency seismic excitation results in FoS predictions with high frequency

oscillations. In case of dikes or dams with two slope faces (e.g. VELACS centrifuge

model) the position of the critical slip surface might change rapidly between both

slopes depending on the spatial distribution and the magnitude of the seismic effects.

• Investigation of seismic slope stability of very gentle slopes (e.g. LEAP centrifuge

model) using SRFEA revealed that FoS values during a dynamic loading might

temporarily exceed the one corresponding to the static situation. This is because for

short time spans inertial forces stabilize the slope such that practically no additional

shear resistance due to frictional or cohesive tangential forces is required to maintain

equilibrium.

• Similar to the consideration of inertial forces in SRFEA, less conservative predictions

of the FoS could be obtained with LEM in case inertial forces would be orientated

in the same direction as obtained from the DFEA rather than always in driving

direction. For cases where the so obtained FoS exceeds the one without consideration

of inertial forces, the latter one should be regarded as the critical one.
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10.3. Recommendations for further investigations

• Extension of the linear-elastic perfectly-plastic constitutive models implemented in

the present work by consideration of material hardening or softening. Note that

numerical instabilities and mesh dependency may result from SRFEA with strain

softening materials (Galavi and Schweiger, 2010), thus, mesh refinement or regular-

ization approaches such as gradient theories (Zervos et al., 2001; Papanicolopulos

and Zervos, 2010), nonlocal approaches (Eringen, 1981; Bažant and Jirásek, 2003;

Galavi and Schweiger, 2010; Summersgill et al., 2017; Staubach et al., 2022b) or

others should be used.

• Implementation of large-deformation techniques and application of these techniques

for slope stability analyses using SRFEA. Among others, a suitable method is the

Particle Finite Element Method (PFEM), that allows modifications of the finite

element discretization (e.g. remeshing) during a simulation, while accounting for

sophisticated constitutive models. Once implemented, the developed method should

be tested and verified using benchmark problems and applications from geotechnical

engineering as well as experimental results obtained from laboratory tests.

• In the present work, SDSS was successfully coupled with the Hypoplastic model

with/without Intergranular Strain. However, coupling of SDSS with other sophis-

ticated constitutive models for non-cohesive and cohesive soils should be done to

investigate the influence of the choice of the constitutive model for the final FoS

prediction. Constitutive models for non-cohesive soils could include the ISA Sand

model (Fuentes, 2014; Fuentes and Triantafyllidis, 2015) or the Sanisand model

(Dafalias and Manzari, 2004), while models for cohesive soils could include the San-

iclay model (Taiebat et al., 2010), the AVISA model (Tafili and Triantafyllidis, 2020;

Tafili et al., 2023) or the Constitutive Anamnesis Model (Tafili et al., 2022).

• To further extend the research regarding comparison of constitutive models (Wicht-

mann et al., 2019; Machaček et al., 2021; Triantafyllidis et al., 2022; Wichtmann

et al., 2023), parameters of different sophisticated constitutive models should be

calibrated for the same set of laboratory tests (e.g. oedometric test, monotonic and

cyclic triaxial tests) before being used in DFEA and subsequent stability analyses

to assess the influence of the selection of the constitutive model on the seismic slope

stability. Note that this comparison would be interesting in combination with all

stability approaches discussed in the present work, while coupling with SDSS would

be of particular interest.
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• In the present study, it has been demonstrated that machine learning (ML) ap-

proaches are powerful tools enabling to reduce computational costs associated with

the SDSS approach. For the case of an opencast mine slope investigated with SDSS,

it was shown that computational costs were significantly reduced, while the accu-

racy of individual direct simple shear tests at small stress levels showed potential for

improvement. Further research should be conducted to obtain more accurate predic-

tions of the stress-strain behavior using ML approaches, for instance by improving

sampling methods and fine tuning of ML algorithms.

• Extension of the seismic stability approaches with regard to multiple soil layers.

Investigation of case studies and more complex boundary value problems, such as

multi-layered slopes or opencast mine slopes with polder structures. Additionally,

further centrifuge model tests should be investigated, for instance the LEAP-ASIA-

2019 project (Chen et al., 2021; Reyes et al., 2021) or a dam placed on liquefiable soil

(Saade et al., 2023), to gain further experience and confidence with the developed

stability approaches.

• Besides the determination of slope stability for dynamic problems, such as slopes

subjected to earthquake loading or embankments subjected to high frequency vi-

brations of machine foundations, there are many transient problems that could

be investigated. Those applications include rapid water level changes at dikes or

reservoirs (e.g. rapid drawdown), infiltration processes as well as flow failures, for

instance after a liquefaction event. As the concept of DFEA and subsequent sta-

bility analysis can be adapted by replacing the former analysis by a transient one,

all approaches developed in the present study can be used to investigate the afore-

mentioned transient problems in terms of the evolution of the FoS with regard to

time.
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Géotechnique 5, 7–17.

Bishop, A.W., 1966. The strength of soils as engineering materials. Géotechnique 16,
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gen bei bleibenden Böschungen des Braunkohlentagebaus im Rheinischen Revier. World

of Mining Surface & Underground 66, 91–100.

Davis, E., 1968. Theories of plasticity and failures of soil masses. Soil mechanics, selected

topics, 341–354.

Dawson, E., Roth, W., Drescher, A., 1999. Slope stability analysis by strength reduction.
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50, 263–273.

Kishida, T., Boulanger, R.W., Abrahamson, N.A., Driller, M.W., Wehling, T.M., 2009.

Seismic response of levees in the Sacramento-San Joaquin Delta. Earthquake spectra

25, 557–582.

Koiter, W.T., 1953. Stress-strain relations, uniqueness and variational theorems for

elastic-plastic materials with a singular yield surface. Quarterly of Applied Mathe-

matics 11, 350–354.
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analysis. Géotechnique 62, 1053–1065.
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Schmüdderich, C., Shahrabi, M.M., Taiebat, M., Lavasan, A.A., 2020c. Strategies for nu-

merical simulation of cast-in-place piles under axial loading. Computers and Geotech-

nics 125, 103656.
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Nodes

Nodes

Nodes:

- [<coordinate 1>, <coordinate 2>]
...

Define coordinates of nodes used to create ground surface, layer boundaries and impene-

trable layers.

GwtNodes

GwtNodes:

- [<coordinate 1>, <coordinate 2>]
...

Define coordinates of nodes used to create the ground water table/phreatic level.
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Materials and layers

Materials

Materials:

- [γ, γsat, ϕ, c, <label>]
...

Define material parameter sets based on the unit weight of the soil above the phreatic

level γ, the unit weight of the saturated soil γsat, the friction angle ϕ and the cohesion c.

Select a material <label> for the output plot.

Layers

Layers:

- - <Material number>

- [<Node number i>, <Node number i+1>, <Node number i+2>, ...]
...

The definition of each layer consists of two consecutive lines. Layers materials are selected

with regard to the corresponding <Material number>. Layer top boundaries are defined

in terms of poly-lines of Nodes, where the number of nodes may vary for different layers.

The first layer automatically defines the ground surface. Nodes must be selected in a way

that layers are defined from left to right or vice versa, spanning over the full horizontal

range of the model. Layers are defined from top to bottom, they can overlap with other

layers but may not intersect them.

Depth

Depth: d

Define the depth d below the lowest layer y-coordinate to specify the bottom boundary.
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Groundwater and pore water pressures

Groundwater

Groundwater:

- [<GwtNode number i>, <GwtNode number i+1>, ...]
...

Prescribe the ground water table/phreatic level by definition of a poly-line of GwtNodes.

UnitWeightWater

UnitWeightWater: γw

Define the unit weight of water γw. Although assumed constant for many common ap-

plications, a separate input of γw was found to be indispensable for the analysis of slope

stability problems at elevated gravity levels (e.g. centrifuge model tests).

PWPratio

PWPratio: ru

Definition of a constant pore water pressure ratio to be considered constant throughout

the domain. Note that the Groundwater feature is automatically deactivated if ru > 0.0.

DeltaHw

DeltaHw: ∆hw

Define a decrease of the free water level above the ground surface. This decrease may

be caused by long waves as a result of seismic ground motion (Goldscheider et al., 2010).

Note that the water pressures inside the slope are not influenced by this decrease due to

the assumption of a rapid change in the free water level.
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Slip surface

EntryExit

EntryExit: [x1,min, x1,max, x2,min, x2,max]

Define two ranges of x-values used for the generation of slip surfaces to be considered in

the optimization. The x-values should be assigned in ascending order, though overlap of

the ranges (e.g. x1,max ≥ x2,min) is allowed.

hRatio

hRatio: [hmin, hmax]

Define the range of h ratios to be considered in the optimization. Note that the h ratio

controls the curvature/radius of the slip surface.

MinWidth

MinWidth: <value>

Define the minimum lateral distance between the entry and exit point.

MinHeight

MinHeight: <value>

Define the minimum absolute height (i.e. sagitta s in Fig. 3.2) of the slip circle. This

feature can be used to discard FoS obtained from analyses with very shallow slip surfaces.
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NumSlices

NumSlices: N

Define the number of slices N to be used in the slope stability analysis. Note that

additional slices may be considered in case the EnhancedSlices feature is active.

EnhancedSlices

EnhancedSlices: <value>

Activate this feature (<value> = 1) to enable a more precise estimation of intersec-

tions between the slip surface and layers, phreatic level or other features. Using the

EnhancedSlices feature, additional slices are added at (very close to) each of these in-

tersections. The EnhancedSlices feature is inactive for <value> = 0.

DirectionOfFailure

DirectionOfFailure: <label>

Define the direction of failure considered in the slope stability analysis. Specify the

<label> input by choosing left or right.
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Method and optimization

Method

Method: <value>

Define the method of analysis. Select one of the following methods based on the input

parameter <value>: Bishop (0), Janbu (1), Spencer (2) and Morgenstern and Price (3).

LambdaSlice

LambdaSlice: <value>

Only relevant in case Bishop or Janbu method have been selected. Define the parameter

λ which controls the rotation of the interslice forces. Note that λ = 0 yields the simplified

Bishop and simplified Janbu method.

Tolerance

Tolerance: <value>

Define the allowable error in the iteration process to estimate the FoS for the global

equilibrium of forces and/or moments.

Optimization

Optimization: <label>

Define the optimization algorithm used to detect the critical slip surface associated with

the smallest FoS. Select between different optimization algorithms by specifying the

<label> input: brute grid search (Brute), differential evolution (DE), dual annealing

(DA), particle swarm optimization (PSO), simplicial homology global optimization (SHGO).



259

External loads

Cload

Cload:

- [x, Q, <label>]
...

Define concentrated loads acting at the ground surface using the x-coordinate and the

magnitude Q. Specify the direction of the load with the <label> option by choosing one

of the following inputs: vertical (’V’), horizontal (’H’) or perpendicular (’P’). Note that

the positive sign convention of the former two relates to the global coordinate system

pointing to the right and to the top. Compressive perpendicular loads are defined with

a positive value. Specify multiple Cloads by adding further lines. Inclined loads with

arbitrary inclination are considered by splitting into horizontal and vertical components.

Dload

Dload:

- [x1, x2, q1, q2, <label>]
...

Define distributed loads acting at the ground surface using the x1 and x2-coordinates and

the respective magnitudes q1 and q2. Specify the direction of the load with the <label>

option by choosing one of the following inputs: vertical (’V’), horizontal (’H’) or per-

pendicular (’P’). Note that the positive sign convention of the former two relates to the

global coordinate system pointing to the right and to the top. Compressive perpendic-

ular loads are defined with a positive value. Specify multiple Dloads by adding further

lines. Inclined distributed loads with arbitrary inclination are considered by splitting into

horizontal and vertical components.
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Inertial forces and excess pore water pressures

PseudoStatic

PseudoStatic:

- <option>

- [kh, kv] (for <option> = Constant)

- <label> (for <option> = User)

Define seismic coefficients to account for inertial forces in the slope stability analysis.

Select <option> = Constant or User to consider constant seismic coefficients throughout

the domain or import a spatial distribution of seismic coefficients. In the former case,

specify the horizontal and vertical seismic coefficients in the following line. In the latter

case, add the path to a *.txt file in the <label> input. Note that the text file should

contain table data with columns defined as x, y, kh, kv. The data in the text file does

not need to be sorted or structured. Note that the x-y coordinates of the data need to

be cover to complete size of the model to ensure that interpolation of the data is working

properly.

ExcessPWP

ExcessPWP:

- User

- <label>

Define excess pore water pressures ∆pw to be considered in the slope stability analysis.

Note that only the input of User data in terms of an import a spatial distribution of

excess pore water pressures is enabled. Specify the path to a *.txt file in the <label>

input. Note that the text file should contain table data with columns defined as x, y,

∆pw. The data in the text file does not need to be sorted or structured. Note that the

x-y coordinates of the data need to be cover to complete size of the model to ensure that

interpolation of the data is working properly.
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Composite and non-circular slip surfaces

Bedrock

Bedrock: [<Node number i>, <Node number i+1>, ...]

Define an impenetrable layer that enables to cut the slip surface below this layer, creating

a composite slip surface. Specify the location of the impenetrable layer as a poly-line

using Nodes defined above. Note that the Bedrock feature should only be used for in case

a weak/strong layer interface is expected to dictate the shape of the critical slip surface.

TopologicalOptimization

TopologicalOptimization: [n0, nfinal, ns, ni, χ, αcon [◦], ϑa [◦], ϑp [◦], εtol]

Perform a post-optimization based on non-circular slip surfaces to investigate if more

critical results (i.e. smaller FoS) can be obtained compared to the general optimization

using circular slip surfaces. Specify the initial (n0) and final (nfinal) number of nodes, the

number of variations of each surface (ns) and internal (ni) node. The number of nodes

is increased if the difference in the critical FoS of two consecutive optimizations of the

full slip surface is less than εtol. Select if the slip surface should be generated based on

straight lines (χ = 0) or cubic splines (χ = 1). Specify the maximum concave angle αcon

and the maximum absolute slopes of the active (ϑa) and passive active (ϑp) wedge.

TensionCrack

TensionCrack: z0

Define the maximum tension crack length z0. Note that the tension crack length ztc is

considered as an additional variable in the optimization process, varying in the range

of 0 ≤ ztc ≤ z0. Water pressures in tension cracks are determined based on the global

phreatic level.



262 A. geoSlice – Keyword manual

Structural features

Geogrid

Geogrid:

- [x1, x2, y, γ, ϕ, µ, Rbk]
...

Define a geogird to enhance the stability of a slope/dam. Specify the start and end points

of a horizontal geogrid (x1, x2, y), the average unit weight of the soil above the geogrid

(γ), the frictional resistance (µ · tanϕ) and the ultimate pull-out resistance (Rbk).

StoneColumn

StoneColumn:

- [<Material number>, νsoil, ϕcol, Ecol/Esoil, Acol/A]
...

Consider a soil improvement via stone columns based on modified soil parameters in

accordance with Priebe (1995). Specify the <Material number> of the material to be

improved, the Poisson’s ratio of the soil (νsoil) the friction angle of the column material

(ϕcol), the stiffness ratio between column and soil (Ecol/Esoil) and the areal proportion of

the columns (Acol/A). Based on the Priebe (1995) approach, modified shear parameters

are determined to be used in slope stability analyses.



B. Verification of the General Classic

plasticity model

As summarized in Section 2.3.2, the basic idea of the General Classic plasticity model

(Lagioia and Panteghini, 2016; Lester and Sloan, 2018) is to use a general formulation of

the yield and potential function that enables to switch between many different popular

yield functions by selection of three fitting parameters. Verification of the implementa-

tion of the General Classic plasticity (GC) model is performed for the GC model with

Matsuoka-Nakai yield function (MNGC) by comparison of results from element test sim-

ulations with two other implementations of the Matsuoka-Nakai model. The first one

is the MN model implemented in this thesis and the second one is the Matsuoka-Nakai

no hardening (MNnh) model implemented by Prof. Thomas Benz (see Section 4.4.3 for

further details). Note that there are differences in the three Matsuoka-Nakai model imple-

mentations with regard to the potential function. To be more specific, the MNGC model

uses a MN potential function (0 ≤ ψ ≤ ϕ), the MNnh model uses a Drucker-Prager (DP)

potential function (0 ≤ ψ ≤ ϕ), and the MN model uses either a MN potential function

(only in combination with an associated flow rule, ψ = ϕ) or a DP potential function

(0 ≤ ψ ≤ ϕ). To investigate to what extend the three implementations yield similar

results, the impact of the potential function on the results of the element test simulations

is discussed in the following paragraphs.

In accordance with Section 4.4.3, four element test simulations are conducted for two

different materials, a purely frictional (ϕ = 30◦, c = 0 kPa) and a cohesive-frictional

(ϕ = 20◦, c = 20 kPa) material. The element tests cover triaxial compression (TXC) and

extension (TXE) tests and direct simple shear tests starting from an isotropic (DSSiso)

and an anisotropic (DSSK0) stress state. The elastic material parameters are defined as

E = 30.0 MPa and ν = K0/(1 + K0) with K0 = 1 − sinϕ. The results obtained with

Material 1 (purely frictional) and Material 2 (cohesive-frictional) are presented in Fig. B.1

and B.3 and Fig. B.2 and B.4, respectively. Note that the results of the MN (solid black

line) and MNnh (circle symbol) model are identical to the ones presented in Section 4.4.3.
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In addition, results are presented for the MN model with MN potential surface (red solid

line) and the MNGC model with varying dilation angles (square symbol).

It can be seen from the results of the triaxial compression (TXC) tests in the top row

of Fig. B.1 and B.2 that MN, MNGC and MNnh yield identical results in terms of the

evolution of deviatoric stresses and volumetric strains with increasing axial strains. Note

that no differences were to expected for the TXC test as DP and MN surfaces coincide

for a Lode angle of θ = 30◦. In contrast, it is observed for triaxial extension (TXE) tests

presented in the bottom rows of these figures that the volumetric behavior of the MN
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Figure B.1: Deviatoric stresses and volumetric strains during triaxial compression and

extension tests on a frictional material (ϕ = 30◦) simulated using three implementations

of the Matsuoka-Nakai (MN) model
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model depends on the selection of the potential surface for a Lode angle of θ = −30◦. Note

that the red line and the square symbols representing the MN model with MN potential

surface and the MNGC model are in perfect agreement for ψ = ϕ. Although both models

have been implemented in this thesis, this good agreement with two different models can

be considered a reasonable indicator for valid implementations. Evaluating the influence

of the potential function on the volumetric behavior, it is seen that simulations with MN

potential function yield smaller volumetric strains compared to those with DP potential

function. This can be explained by the direction of the normal vector at θ = −30◦ for

both the MN and DP surfaces, where the volumetric component of the latter is larger.
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Figure B.2: Deviatoric stresses and volumetric strains during triaxial compression and

extension tests on a cohesive-frictional material (ϕ = 20◦, c = 20 kPa) simulated using

three implementations of the Matsuoka-Nakai (MN) model
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Note that the differences in the volumetric behavior reduce with decreasing dilation angle,

where similar volumetric behavior is obtained for ψ = 0◦.

Analyzing the results of the direct simple shear (DSS) tests with Material 1 and 2 pre-

sented in Fig. B.3 and Fig. B.4, respectively, identical results are obtained with the MN

model and the MNnh model while good agreement is also seen with the MNGC model.

Still, it is observed that the potential function has a minor influence on the evolution of

shear stresses and a slightly more pronounced influence on the volumetric behavior. In

addition, it is apparent that the differences between simulations with DP and MN po-
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Figure B.3: Shear stresses and volumetric strains during direct simple shear tests starting

from an isotropic and K0 state with a frictional material (ϕ = 30◦) simulated using three

implementations of the Matsuoka-Nakai (MN) model
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tential surface are larger for the purely frictional material (Material 1) compared to the

cohesive-frictional material (Material 2). Compared to the differences seen for the triaxial

extension tests, it is noteworthy that the influence of the potential function is smaller in

case of DSS tests. This can be explained by the fact that the differences in the size of the

DP and MN surfaces is larger for triaxial extension (θ = −30◦) compared to plane strain

conditions (0◦ ≤ θ ≤ 10◦).
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Figure B.4: Shear stresses and volumetric strains during direct simple shear tests starting

from an isotropic and K0 state with a cohesive-frictional material (ϕ = 20◦, c = 20 kPa)

simulated using three implementations of the Matsuoka-Nakai (MN) model





C. Settings of machine learning

algorithms

Radial Basis Function (RBF) interpolation

Radial Basis Function (RBF) interpolation (scipy) allows for the consideration of a lim-

ited number of nearest data points (neighbors) to speed-up the evaluation process and

avoid large matrix dimensions exceeding memory capacities. The number of neighbors

was set to 1,000 to avoid singularities during interpolation due to insufficient nearest data

points for all input dimensions. This number ensured to be large enough to avoid singular-

ities and small enough to obtain accurate results. Moreover, the ‘thin plate spline’ kernel

(r2 · log(r)) was used in this study, as trial analyses revealed slightly better agreement

with the test data compared to the ‘cubic’ kernel (r3). Other kernel functions investi-

gated (e.g. ‘multiquadric’, ‘inverse multiquadric’, ‘inverse quadratic’, ‘Gaussian’) resulted

in larger deviations from the test data. As trial analyses showed that a small ‘smoothing’

parameter led to good predictions, a value of 0.1 was chosen. Further parameters not

mentioned here were chosen equal to default values.

K-Nearest Neighbors (KNN) regression

The K-Nearest Neighbors (KNN) regression (scikit-learn) was chosen as it enables a

very simple and fast evaluation. In this study, the number of neighbors was selected to 3

based on trial analyses showing decreasing accuracy with test data with increasing number

of neighbors. As reported in Section 9.3, weighting of the neighbors was conducted with

respect to the inverse distance between the relevant neighbors and the target data point.

Moreover, the ‘kd-tree’ algorithm was chosen to compute the nearest neighbors.
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270 C. Settings of machine learning algorithms

Random Forest (RF) regression

The Random Forest (RF) regression (scikit-learn) was used as it offers a completely

different type of approach due to evaluation of a set of decision trees referred to as estima-

tors. Selection of the settings for the RF approach was primarily based on the objective

to keep a balance between accuracy and time while avoiding over-fitting. Therefore, 1,000

trees (estimators) were chosen considering a maximum of three features to be analyzed

for finding the best split. Trial analyses showed accurate predictions with decision trees

expanding up to the maximum depth. However, the chance for over-fitting was very high.

Therefore, a maximum depth of 10 (levels/splits) was chosen. It should be noted that

(significant) larger number of estimators or maximum depth could also cause memory

errors. The ‘squared error’ criterion was selected as it provided accurate results in a short

period of time.

Multi-layer Perceptron (MLP) regression

The Multi-Layer Perceptron (MLP) regression (scikit-learn) was applied considering

a default value of one hidden layer with 100 perceptrons, where a variation of the hidden

layers did not affect the results strongly. In contrast to that, it was observed that the

activation function had a decisive effect on the accuracy. Trial analyses revealed that

choosing ’rectified linear unit function’, which returns f(x) = max(0, x), over a ’hyperbolic

tangent’, a ’logistic sigmoid’ or a ’linear’ function led to the best results. Moreover,

a penalty (regularization term) parameter of α = 0.0001 was selected. Trial analyses

revealed that α has a decisive impact on the general trend of the shear strain versus

shear stress curve. By increasing α, the scattering depicted in Fig. 9.4 was reduced,

giving almost smooth curves for α ≈ 0.1. However, mean squared errors and maximum

deviations increased with increasing penalty parameter, while also training time increased

significantly. Therefore, it was decided to use a less time consuming and more accurate

setting by choosing a small α value at the cost of scattering in the prediction.
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unter Berücksichtigung der Verformung im Boden

23 (1995) Thomas Neteler

Bewertungsmodell für die nutzungsbezogene Auswahl von Verfahren zur Altlastensanierung

24 (1995) Ralph Kockel

Scherfestigkeit von Mischabfall im Hinblick auf die Standsicherheit von Deponien

25 (1996) Jan Laue

Zur Setzung von Flachfundamenten auf Sand unter wiederholten Lastereignissen

26 (1996) Gunnar Heibrock

Zur Rissbildung durch Austrocknung in mineralischen Abdichtungsschichten

an der Basis von Deponien

27 (1996) Thomas Siemer

Zentrifugen-Modellversuche zur dynamischen Wechselwirkung zwischen Bauwerken

und Baugrund infolge stoßartiger Belastung

28 (1996) Viswanadham V. S. Bhamidipati

Geosynthetic Reinforced Mineral Sealing Layers of Landfills



29 (1997) Frank Trappmann

Abschätzung von technischem Risiko und Energiebedarf bei Sanierungsmaßnahmen

für Altlasten

30 (1997) André Schürmann
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Beiträge zum RuhrGeo Tag 2010

44 (2010) Jamal Alabdullah

Testing Unsaturated Soil for Plane Strain Conditions: A New Double-Wall Biaxial Device

45 (2011) Lars Röchter
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auf geringtragfähigen Böden
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