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Preface of the editor

When realizing complex geotechnical structures like deep excavations or tunnels the ap-

plication of the observational method is common practice nowadays. Thereby a numerical

model of the geotechnical problem is built, while the structure and its vicinity are equipped

with sensors. The results of the measurements during construction are used to improve

the numerical model, particularly the parameters of the constitutive models applied, by

back analysis. In that way the model is continuously enhanced, allowing more accurate

predictions of deformations and limit states. If the model predicts the loss of serviceability

or even failure suitable countermeasures must be adopted.

Previous research works concentrated on the back analysis of the model parameters based

on measurements at given positions. The dissertation of Raoul Hölter goes one step bey-

ond and focusses on the question where to place the sensors, how many of them and

which types, in order to enable the most accurate back analysis. The thesis thus discusses

the application of methods of optimum experimental design (OED), known from other

research disciplines, in geotechnical engineering.

Based on an extensive literature review, mainly covering studies from research disciplines

beside civil engineering, Mr. Hölter has identi�ed three OED approaches being promising

for an adoption in geotechnical engineering, namely the global sensitivity analysis (GSA),

the Bootstrap method and the Bayesian OED. The thesis summarizes the fundamentals

of these methods along with the involved mathematical basics and shows their imple-

mentation and application to di�erent geotechnical problems, namely a model test with

consolidation of clay under step-wise loading, ground settlements caused by mechanized

tunneling and a dike subjected to a rapid drawdown. Based on the studied examples Mr.

Hölter discusses the advantages and drawbacks of the di�erent OED methods and gives

recommendations for their practical application taking into account the large computa-

tional e�ort of some numerical tools. Amongst others, one interesting outcome of the

investigated examples is that the sensors should be placed in zones with high gradient of

the measured quantity, rather than choosing positions with high absolute values.
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ii Preface of the editor

The present thesis may be seen as the �rst systematic research work focussing on the

application of OED in geotechnical engineering. Such application could lead to an optim-

ized arrangement of sensors with regard to the collected information and costs, and to a

more reliable determination of the parameters of numerical models by back analysis in

the framework of the observational method.

This research has been done in the framework of the project C2 of Collaborate Research

Center (SFB) 837 �Interaction Modeling in Mechanized Tunneling� at Ruhr-Universität

Bochum. The funding of German Research Council (DFG) is gratefully acknowledged.

Torsten Wichtmann
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Abstract

Performing measurements during construction and maintenance of major geotechnical

projects like tunnels, ship locks, or dikes is state of the art in geotechnical engineering

and usually obligatory. Doing so allows a comparison of the obtained measurement data

with preliminary made predictions and therefore, to identify possible discrepancies. This

procedure known as observational method always requires on the one hand a validated

model that provides reliable system responses and on the other hand corresponding meas-

urement data. While a lot of e�ort has been dedicated to develop highly sophisticated

models and measurement devices, little research work is available on how the measure-

ments should be conceptually set up, i.e. which measurement data should be gathered.

However, the problem of obtaining most informative data to validate a model that re�ects

a speci�c system is not limited to geotechnical engineering. Indeed, it is encountered in

almost any scienti�c research �eld. To address this type of problems, the concept of

optimal experimental design has been developed. This concept aspires to identify and

develop measurement set-ups, the so-called experimental designs, that provide reliable

data to identify the models' most relevant parameters. Hereby, the aspect of reliability

plays a major role in all considerations of optimal experimental design as the identi�ed

experimental design should be robust towards uncertainties of the model and of the meas-

urement data itself. Therefore, the approaches of experimental design mostly consist of

statistical evaluations.

The present work considers several statistical methods employed in di�erent research �elds

in view of their bene�t in context of geotechnical problems where the soil's uncertainty

is predominant and measurements are often sparsely distributed over large model/system

domains. The focused on methods of optimal experimental design are the global sensit-

ivity analysis, the Bootstrap evaluation, and the Bayesian updating. These methods are

introduced in detail and applied to representative problems like a geotechnical laborat-

ory device, the water drawdown acting on a dike, and mechanised tunnel construction.

To systematically evaluate the models of these problems that are generated using the

v



vi Abstract

�nite element method, further mathematical tools like metamodelling and optimisation

algorithms are employed and introduced in an additional chapter.

In the several considered applications, it is shown how the di�erent methods allow an

improvement of the parameter identi�cation results, i.e. a reduction of the uncertainty

range. However, also the limitations of the di�erent methods are demonstrated which are

mostly related to the required computational e�ort. Accordingly, recommendations are

given how the di�erent methods might be employed depending on the problem at hand and

how combining the methods can increase their e�ciency. Using these recommendations,

e�cient measurement set-ups can be designed and the observational method is improved

by being placed on a rational basis for decision-making.
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1. Introduction

1.1. Background

Employment of measurement data during the construction of large geotechnical struc-

tures like tunnels, excavation pits, or dikes is the common approach, not only because it

helps to assess the safety of the structure, but because it is mandatory, e.g. according to

Eurocode 7 (DIN EN 1997-1). However, there are two di�erent kinds of measurements,

or better to say, two kinds of data interpretation: either they are interpreted related to a

threshold (e.g. maximum settlement), or as piece of information that is used to validate

a model of the system at hand.

In case we think of thresholds, it is only possible to evaluate what happened up to the mo-

ment of the measurement and decide whether to react or not. This approach is commonly

used and well described e.g. in Janin et al. (2012). The alternative of using measurement

data for model validation was introduced as "observational method" in Peck (1969b). In

such a case, a model of the considered situation is needed that can be validated. The val-

idation takes place by comparing the model response with the measurement data. In case

the model agrees with the measurement, it can be used to predict future situations, if not,

di�erent parameters of the model that describe e.g. the geometry or material behaviour

might be adapted to �t the measurement.

A simple example from the �eld of geotechnical engineering is the loading of a shallow

foundation. The more it is loaded, the more settlement will be measured. However, if a cer-

tain settlement is assumed as failure criterion, the maximum load capacity of the footing

depends on the soil properties below. Due to intrinsic uncertainties of natural soils, these

properties are not known exactly and either they can be assumed as very conservative

values with large safety margins, or it is tried to match the correct value as accurate as

possible. The �rst approach, called "conventional design" in Spross and Johansson (2017)

needs observation only in case the settlements exceed the acceptable settlements. Using

the observational method, as will be presented later, the settlement of the footing could

be measured to validate a model of the system, e.g. the simple in�uence factor method

1



2 1. Introduction

introduced in Kany (1959). Doing so, it can be identi�ed if the initial assumptions of

the soil properties were correct, or if they were over- or underestimated. Afterwards, the

design parameter, that is the loading itself in the assumed case, can be adapted. This can

lead to a safer design, and also to a more cost e�cient design.

However, when using measurement data, we must be aware that large uncertainties are

probably a�ecting the system. In Phoon and Kulhawy (1999b), model uncertainty, meas-

urement uncertainty, and soil heterogeneity are named as main sources of inaccuracy in

geotechnical engineering. Therefore, the obtained measurement data may be misleading.

The aspect of model accuracy will be discussed later on in this thesis, but merely as sec-

ondary source of uncertainty, while the focus is set on the measurement uncertainty and

soil inhomogeneity.

In the context of the above introductive example, soil inhomogeneity could mean that the

sti�ness, unlike expected, decreases with depth due to the geological history of the site.

In such case, small loadings that impact only surface near areas would provoke explicitly

small settlements. A model validation would identify a high sti�ness of the soil and might

tempt to assume a high allowable loading. In case the load is increased, the ratio of the

additionally applied stress to the stress due to own weight will become larger in any depth

below the footing. In deeper areas of the soil, increasing this ratio would now become rel-

evant for settlements and cause them to be higher than expected, proving the previous

assumption to be false.

Besides inhomogeneity, measurement errors must be considered that can be of epistemic

or aleatoric origin, e.g. precision de�ciency of the measurement device or wrong calibra-

tion to ambient temperature, respectively. These sources of uncertainty downgrade the

advantage of the observational method. However, in Meier et al. (2009) and Meier et al.

(2013) it is shown that for di�erent "monitoring options", as various arrangement of the

sensors are called by Spross and Johansson (2017), di�erent qualities of the model val-

idation are obtained in terms of model accuracy. Therefore, one should ask by which

monitoring option the e�ciency of the method could to maximised.

Of course, this aspect has never been neglected in geotechnical engineering, but usually a

monitoring design is set up according to engineering judgement. Even though this "judge-

ment" is a very powerful tool, it is not a general guideline that everybody approves in

the same manner. Design codes such as the aforementioned DIN EN 1997-1 request a

monitoring for complex geotechnical structures, but do not give any details on how this

monitoring should be arranged.

Contributing to rationalise this aspect is the objective of this thesis. Every project is

di�erent and so are their needs for monitoring. Therefore, this work does not intend to
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be a reference book where to look up which measurement device to place where in a

certain case, but it is supposed to be a platform that provides di�erent concepts that can

be applied depending on dimension, complexity or level of detail of the considered case.

Decision making how to apply and to interpret these methods is enabled and does not

replace but improve the engineering judgement.

1.2. Objectives

The present work aims to investigate how the process of parameter identi�cation, that is

the core element of model validation, is in�uenced by di�erent types of data and their in-

herent uncertainty. Ultimately, an awareness should be raised for the possible bene�ts of a

thoughtful selection of measurement data that is employed for model calibration: A more

adequate model allows more precise predictions of the system behaviour. Furthermore,

less needed measurement instrumentation for the same accuracy level enables immediate

economic savings.

To a certain extend, the work presented in this thesis is the continuation of the work

of Miro (2016) which has been, like the one at hand, prepared in the framework of the

collaborative research group SFB 837 "Interaction Modeling in Mechanized Tunneling" at

Ruhr-Universität Bochum in the subproject C2, entitled "System and Parameter Identi�c-

ation Methods for Ground Models in Mechanized Tunneling". In Miro (2016) the process

of model calibration, as is called therein the veri�cation of the existing model, simply

"uses" measurement data and assumes the position, accuracy, etc. of the corresponding

sensors as given. The present work extends this previous one by adding an additional

dimension to the problem: if we want to validate our model, which data should we use at

all for this purpose?

To answer this question, it should be �rst described what is understood by model valida-

tion that is a complex topic, including several steps and mathematical methods. As this

process is in�uenced by the uncertainties mentioned above, �nding a solution, i.e. a set of

parameters that allows a reproduction of the measured data, means solving an ill-posed

problem as usually no solution will allow a perfect �t and many solutions may allow a

good approximation. The main objective in this work of �nding the optimal measurement

arrangement is therefore a second optimisation problem that aims to provide optimal

boundary values to the �rst one of identifying parameters. The objectives of the investig-

ation are as follows:
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� Convey the concept of optimal experimental design (OED) and discuss how this

concept can be helpful to improve safety and e�ciency in geotechnical engineering.

Considering the characteristics of this research �eld, a literature review of existing

methods of OED is performed.

� Provide a survey on di�erent approaches to perform model parameter identi�cation

based on back analysis of measurement data with speci�c application to geotechnical

problems and optimal experimental design. In this context, the mathematical tools

that are needed for this purpose must be introduced.

� It is one key objective to adapt and develop di�erent existing and new approaches for

model parameter identi�cation, employing geotechnical measurement data collected

based on optimal experimental design. Hereby, explicit focus is set on the question

which impact di�erent sources of uncertainty may have on the result of parameter

identi�cation.

� The di�erent considered approaches of optimal experimental design should be ap-

plied to selected examples that are representative for geotechnical engineering. There-

by, the di�erent features, advantages, and drawbacks should be depicted.

� Illustrate which possibilities the concept of OED o�ers in geotechnical engineering. It

shall be indicated for which types of problems it is bene�cial to invest this additional

e�ort and which gain in reliability can be obtained. The aspect of e�ciency is

included in the evaluation, as the computational e�ort becomes a crucial aspect in

some of the approaches.

1.3. Layout of the thesis

After this introduction chapter, the second out of eight chapters introduces the topic of

OED and presents the state of the art in this research �eld. As most research work is not

from the �eld of civil and much less of geotechnical engineering, a thematic bridge is built

to this topic, showing some works that meet the ideas of OED in the broadest sense.

In the third chapter, the mathematical and statistical tools are discussed that are em-

ployed through this thesis. Some of these methods have been introduced in the previous

work of Miro (2016) such as metamodelling or global sensitivity analysis, but as they are

applied in di�erent manners in the present study, they are outlined again with special fo-

cus on the intended application. Other methods such as the Bootstrap or the sigma points
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are new in the framework of this research project and are explained more fundamentally

in the corresponding chapters.

In chapter four, the �rst candidate method is introduced that employs a spatial global

sensitivity analysis to detect promising sensor placements. The concept is applied to sev-

eral geotechnical problems considering real cases of a laboratory experiment, a tunnel

construction, and the synthetic case of a dike that is subjected to a hydromechanical

impact.

The �fth chapter focuses on the Bootstrap resampling method that allows to reproduce

arti�cial noisy data. This noisy data is assigned to explicit sensor types and allows more

accurate de�nition of sensor arrangements, i.e. experimental designs. A continuation of

this approach is presented by employing the so-called sigma point method. Thereby, ex-

tensive distributions of noisy data are substituted by their �rst order moments.

In chapter six, the ideas of Bayesian OED are taken up. This method allows to de�ne the

objective of an experimental design to be the reduction of uncertainty that is inevitable

when handling soil parameters.

After introducing three possible concepts of OED, a merged evaluation is performed in

chapter seven. Hereby, the di�erent methods are compared, their pros and cons are high-

lighted and recommendations are given on how to consider them in di�erent applications.

The eighth chapter consists of a conclusion of the present work, combined with an outlook

on possible extensions and further application examples.





2. Optimal Experimental Design

2.1. General ideas

This chapter illustrates the general concept of optimal experimental design (OED) to the

reader. Its historical development is described as well as the di�erent research �elds where

it is applied currently. As the concepts of OED are employed in di�erent contexts, one

important aspect is to determine to which type of applications it is suitable: can the in-

formation of interest be directly measured or does it need to be back-calculated as handled

in this work? On the opposite, the di�erentiation is explained between the concept of OED

for real experiments or in-situ measurements, and the design of computer experiments.

Thereby, the focus of this work is stated and de�ned precisely, as no sharp di�erentiation

is possible or reasonable between these methods.

In general, the following description given in Wolkenhauer et al. (2008) should be con-

sidered: "Performing experiments to obtain a rich enough set of experimental data is a

costly and time-consuming activity. The purpose of optimal experimental design (OED)

is to devise the necessary dynamic experiments in such a way that the parameters are

estimated from the resulting experimental data with the best possible statistical quality,

which is usually a measure of the accuracy and/or decorrelation of the estimated para-

meters. In other words, based on model candidates, we seek to design the best possible

experiments in order to facilitate system identi�cation." This relatively recent work that is

actually from the �eld of biochemistry quite accurately describes what is intended within

this thesis to be investigated and to be applied to geotechnical problems.

7
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2.2. State of the art

2.2.1. Historical review

Of course, ever since people were systematically measuring an event, they re�ected on how

this measuring might be most e�cient, so to say they looked for the optimal experimental

design. However, the monograph Fisher (1935) is generally accepted as �rst systematic

and scienti�c study on this topic. First, several examples related to evolution, psycho-

logy, or agriculture are provided therein to prove the relevance of testing (i.e. performing

experiments) before performing the actual operation. The most employed example of in-

vestigating which treatment of seeds allows the largest harvest of grains well demonstrates

the complexity of the problem of experimental design: testing the same type of seeds, they

can be sowed on di�erent types of soils and treated with di�erent types of manures. By

varying one by one these factors, one can identify their individual impact on the harvest.

However, this might be quite insu�cient, as hereby the correlation among the factors is

not considered. If more than two of these factors are investigated, the higher order factor

correlations should also be considered, e.g. the combination of two di�erent manures on

di�erent soils. Testing every possible combination to identify the most valuable set-up is

called a full factorial design. It is obvious that investigating all of these possible combina-

tions quickly leads to an unbearable number of tests and unbearable experimental costs,

especially in case these tests are as extensive as in agriculture where one test will take

several months.

The problem becomes even more complex if the factors (or system variables as called later

on) do not behave linearly. In case e.g. the amount of potassium sulphate added to the

ground is doubled, will the positive e�ect on the harvest be doubled? Presumably not.

Therefore, one should also vary the experiments considering the amounts of the di�erent

factors, what leads to an even larger number of tests. It is indicated how testing certain

combinations of factors allows to gain the same information content as others what allows

to leave out certain parts of the full factorial design. It is pointed out that certain factors

will have more impact on the experiments' results and that it is important to identify

these factors. Thereby, the concept of sensitivity analysis, that is described in detail later

on, is anticipated without explicitly naming it. Finally, also the aspect of randomness

and error is discussed, explaining that these may falsify the outcome of any experimental

series. To overcome such random alternation of test subjects, the possibility of statistical

evaluation is introduced. Hereby, relative changes are suggested as measurable criteria

instead of absolute values to make treatments applied to di�erent original states compar-
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able. However, this uncertainty inevitably leads to an additional number of required tests.

It is indeed pointed out that a large number of tests is often not possible in real world

experiments. For this reason, in the present thesis, the numerical models and their more

time-e�cient substitute, the metamodel, are employed; an option that R.A. Fisher did

not have in 1935.

The merits of the described monograph are to well describe the problem of the "design

of experiments", to show how extensive such design can become, and what attempts

can be employed to reduce the extend of such designs while maintaining their provided

information content. Fundamental ideas are formulated such as having the variance of

experimental results introduced as criterion of interest that allows to estimate the quality

of an experimental design or the question how to relate monetary costs to the information

gain of an experiment. Making this information gain measurable is the essential �rst step

to be able to compare di�erent experimental designs. Within Fisher (1935), it is stated

"that methods of estimation which proceed without reference to the possibility of evalu-

ating the quantity of information actually contained in the data, are liable to be defective

in the quantity that they utilise". A formulation that might be applicable to any branch

of research, but especially to the �eld of geotechnical engineering where information are

often derived from sparse data. To relate data to information, Fisher deduces that the

variance of a distribution obtained as results from an experimental design allows to de-

scribe the obtained information content. Accordingly, if some parts of the experimental

design are left out, the obtained distribution will be di�erent and its information content

less. However, one can now compare which experimental design allows to be as close as

possible to the full factorial design (i.e. to the most reliable distribution) for least exper-

imental e�ort.

To describe the information content I of the experimental data ỹ with respect to the

parameter θi, the following formulation can be employed:

I =
∂2ỹ

∂2θi
, i = 1 . . . s, (2.1)

where s is the dimension of the considered parameter space. The matrix that accrues when

considering all parameters and their correlations is often called the Fisher-information

matrix FIM whereby several similar formulations exist.

Conceptually, the FIM turns out to be the variances' expectancy of the function's second

derivatives to each of its parameters. It should be mentioned indeed that in this thesis,

such functions are approximated by distributions obtained by random sampling. To allow

consideration of uncertainties arising not only from the input but also from the measure-

ment's uncertainty, the covariance matrix of the outputs Cy, or Cỹ in case experimental
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data is employed, is included in the formulation that is employed for OED purposes:

FIM = ST
l ·C−1y ·Sl (2.2)

wherein, according to 2.1, the matrix Sl is:

Sl =


∂y1,l
∂θ1

∂y1,l
∂θ2

. . .
∂y1,l
∂θs

∂y2,l
∂θ1

∂y2,l
∂θ2

. . .
...

...
∂yN,l
∂θ1

. . .
∂yN,l
∂θs−1

∂yN,l
∂θs

 (2.3)

The index l refers to the variation of the considered experimental design δl whereby each

design leads to a di�erent FIM that allows comparison among them.

Up to date, using the FIM remains a valuable approach for many types of applications

described in the following. In Bandemer and Bellmann (1979), the state of the art up to

the 1970th is presented and the concepts of Fisher (1935) are transferred to more system-

atic and fundamental approaches. The di�erent optimality criteria, described in detail in

Sec. 2.4.3 are hereby considered. Identifying an OED is performed based on the formal

application of analytical functions, and the concept of the least square method (LSM) and

close-by alternatives is presented. The algebraic properties of the FIM are investigated

in a far more fundamental mathematical description than needed and intended for the

present application-oriented thesis. Hereby, it should be remembered that at that time

extensive FE simulations and their statistic evaluation was not possible due to lack of

computational power. None of the applications considered in this thesis could have been

performed using the techniques of the 1970s, even though the objectives and underlying

concepts are the same.

Another aspect in the framework of OED is that one should di�erentiate between prob-

lems where the parameters of interest need to be back-calculated as it is the case in the

present thesis and those where they can directly be measured. An example for the latter

case is given in Mukherjee et al. (2017) where it is described how to �nd optimal sensor

placements to detect contaminants in a water network. As the water demand in such

a network is uncertain, �nding these optimal placements is still a complex optimisation

problem, but it does not require the additional step of parameter identi�cation. Using

a stochastic simulation of the water demand is combined with a reweighting scheme to

simulate the impact of this varying demand on the contaminants' propagation. With di�er-

ent deterministic and stochastic optimisation approaches, including di�erent uncertainty

scenarios, the optimal sensor locations are identi�ed exhibiting quite di�erent results and

showing the need to consider e�ects of uncertainty in OED applications.
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Another concept that is related to the term of OED is the generation of samples for

computer experiments. Within this thesis, such methods are employed to generate data

for metamodels that substitute the more time-consuming FE models. This is introduced

brie�y in Sec. 3.2.2 while a detailed overview on such approaches such as the Latin hy-

percube sampling, the Box-Behnken-design, and the central composite design is provided

in Giunta et al. (2003).

2.2.2. Current developments

The employment of the before introduced FIM is still very common as shown by several

examples in Uci«ski (2005) and Patan (2012) from the same research group. There, like

in those problems considered in this thesis, the problem of where to place sensors in a,

as it is called therein, "distributed system" is investigated. In the considered application,

the time-dependent pollutant transport over an urban area is studied among others. To

avoid clustering, the sensor density is employed as design variable in an optimisation loop

to identify the experimental design that provides the least value of the assigned cost func-

tion. The problem whether to consider discrete candidate points or a continuous domain

is addressed, indicating the higher complexity of the second case, as discussed later on

in chapter 6. Thereby, the aspect of reducing the computational e�ort as side aspect in

the task of experimental design optimisation is underlined, but also the limitation of the

FIM to problems that are linear or of "mild nonlinearity". To rank di�erent experimental

designs, the mean square error (MSE) is employed and, among others, the ΦA- and ΦD

optimality criteria are applied to the FIM . These allow to evaluate candidate designs

under aspects of optimality whereby these di�erent aspects are described in more detail

in Sec. 2.4.3 and to which an overview is provided in Nishii (1993).

In Lahmer et al. (2008), an example from material science is provided considering the

properties of piezoelectric discs. The behaviour of these discs can be well described by

partial di�erential equations (PDE), but the parameters of these PDEs are uncertain due

to their production process. To identify these parameters, an accentuation of the piezo-

meters within a possible bandwidth of frequencies is simulated under consideration of

possible noise in the case of real data. The solution to this problem is found by generating

arti�cial noisy data and afterwards minimising the MSE between these noisy measure-

ments and the model responses by varying the system parameters. Besides identifying

adequate measurement frequencies, it is investigated which number of frequencies should

be employed to allow the most e�cient parameter identi�cation. This shows how complex

the OED problem can be in any application, as the design space Π in which the possible
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experimental design δl is de�ned can be arbitrarily extended. At the same time, it can

be seen that the fundamental concepts, as in this case the reduction of the MSE, are uni-

versally applicable. However, the speci�c application always needs individual adaptation,

wherefore the employed methods cannot be transferred directly to problems of geotech-

nical engineering, what is one major motivation of the thesis at hand.

From the same author and using a similar approach, in Lahmer (2011) it is intended to

place di�erent types of sensors in a gravity dam. Similar to the problems studied in this

thesis, the sensors (pore water pressure transducers and mechanical measurements) can

vary their position over the whole domain of the model. Hereby, the problem of cluster-

ing appears, as the sensors tend to regroup in the same position; a circumstance that is

mathematically logic, but often not applicable and not desired as locally arising technical

problems might a�ect all sensors at once instead of only few of them.

In Schenkendorf et al. (2009) di�erent methods of OED are compared in an application

of system biology. To identify the parameters that control the growth of bacteria in a

bioreactor, described by a series of PDEs, a back calculation of these parameters is ne-

cessary. Therefore, the aforementioned FIM is applied as well as the Bootstrap and the

sigma-point method as described more in detail in Schenkendorf (2014). The comparison

of these methods shows that using Bootstrap and sigma-point method allows to identify

experimental designs of higher quality in case of the considered non-linear models. How-

ever, using the Bootstrap method has its limitations as it requires numerous calls of the

time-consuming back analysis algorithm.

To increase the e�ciency of OED approaches, and not try all possibilities within a design

space, the concept of Bayesian OED can be employed as done among others in Vanlier

et al. (2012) and Huan and Marzouk (2013) which consider applications from system bio-

logy and combustion kinetics, respectively. In the latter one e.g., it is intended to identify

the parameters of ordinary di�erential equations (ODE) that describe the chemical reac-

tions that take place in a shock tube. Even though only two design parameters, the initial

temperature and the equivalence ratio, are considered as design variables, the response

surface of the utility function (as inverse equivalent to the cost function in other applic-

ations) is non linear and requires a detailed investigation of the design space. Using the

Bayes theorem, new candidate designs are selected based on investigations of prior tested

ones, and thereby transferring the OED process to an active optimisation problem.

In Reichert et al. (2019), the impact of systematic and random noise with and without

bias is investigated while the present thesis focuses on Gauÿian zero mean noise. In that

publication, a dynamic excitation is applied to a beam structure represented by a di�eren-

tial equation that provides the acceleration of the system as model response to which the



2.3. Motivation in geotechnical engineering 13

di�erent types of noise are applied. The evaluation of this noisy data is performed using

the FIM in combination with the ΦD-criterion, but also using the MSE. The di�erent

types of errors lead to varying results, but not to fundamental changes of the experi-

mental design. More relevant is the selection of the design criterion. In this regard, the

results could be interpreted that the ΦD-criterion aims by its formulation to identify all

parameters that are included in θ. Therein, the relevance of these parameters for the

model response is not taken into consideration. The MSE-criterion indeed exclusively

cares for reducing the discrepancy between model response and noisy data. Hereby, a

less-relevant parameter might be identi�ed less accurately than a relevant one, but this

does not matter as this is not the objective. One could say that the attention paid to

the parameters is weighted according to their relevance to the model response. This is

principally the idea of sensitivity analysis as introduced later on in Sec. 4.1. To enable

using the ΦD criterion while still considering the relevance of the individual parameters,

in the applications shown in this thesis, a sensitivity analysis is performed preliminary.

The obtained sensitivity indices can be employed as weighting factors of the objective

function or to exclude certain less-relevant parameters at all from the OED process.

The concept of global sensitivity indices for the purpose of OED as suggested in Hölter

et al. (2015) and described in Sec. 4.1, was adopted in Lo and Leung (2018) for the purpose

of investigating a slope, demonstrating that the concepts introduced within this thesis can

be transferred to other geotechnical problems. The examples described in this overview

show on the one hand the diversity of application possibilities and on the other hand

that various approaches exist. However, in the �eld of geotechnical engineering almost no

applications of OED for parameter identi�cation, apart Schanz and Meier (2008) from

the same research group, had been published to the best of the author's knowledge. This

motivates the present thesis to investigate which of the previously mentioned methods

can be applied to relevant problems and how successful these can be performed.

2.3. Motivation in geotechnical engineering

2.3.1. Numerical modelling in geotechnical engineering

It should be mentioned that the concepts of OED presented within this thesis are supposed

to be generally valid and can be applied to any type of model, ranging from conventional

analytical functions to most sophisticated numerical models, as shown in the examples

mentioned in Sec. 2.2. However, as in recent decades numerical simulations have been
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increasingly employed for prediction and design in geotechnical engineering, the present

thesis focuses on this type of models. This is of special relevance as such models can have

various input details and can provide detailed results that include the whole geometric

and time model domain. However, as the quality and reliability of such results is only

given in case of validated models, the bene�t of using concepts of OED is especially given

in case of numerical models. Within this thesis, the �nite element method (FEM) is util-

ised and if not stated elsewise, the commercial software packages Plaxis 2D (Plaxis bv,

2019) and Plaxis 3D (Plaxis bv, 2018) are employed.

When using the FEM, the soil medium is assumed to be a continuum that is discretised

into a number of two- or three-dimensional elements. For each of these elements, stresses

and strains are calculated and brought to equilibrium with external forces and deforma-

tions in a system of equations that includes all other elements. Afterwards, the material

responses as stresses are available for all so-called Gauÿ-points in which the element prop-

erties are de�ned, while further responses as displacements are obtained in nodes or can be

interpolated in between. The interpolation is convenient for the present work on OED, as

thereby di�erent measurement designs, corresponding to results from di�erent positions

of the model domain can be compared without further computational e�ort caused by

additional Gauÿ-points or nodes. The employment of the FEM in geotechnical engineering

has been established in science and practice in the last decades and is broadly presented in

Potts (1999) and Potts and Zdravkovi¢ (2001). More speci�c applications of the FEM in

the context of validation of tunnel simulation models can be found e.g. in Miro et al. (2015)

and Zhao et al. (2015, 2019), while in Müthing et al. (2018) and Mahmoudi et al. (2020)

the settlement of an embankment and the stability of a slope are investigated, respectively.

2.3.2. Model validation and veri�cation

Setting up an FE model might be an easy task sometimes, but one should consider that

any new model needs to be approved what is often the more complex part of the modelling.

"Approving" a numerical model, or any other kind of model, is e�ectuated by veri�cation

and validation. These terms can be found even in the titles of numerous publications from

the �eld of geotechnical engineering e.g. (Gupta et al., 2008; Tsinidis et al., 2015; Zhao

et al., 2015) and they should be clari�ed in this section to understand how they are related

to the topic of OED.

In several publications, e.g. Balci (1998); Carson (2002); Thacker et al. (2004), approaches

are presented that describe model veri�cation and validation and how to di�erentiate these
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two terms. Key statements of these authors are given in the following.

The part of veri�cation should be performed �rst, but might be reconsidered after valida-

tion in the sense of an iterative process. Hereby, it should be controlled that all prede�ned

steps that the model should consider are included and executed as agreed on by all stake-

holders. The internal logic of the model must be ensured and reasonable results generated.

Results should still be reasonable and continuous in case the input parameters of the model

are varied within realistic ranges.

Validation indeed includes the aspect of comparison of the model predictions to certain

data that is accepted as reference, like in-situ measurements or simulation data obtained

from other approved models. By variation of the model parameters, the model outputs

change accordingly and can be adapted to this data. A perfect �t of model outputs and

measurements will not be possible due to unavoidable model limitations, but they should

coincide with satisfying accuracy. That means, a comparison of con�dence intervals is ef-

fectuated to �nd out whether the model outputs are within a certain range of acceptable

discrepancy from the measurement data. If this is the case, the model can be accepted as

valid. If not, the origin of this discrepancy should be identi�ed, by deeper investigating the

model behaviour. Beside, in case additional data is obtained, the validated model should

be able to allow an interpretation of the changed conditions or to predict future events.

Thacker et al. (2004) summarises the description as follows:

� "Veri�cation is the process of determining that a model implementation accurately

represents the developer's conceptual description of the model and the solution to

the model."

� "Validation is the process of determining the degree to which a model is an accurate

representation of the real world from the perspective of the intended uses of the

model."

The explanations given above originate from publications in the context of production

logistics and aerospace engineering. However, they seem to be generally valid to any re-

search or application as they can be found similar in Brinkgreve (2013) where this topic

is discussed with focus on geotechnical engineering. In this �eld, model validation is of

special importance as the parameters of the considered soil materials are highly uncer-

tain and represent a complex constitutive behaviour. Often, the model parameters are

initially simply assumed as bandwidth with uniform distribution and they obtain speci�c

values only by the process of validation. Besides, due to the complex material behaviour,

the selection of an adequate constitutive model becomes an important task and part of

the process of model veri�cation and validation. To ensure an adequate representation
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of the constitutive behaviour, element tests can be simulated for qualitative assessment

of the soil behaviour. This approach corresponds to the statements of Brinkgreve (2013)

and Balci (1998) that a model can only be valid if its submodels are all valid. As it is

possible that di�erent types of errors compensate for each other, a simple comparison

of model response and reference data is not su�cient for model validation, but a deeper

understanding of the model behaviour should be the objective, for example by sensitivity

analyses or convergence tests of the FE discretisation.

An example of model veri�cation is given in Hölter et al. (2016) where di�erent con-

stitutive models are compared with respect to their ability to reproduce the behaviour

of Ballina clay on which a road embankment was supposed to be constructed. Selecting

the correct constitutive model was part of the veri�cation of the FE model, as it could

be controlled if initial assumptions such as creep behaviour are realised in the model.

However, as stated in Brinkgreve (2013), one should note that using a commercially avail-

able software package, such as Plaxis 2D (Plaxis bv, 2019) or Plaxis 3D (Plaxis bv, 2019)

like in the case discussed here as well as in the other examples considered in this thesis,

simpli�es the process of veri�cation as it avoids most errors due to coding mistakes and

similar.

The validation of the aforementioned embankment model took place within a second step,

described in Müthing et al. (2018). Here, speci�c measurement data from the considered

site was employed and the model could be validated to identify the relevant soil paramet-

ers of the selected constitutive model. To this, statistical evaluations are performed, to

investigate whether the assumed bandwidths of parameters produce results in reasonable

ranges and whether the measured data is appropriately located within these ranges. Ad-

ditionally, a global sensitivity analysis is performed to understand which parameters are

most in�uencing the model results and should therefore be in focus of the investigations.

Further examples of model validation corresponding to the concepts described herein can

be found e.g. in (Schädler et al., 2015; Meier et al., 2013).

Another demonstrative example of model validation in geotechnical engineering is given

in Zhao et al. (2015). Therein, it is described in detail how a model of mechanised tunnel

construction is set up and then validated using in situ measurement data. However, it

is evident that data from certain measurement points contribute more to the validation

process than from others. Using an OED concept might have allowed to �nd a sensor

arrangement that provides data for more reliable model validation to the involved re-

searchers.

Within this context, the question arises where OED should be located in the context of

veri�cation and validation as this is the objective of the present thesis. As mentioned
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above, validation requires reference data to improve a model and increase its accuracy,

or decrease its uncertainty, respectively. The given descriptions indicate that validation

should consist of several steps and, depending on the quality of the employed data, the

validation process can be more or less successful, i.e. the uncertainty can be more or less

reduced.

As stated above, data is needed to perform model validation, but due to the uncertainties

described in Sec. 2.3.3, data is always to be questioned when employed for model valida-

tion. Vice versa, it means that to perform model validation one should always aspire to

have valuable data. Finding out which type of data is most valuable and therefore allows

the most reliable model validation is exactly the objective of OED and key issue of this

thesis. However, as the OED procedure is model based, at least a veri�ed model is re-

quired. That means that OED should be considered in between veri�cation and validation,

or as �rst step of validation.

2.3.3. Uncertainty in geotechnical engineering

The previous sections introduced the aspects of model validation to reduce the uncer-

tainty of model parameters and explained that the objective of OED is to reduce this

uncertainty. Therefore, it should be now discussed how uncertainty is assessed in geotech-

nical engineering and how it can be categorised. Within the framework of reliability-based

design that will be described more in detail in Sec. 3.4, the question arises how a value

can be assigned to soil properties that characterises their uncertainty so that they could

be employed as design values.

It should be di�erentiated between input and output uncertainty. In the framework of this

thesis, it is intended to transform measured data (the input) to constitutive parameter

values (the output). The parameter values should be identi�ed as accurate as possible

to allow their precise prediction. The issue about uncertainty of this prediction is that

the uncertainty in context of geotechnical engineering is not limited to one source, but

according to Phoon and Kulhawy (1999b) to the three categories of inherent variability

(described as soil heterogeneity in the following), measurement error, and transformation

uncertainty named here as model uncertainty. The interaction of these aspects is rudi-

mentary shown in Fig. 2.1. The �gure describes that from the actual soil properties and

those that are estimated to perform a simulation or to design a structure, the di�erent

sources of uncertainty are introduced. However, it is not apparent how to di�er among

the impact of these uncertainty sources, wherefore the following overview is given.
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Figure 2.1.: Uncertainty in soil property estimates, after Kulhawy et al. (1992).

2.3.3.1. Soil heterogeneity

Naturally "grown" soils as they are encountered within many geotechnical problems are

not homogeneous materials especially compared to other media encountered in civil engin-

eering such as steel or concrete. They are the outcome of long lasting geological processes

such as diagenesis or sedimentation. These processes overlap and are in�uenced by fur-

ther e�ects such as overconsolidation and leaving behind of erratic boulders in case of

ice ages, changing river courses after �ood events, and any type of man-made impacts.

The �nal outcome can be anything and needs to be characterised using in-situ or labor-

atory experiments. Also "arti�cially" built-up soil bodies as employed for dikes, dams, or

embankments are not perfectly homogeneous. Due to irregular compaction during con-

struction and production errors, but also through weather e�ects, a certain variation

appears in such structures, requiring to take uncertainty into account.

Typical �eld tests to determine the soil properties and to �nd out about the stratigraphy

are cone penetration tests or standard penetration tests. More detailed knowledge can

be obtained by laboratory testing. Such tests can vary from simple classi�cation tests

according e.g. to DIN 18196 (2011-05) to sophisticated tests performed in oedometric or

triaxial devices. However, these test are always local insights at discrete points of the con-

sidered (model) domain as they are performed on a marginal share of the whole soil body.

Conventional sample sizes in triaxial devices are a diameter of 5 or 10 cm and a height of

10 or 20 cm, respectively. Corresponding values of oedometer devices are a diameter 7 cm

and a height of 2 cm. This aspect of proportionally small samples becomes more relevant

the larger the construction site is. The properties of the soil between the points in which

the tests were performed are formally unknown. Instead of simple linear interpolation of
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the properties, several approaches to identify properties of the soil between the known

points have been developed in the last decades such as Kriging (Dubourg et al. (2011);

Ragkousis et al. (2016)). However, still a large share of uncertainty remains on the actual

values.

But also in case of a single location at the ground surface, the soil properties are not

constant over depth as shown in Fig. 2.2. The data shown here was obtained using cone

penetration tests (CPT) in Australia (Fig. 2.2a) and Germany (Fig. 2.2b). In Fig. 2.2a, it

can be seen that at least 5 di�erent soil layers are encountered (0 m to 12 m, 12 m to 20 m,

20 m to 33 m, 33 m to 38 m, and below 38 m). However, one should ask what parameter

values should be applied for each of these layers as there is apparently strong �uctuation

within the layers. Another question might be if �ve layers are a correct assumption, or if

one should additionally subdivide some of them. In Fig. 2.2b, the results of four di�erent

tests, all performed on the same site of a dumped mining deposit, are shown. It can be

seen that the four curves follow a similar trend that can probably be divided into four

layers, but even more than in the previous �gure, the problem becomes evident that any

description of such soil would be a�ected by large uncertainty.

One approach to account for the soil's heterogeneity is the so called random �eld ap-

proach as applied among others in Mahmoudi et al. (2020); Mahmoudi (2017); Kasama

and Whittle (2016). Hereby, the varying soil properties are reproduced using e.g. Gauÿian

distributions. The so-called correlation length de�nes in which distance the soil proper-

ties may vary. Reference correlation lengths can be found in Phoon and Kulhawy (1999a),

however the lengths provided therein are quite vast and may not be representative for

any application. The other drawback of the random �eld approach is the considerable

computational e�ort that is required to perform a su�cient number of simulations until

results converge to a reliable value, while they cannot be substituted by a metamodel as

described in Sec. 3.2.

Within this thesis, the soil body is divided into di�erent soil layers if discrepancies among

di�erent soil areas justify it, but within these layers, the soil properties are assumed ho-

mogeneous. The uncertainty arising from soil heterogeneity is considered by assuming a

bandwidth for each constitutive parameter that is of relevance for the considered model

response. Using random parameter samples within these bandwidths, it is intended to

obtain model responses to any possible combination of soil parameters.
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3. Undrained cyclic triaxial tests

The procedure of the undrained cyclic triaxial tests was identical to
that explained in detail in Ref. [36]. All samples measured 10 cm in

diameter and 10 cm in height. Parts of the samples were prepared by a
special method developed to reproduce the deposition process in the
spreader dumps and thus the initial fabric generated by this process. In
this “free fall” method (see also [36]) the moist sand falls out of a
certain height (usually 1.5 m) in the split mould. Different initial den-
sities were achieved by varying the water content during preparation.
The maximum relative densities that can be achieved by this method
are limited, however, depending on the grain size distribution of the
test material. In order to reach higher densities than those reported in
Ref. [36], additional samples were prepared by moist tamping in eight
layers using a degree of undercompaction of 10% according to Ladd
[21]. After preparation, all samples were fully saturated with demi-
neralized deaerated water using a back pressure of 500 kPa, con-
solidated isotropically under a mean effective stress of p 0 = 100 kPa
and then subjected to an undrained cyclic loading till failure. Failure
was defined as reaching an axial strain of | |1 = 10% during either
compression or extension. Beside the variation of density, each material
was tested under various amplitudes of cyclic loading.

Typical test results for sands from the spreader dumps are presented
in Ref. [36]. Fig. 6 collects the results of all tests performed in the
present study, in diagrams giving the cyclic stress ratio

=CSR q p/(2 )ampl
0 as a function of the number of cycles to failure. Each

data point belongs to a single test. The relative density
=D e e e e( )/( )r max max min of the respective test, measured after the

closure of the drainage lines, is given beside the data points. Points with
similar densities are fitted with curves. The average density of the re-
spective tests is given beside the curves. The diagrams in Fig. 6 show
the well-known increase of the applicable number of cycles with a re-
duction in amplitude and an increase in density. The liquefaction re-
sistance =CRR N( 10)f (cyclic resistance ratio) was read out of the
diagrams in Fig. 6, on the curves for the different Dr values, as the cyclic
stress ratio causing failure in Nf = 10 cycles. The number of cycles Nf
= 10 was chosen because it is typical for an earthquake in the Rhenish
lignite-mining area.

In Fig. 7 the =CRR N( 10)f values are given as a function of relative
density Dr0 for all tested materials. The linear relationship between

=CRR N( 10)f and Dr reported for the soils from the dumps in Ref. [36]
is confirmed by the data in Fig. 7 even at the higher relative densities
tested in the present study. Although the =CRR N( 10)f -Dr data of some
of the soils (e.g. C1, D14) could be approximated even slightly better by
nonlinear curves, linear functions are regarded as sufficient in the range
of tested densities. The quality of the fit can be judged based on the
adjusted R-square values R2 given in the legend of Fig. 7 (obtained with
program Origin). A sharp increase of =CRR N( 10)f at larger densities,
as it is sometimes reported in the literature [34], has not been observed
for the soils from the dumps within the tested Dr range. In Fig. 7, for a
given relative density, the lowest liquefaction resistance is observed for
the material D16 having the highest fines content. The largest

=CRR N( 10)f values were obtained for the clean medium coarse sand
C2.

The dependencies between the liquefaction resistance and the
parameters of the grain size distribution curve can be judged based on
Fig. 8. It shows data for two different relative densities, Dr = 30% and
60%. The data for Dr = 30% are the same as analyzed in Ref. [36], but
supplemented by the results for material D16 (the CRR D( )r curve for
D16 in Fig. 7 had to be extrapolated to Dr = 30%) and restricted to the
ten soils considered in the present paper. In contrast to Ref. [36] the
additional tests on samples prepared by moist tamping allow the ana-
lysis of the dependencies at a higher relative density, i.e. at Dr = 60%.
The decrease of the liquefaction resistance with increasing plastic fines
content known from Ref. [36] for Dr = 30% is visible also in the re-
duced data set in Fig. 8a. It is even more pronounced in the present
study due to the additional data for D16 having a high fines content of
almost 40%. The rise of =CRR N( 10)f with increasing mean grain size
d50 is more evident in the data set for Dr = 30% (Fig. 8b) than for Dr
= 60% (Fig. 8e). Neglecting the single data point for sand D11, Fig. 8c

Fig. 4. Example of CPT data from a dump in the Rhenish lignite-mining area.

Table 1
Fines content FC (grain sizes < 0.063 mm according to German standard code
[2]), mean grain size d50, uniformity coefficient =C d d/u 60 10, grain density s,
minimum and maximum dry densities d min, and d max, and minimum and
maximum void ratios emin and emax of the tested materials. In case of a fines
content 10% FC 20%, the uniformity coefficient was evaluated as

=C d d/u
*

70 20 due to missing information regarding the grain size distribution
curve in the range <d 0.063 mm.

Mat. FC d50 Cu s d min, d max, emin emax

[%] [mm] [−] [g/cm3] [g/cm3] [g/cm3] [−] [−]

F2 1.7 0.33 2.6 2.64 1.387 1.727 0.529 0.903
D8 4.2 0.43 2.1 2.63 1.413 1.682 0.564 0.861
D9 7.8 0.51 5.1 2.64 1.428 1.776 0.486 0.849
D11 8.2 0.15 2.4 2.64 1.245 1.631 0.619 1.120
D13 10.7 0.54 3.8 2.64 1.419 1.789 0.476 0.860
D14 3.0 0.42 1.8 2.64 1.431 1.699 0.554 0.845
D15 7.9 0.73 6.8 2.64 1.607 1.922 0.374 0.643
D16 39.8 0.08 – 2.62 1.283 1.698 0.543 1.042
C1 0.9 0.14 1.5 2.65 1.290 1.580 0.677 1.054
C2 0 0.56 1.5 2.64 1.427 1.705 0.548 0.850

Fig. 5. Grain size distribution curves of the tested materials.

T. Wichtmann, et al. Soil Dynamics and Earthquake Engineering 124 (2019) 184–196

186

(b)

Figure 2.2.: Tip resistance qc of CPT investigations on two di�erent sites a: from Ballina,

Australia, obtained in the framework of data published in Pineda et al. (2016) b: from a

dump in the Rhenish lignite-mining area (Wichtmann et al., 2019).

2.3.3.2. Measurement uncertainty

When generating measurement data, one should be aware that they include some technic-

ally unavoidable mis�t between the physical value and the recorded one. Describing this

error is very complex. The strain gauges for example produced by the company Glötzl that

are commonly employed in geotechnical applications as the one described in Detert et al.

(2020) are provided with speci�c ranges that indicate the measurement accuracy (Glöztl

GmbH, 2020). The indication of such devices is generated by varying the resistance to an

electrical circle and measuring the voltage. Even though the voltage metering is highly

accurate, several aspects may falsify the device's output. The resistance tolerance e.g.

describes within which range the actual resistance may be related to the indicated one.

Besides this epistemic error, further aleatoric measurement errors may arise from inac-

curacies in calibration or installation. Such highly sensitive devices can be in�uenced by

further external impacts like temperature, rain, or �uctuating external e�ects that are not

part of the foreseen loading. Depending on the type of sensor, di�erent error types may

result that can be described by means of statistical moments (mean, standard deviation,

bias, skewness, etc.). Within the present thesis, only Gauÿian white noise is considered as

type of measurement error, as extending the performed investigations also to higher order
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moments would be out of the scope of the work. In Reichert et al. (2019) andSchenkendorf

(2014) indeed, the impact of di�erent types of noise on the results of OED investigations

is analysed. To account for the unbiased or white noise, arti�cial error is generated using

random sampling methods that generate distributions of values according to the employed

Gauÿian distributions. Hereby, the magnitude of error is de�ned by the standard devi-

ation of the employed distribution. In case such falsi�ed or noisy data is employed to

back-calculate model parameters in a process of model validation, this probably leads

to an ill-posed problem. When identifying a solution that leads to the least discrepancy

between model response and measured data, it should therefore always be considered how

reliable the employed data is. Accordingly, repeated back analyses on di�erent data points

are desirable, leading probably to a certain range of results by which the measurement

error induced parameter uncertainty can be described. This procedure is applied e.g. in

Alkam and Lahmer (2019), where concrete parameters of prestressed railway poles are

identi�ed using observed data. It is shown indeed that using di�erent approaches of para-

meter identi�cation, the obtained uncertainty on these parameters varies. However, as in

geotechnical engineering practice experiments can often not be repeated, it is advisable

to employ di�erent types of measurements simultaneously or over a long time period as

shown in Knabe et al. (2012) and Müthing et al. (2018). In both cases, it is intended to

reproduce and predict the time-dependent behaviour of an embankment on soft ground.

As such "experiment" is not repeatable for reasons of time and money, displacement and

pore water pressure data is employed to identify the constitutive parameters of the un-

derlying soil and to reduce the uncertainty of the model parameters. As still considerable

discrepancy between model prediction and measurements remains, probably a more sys-

tematic error is present that is hard to be identi�ed if additionally the aspect of model

uncertainty is relevant as described in the following.

2.3.3.3. Model uncertainty

Model uncertainty can be described as epistemic uncertainty, as it originates from the fact

that it is not possible or not known how to perfectly adapt a model to the real phenomenon

that is intended to be reproduced. It can have many origins, as the term "model" itself is

somehow uncertain. In case of the geometrical model, uncertainty might arise from wrong

dimensions: If one intends to calculate the bearing capacity of a shallow foundation of 1 m

width, but a width of 1.5 m is employed, the model is obviously wrong and will overestim-

ate the bearing capacity. Further uncertainty arises from the employed constitutive model

that should be able to reproduce the soil properties accurately. Simulating a structured
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clay with the Hardening soil small strain model will not be successful although it is a

quite sophisticated model. In Hölter et al. (2016) e.g., it is demonstrated how di�erent

constitutive models perform in reproducing data from a constant rate of strain test. As

none of them allows a "perfect match", model uncertainty might be propagated to the

subsequent calculations by an inaccurate constitutive model.

Finally the calculation model must be adequate. E.g. in Motra et al. (2016), 60 di�erent

models to calculate the bearing capacity of shallow foundations are investigated. As they

provide 60 di�erent results, at least 59 of them are not correct. But does it mean they are

wrong? Better not to say so. Depending on the speci�c application, each of them might

have its advantages, wherefore a considerate selection of the model is always necessary

as it is not possible to say what is the true model. An evaluation of model uncertainty

in comparison to measurement data is given in Tang et al. (2017), while a more general

overview is provided in Phoon and Tang (2019). Identifying a model-based OED can-

not be successful if the model is not accurate. Even though the detailed assessment of

model uncertainty is out of the scope of this thesis, and it will be assumed that the em-

ployed models are "correct", an awareness of this issue should be risen. For applications

based on real measurement data, the aspect of model uncertainty still becomes relevant as

the reduction of discrepancy between model response and measurements cannot be more

reduced than to the error arising from the inaccurate model itself.

2.4. Methodology

2.4.1. Parameter uncertainty

The aspects of uncertainty described in the previous sections must be re�ected in the em-

ployed constitutive parameter values when applying them to a simulation model. In both

cases, using purely synthetic examples or real scenario based, a very low initial knowledge

level is assumed in this thesis, corresponding to highly uncertain soil parameters. In Miro

(2016), this is called "pessimistic scenario" in contrast to situations in which more de-

tailed knowledge about the actual parameter values is given. The employed data should

correspond to the knowledge an engineer would have if he or she gets the information "this

is a normally consolidated clay" or "this is a coarse grained sand". Such descriptions are

normatively de�ned e.g. in DIN 18196 (2011-05) and DIN EN ISO 14688 (2018-05). In

generally accepted textbooks like Das (2006), Mitchell and Soga (2005), and Lambe and

Whitman (1969), adequate ranges of parameters can be found for the di�erent types of
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Figure 2.3.: Hydraulic conductivity values for several soils from Lambe and Whitman

(1969)

Table 2.1.: Maximum and minimum void ratios, porosities, and unit weights for several

granular soils, modi�ed from Lambe and Whitman (1969).

Void ratio [-] Porosity [%] Dry unit weight [kN/m³]

emax emin nmax nmin γd,min γd,max

Uniform spheres 0.91 0.35 47.6 26 - -

Standard Ottawa sand 0.80 0.50 44 33 14.5 17.3

Clean uniform sand 1.0 0.40 50 29 13.0 18.5

Uniform inorganic silt 1.1 0.40 52 29 12.6 18.5

Silty sand 0.90 0.30 47 23 13.7 20.0

Fine to coarse sand 0.95 0.20 49 17 13.4 21.7

Micaceous sand 1.2 0.40 55 29 11.9 18.9

Silty sand and gravel 0.85 0.14 46 12 14.0 22.9
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soils. Exemplary datasets are given in Fig. 2.3 and Tab. 2.1.

The diagram shown in Fig. 2.3 displays the relationship of void ratio and hydraulic con-

ductivity (that is equivalent to the term of "coe�cient of permeability" that is employed

further on in this thesis) of 30 di�erent types of soil. Tab. 2.1, from the same textbook,

provides in tabular manner bandwidths of void ratio, porosity, and soil weights. Such em-

pirical reference data sets allow to asses parameter values, depending on the considered

type of soil. The investigations performed in this thesis employ constitutive parameter

ranges originating from such data sets. In terms of probability distributions, these ranges

should be assumed as uniformly distributed. By means of back analysis of either arti�cial

or in-situ measurement data, more precise knowledge on the parameters is gained and

their bandwidths can be adapted by con�ning them or by modi�cation of the distribution

type.

2.4.2. Covariance matrix Cθ

The assumption of parameter ranges and the uncertainty that comes along with them,

mentioned in the previous Sec. 2.4.1, refers to the initial assumptions that are necessary

to set up a model where the exact material parameter values are unknown. One objective

of model validation is now to gain knowledge on these parameters by back calculating

measured data. If this is performed for a set of data points ỹ, as many parameter samples

θ̃ are obtained. The parameters should be somehow distributed within the initially as-

sumed range what should be seen as a reduction of the parameter uncertainty.

This uncertainty can be described by the variance σ2(θ̃). In contrast to the initial as-

sumptions mentioned afore, the variance or standard deviation σ does not depend on

assumptions, but on the data ỹ that again depends on the employed experimental design

δ. Therefore, the variance must be calculated exactly to be able to compare the e�ciency

or quality of di�erent experimental designs. The variance of one single variable, or para-

meter, θ describes how strong the sample of size N deviates by its individuals θ̃i in average

from its mean value θ̄ as described in Eq. 2.4:

σ2 =
1

N

N∑
i=1

(
θ̃i − θ̄

)2
(2.4)

However, in case of several parameters as encountered in the applications in this thesis, one

should also consider the so called covariance that accounts for the correlation among the

di�erent individual parameters. To include the correlation of all considered parameters,
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the covariances are described in the covariance matrix Cθ, of dimension s x s:

Cθ =
1

N

N∑
i=1

(θ̃i − θ)(θ̃i − θ)T =


σ2(θ1) σ(θ1)σ(θ2) . . . σ(θ1)σ(θs)

...

σ(θs)σ(θ1) σ(θs)σ(θ2) . . . σ2(θs)

 (2.5)

This matrix describes the correlation among all considered parameters of the model. A

more visual representation is provided in Fig. 2.4.
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Figure 2.4.: Correlation plots of an exemplary case with three parameters E50, G0, and

VL with 300 back-calculated samples showing di�erent amount of correlation among the

di�erent parameters.
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The three parameters E50 (pressure-referenced Young's modulus), G0 (pressure-referenced

small-strain shear modulus), and VL (volume loss) are herein back-calculated 300 times

from vertical settlements to identify the relevant parameters of a simulation of tunnel

construction that is described more in detail in Sec. 6. The back-calculated settlement

values diverge by a normally distributed random error that was added to the original

value. The nine plots in Fig. 2.4, in which the parameter combinations are plotted in a

normalised way within the allowable ranges of the metamodel, re�ect the nine elements

that the corresponding covariance matrix would have. The elements on the symmetry

axis are represented by straight lines as they describe the correlation of one parameter

with itself that will always be one. In contrast, the correlations between G0 and E50 as

well as G0 and VL seem to be very weak as these plots show dispersed data clouds. The

more the scattering is circular, the less the parameters are correlated and the wider the

scattering is, the larger the value of the covariance is. In case of E50 and VL, a strong

negative correlation can be observed. These observations make sense as G0 is relevant for

settlements in the range of small strains, while E50 and VL have similar impacts in case

of larger strains. Therefore, it is plausible that in case one parameter is high, the other

one must be smaller.

2.4.3. Optimality, Cost, and Utility functions

Within the process of OED, it is intended to identify the optimal experimental design

δ∗. "Optimal" means that experimental design that allows to identify the parameters of

interest with least uncertainty. In case of a two-dimensional parameter space, Fig. 2.5 out-

lines the scheme of parameter identi�cation using OED. Corresponding to the correlation

plots shown in Fig. 2.4, the di�erent experiments are represented as ellipses that re�ect

the bandwidth of probability of the two parameters. The least e�cient experiment "1"

allows the least accurate parameter identi�cation. Further improved experiments allow a

more accurate parameter identi�cation and a reduction of the parameter ellipse.

This uncertainty is numerically expressed in the covariance matrix Cθ as described in

the previous section or by another information matrix as the FIM described in Sec. 2.2.1.

However, as a matrix has several elements, the question arises how to rate them with

respect to the speci�c requirements of OED. Therefore, so-called criterion functions Φ are

employed that are also known as optimality function, cost function, or utility function,

whereby the latter one is to be maximised while the others are to be minimised. As the

constitutive parameters do not depend on the experimental design, the following relation
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Figure 2.5.: Concept of OED-process for a two-dimensional parameter space (modi�ed

after Schenkendorf et al. (2009)).

is given.

Φi,j = f (Cθ|δj) , j ∈ 1, . . . , t (2.6)

Herein, the index i indicates that di�erent variants of the criterion function Φi are pos-

sible and t is the total number of considered experimental designs. In Nishii (1993), an

overview is given on the di�erent possible criteria that can be employed, whereby any

further is conceivable. In the literature, several criteria are considered as follow:

ΦD = det(Cθ) (2.7)

ΦA = tr(Cθ) (2.8)

ΦM = max
i

√
Cθ,ii (2.9)

ΦE = minλ(Cθ) (2.10)

Φ∗E =
maxλ(Cθ)

minλ(Cθ)
(2.11)

By applying these functions to Cθ, a discrete value is assigned to each considered exper-

imental design, allowing to rank the designs or to employ optimisation algorithms. It is

indicated that depending on the application, the di�erent criteria have di�erent suitability.

In Nishii (1993) e.g., it is described that the ΦA criterion does not consider any correlation

among the parameters, wherefore it should be used in case all parameters have the same

importance. However, di�erent researches and investigations of the author show that no



28 2. Optimal Experimental Design

generally valid rules for the selection of the optimality criterion can be provided. It might

be rather recommended to employ several of the criteria at the same time and to compare

the results. A certain experience of the user is required to interpret the results adequately

and to select the most proper one for the current application. In Sec. 5, this procedure is

followed by applying both ΦD and ΦA to the obtained covariance matrices. The resulting

rankings are interpreted according to engineering judgement to identify which criterion

provides more reliable results.
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3.1. General

In principle, the whole topic of OED can be described as a conventional optimisation

problem: for a given function Φ(δ,θ), �nd that δ that provides the minimum response of

Φ, whereby, δ denotes a possible experimental design and θ is a vector of the employed

model parameters. Φ is the criterion that is applied to the result of the optimisation al-

gorithm to evaluate how good the uncertain parameters θ can be identi�ed. However,

solving this problem implies several non-trivial steps. To identify soil parameters based

on observed values, an inverse analysis is necessary, whereby the term of back analysis

can also be found for the considered applications.

Depending on the procedure how the back-analysis is performed, it will still demand

numerous calls of Φ(δ,θ) to allow the process of back-analysis to converge, as such optim-

isation problems are mostly solved iteratively. This is feasible in case an explicit function

is at hand, but in this thesis numerical solutions of Finite-Element models (FE) instead

of analytical ones are considered whose calculations may need several hours. Therefore,

so called meta- or surrogate models are employed that substitute the computationally ex-

pensive FE-model by relating the input parameters θ to the model outputs y(θ) by means

of a mathematical regression f̂(θ). Using such metamodels, it is possible to perform nu-

merous evaluations of the problem at hand within short time. By employing input values

that are sampled according to speci�c probability density functions (PDF), probabilistic

calculations become possible that re�ect the system response not by a single value, but

again as distribution of values. The use of PDFs as model inputs, or their approximation

by Monte-Carlo sampling, is one background of the topic of Bayesian probability presen-

ted in chapter 6. Here, PDFs are not just employed to describe parameter and model

response distributions, but also to evaluate how good a certain OED works to retrace an

initial distribution of uncertain input parameters.

29
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These four methods: metamodelling, back analysis, probabilistic analysis, and Bayesian

inference, shall be introduced in the following sections to provide the essential basics to

the methods employed in the later chapters of this thesis.

3.2. Metamodelling

3.2.1. Introduction

Employing the approaches of OED that are described in this thesis needs a lot of e�ort

and expert knowledge and most probably it will bene�t and �nd application in complex

problems of geotechnical engineering like dikes, tunnels, or deep excavation pits. As de-

scribed in Sec. 2.3.1, such cases are nowadays evaluated using numerical methods such as

the Finite-Element method rather than with analytical approaches.

The drawback of this method is the considerable computational e�ort that is necessary

to obtain the numerical solution. Simulations with simple 2D models can be performed

within few minutes, but complex 3D-simulations of tunnel excavations, as considered in

the following chapters, might need several hours, depending on the level of details of the

model. In case of one single model run, this might be a�ordable, but for the intended

operations in this thesis such as parameter identi�cation (Sec. 3.3), probabilistic evalu-

ations (Sec. 3.4), and global sensitivity analysis (Chapter 4), numerous model calls are

necessary, but would be too time-consuming.

To avoid this issue, so-called metamodels can be employed. Such models are also referred

to as surrogate models as e.g. in Cao et al. (2016) and Matott and Rabideau (2008) but

this basically means the same: an approach to approximate the mechanisms that trans-

lates input to output data of a certain model by an analytical function. This analytical

function is computationally cheap to call and hence well suited for the aforementioned

operations. However, one should keep in mind that for calibrating the metamodel still a

certain amount of model runs are necessary, and this might still be highly time consum-

ing. The details and challenges of generating a metamodel in the context of geotechnical

engineering can be found in Miro (2016), Khaledi (2017), and Zhao (2018). To re�ne the

focus of these aspects on the topic of OED, the descriptions of the following sections are

provided. Of course, numerous further options are available to generate metamodels or

similar approaches to substitute computationally cost-intensive models such as neural net-

works in e.g. Freitag et al. (2018), or polynomial chaos expansion (Blatman and Sudret,

2010), and Kriging (Dubourg et al. (2011); Ragkousis et al. (2016)), but the following
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review refers to those employed in this thesis that can be related to the group of response

surface surrogates.

3.2.2. Metamodel data generation

Consider a given model f : Θ → Y that depends on the parameters θ ∈ Θ, whereby Θ is

a prede�ned and constrained parameter space of dimension s. In the context of this thesis,

f(θ) are approximations to initial and boundary value problems that are formulated in

a FE model that delivers the outputs y. To set up a reliable metamodel f̂ , that is able

to approximate the model f , it is necessary to generate a su�ciently large database in

the input but as well as in the output space Y. A set T = {θ1, ...,θN} of input samples

is generated in the input space and it is run in the model to obtain the corresponding

responses y = {y1, ...,yN}. Input sample, as mentioned above called θ, is a combination

of model parameters, that is selected e.g. randomly or in another way among the members

of the model parameter values space Θ. An individual set of samples T indeed assembles

a large amount of input samples θ.

Hereby, several aspects should be considered. The generated set T of samples should cover

the input space in a way that all relevant features of the input-output relationship of the

model can be captured. Finding a way to e�ciently generate meaningful samples in a

de�ned parameter space is a similar problem as the problem of OED. While the overall

objective of this thesis is to provide approaches to optimise in-situ or laboratory experi-

ments, in this section, optimal sampling designs in computer experiments are described,

often called as design of experiments (DOE). In Giunta et al. (2003), two methods are

referred to as "classical DOE" and "modern DOE", stating that the essential di�erence

consists in the fact that the "classical" DOE refers to experiments in which random error

exists, while this is not the case for computer experiments. That strict discrimination

should be employed very well-considered as this terminology is not generally accepted.

Both names and concepts are close to each other and an explicit di�erentiation might not

be possible as they might even overlap in certain applications.

In Pronzato (2008), this is pointed out by the given description of DOE that well �ts

to both problems as it is stated that "DOE, which can be apprehended as a technique

for extracting the most useful information from data to be collected, is thus a central

(and sometimes hidden) methodology in every occasion where unknown quantities must

be estimated and the choice of a method for this estimation is open. DOE may therefore

serve di�erent purposes and happens to be a suitable vehicle for establishing links between

problems like optimization, estimation, prediction and control."
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As in the present thesis it is intended to present optimal experimental designs by using

data obtained from computer simulations, a short overview on the concepts for design of

computer experiments is provided.

The most often encountered way of generating parameter samples for a metamodel gener-

ation is to use "random" sampling, known as Monte Carlo (MC) sampling introduced by

Metropolis and Ulam (1949). The samples are not really random, but generated according

to a de�ned algorithm as described e.g. in von Neumann (1951), wherefore this method

might also be described as pseudo-random sampling. Due to the nature of randomness,

certain areas of the parameter space may stay empty while in other areas several clusters

of samples may arise. Samples generated by MC are not correlated with each other such

that it is possible to exclude parts of the set, e.g to obtain a test set or to readjust the

ranges of the parameter boundaries.

However, with increasing number of parameters, equivalent to the dimension of the input

space, the density of parameter samples in this space is decreasing. Therefore, it might

be recommended to use other sampling methods such as the Latin Hypercube Sampling

(LHS), introduced by McKay et al. (1979). Hereby, the s-dimensional design space is di-

vided into a multidimensional grid of N s cells, where N describes the number of selected

samples. Each of the N samples is placed randomly within one cell, but with the restric-

tion that for each one-dimensional projection of the cells only one sample is admitted,

comparable to the popular brain twister called Sudoku, while it has been employed for

simulations of geotechnical problems e.g. in Zhao et al. (2015) and Miro et al. (2014).

The MC and LHS sampling methods are introduced here, as they are employed in the

following applications, while numerous others exist, such as Orthogonal Array sampling

or Quasi-Monte Carlo sampling that can be found e.g. in Giunta et al. (2003). An over-

view on previously developed sampling strategies for comparable computer experiments

is indeed given in Sacks et al. (1989).

Further relevant aspects that must be considered before generating a set of parameter

samples are adequate boundaries for each of the considered parameters. In some cases it

might be obvious, e.g. the parameter range for cohesion should not include negative values,

but often a well-considered decision is necessary. Parameters should represent a physically

meaningful behaviour that allows a realistic representation of natural conditions in the

considered engineering application. In case it is known e.g. that in a hydro-mechanically

coupled problem the soil consists of sand, it is required to limit the range of the coe�cient

of permeability between 10−6 to 10−3 m/s. However, parameters must be consistent with

the soil type. For a given soil, correlations exist that relate density and permeability. In

case the coe�cient of permeability is very high, it is most probable that the density is low.
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Therefore, it would be bene�cial to add restrictions in the sampling to exclude unrealistic

parameter combinations. Employing such restrictions reduces the number of samples to

be applied to the model calculated or increases the signi�cance of the same amount of

employed samples in the admitted area, respectively.

The crucial question how many samples are necessary to generate a good metamodel has

not been considered up to now and there might be no satisfying answer. In case the re-

sponse surface of the model is perfectly linear, it might be su�cient to have a minimum

number of samples, but linearity is often not the case. The necessary set of samples will

increase with the non-linearity and dimensionality of the problem, but also depends on

the selected approximation function. In Zhao and Xue (2010) and Khaledi et al. (2014),

detailed studies are presented on how the aforementioned aspects are related to the sample

size and sampling type, whereby the latter publication explicitly refers to applications in

geotechnical engineering. In these publications, the impact of sample size, dimension, and

non-linearity on the model accuracy was proven, but no generally valid solution can be

provided. Finding the adequate sample size demands experience and knowledge about

the considered model and its approximation function. For most examples presented in

this thesis sample sizes between 100 and 250 samples are selected, a range that has been

succesfully employed in comparable applications e.g. in Miro et al. (2014) and Zhao et al.

(2015). Finally, the only way to understand how accurate a metamodel is, is to perform

an accuracy test as described in Sec 3.2.4.

3.2.3. Approximation function

To create a metamodel that is able to reproduce the characteristics of the original model,

it is necessary that the approximation functions �t the model responses of the generated

samples as accurately as possible. To this, numerous approximation approaches have been

developed in the past decades of which those employed in this work are described in the

following.

3.2.3.1. Least square method

A well-proven and e�cient method is the so-called least-square regression where multivari-

ate polynomial basis functions are employed to approximate model outputs or any other

type of data. In the present work, polynomials of degree two are employed. The Least

Square Method (LSM) is accessibly described in Press et al. (2007), but was developed

200 years ago in parallel by C.F. Gauÿ and A.M. Legendre and published by the latter
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one (Legendre, 1805). It refers to the optimisation problem shown in Eq. 3.1 that intends

to �nd the minimum Jmin of the sum of squares of distances between the model responses

y and the approximation f̂(θ).

Jmin(c) = min
N∑
i

||yi − f̂ (θi, c) ||2 (3.1)

N refers to the number of i ∈ [1...N ] sampling points that are located in a s-dimensional

parameter space Θ. To modify f̂ in a manner that it solves the optimisation problem in

Eq. 3.1, the vector c of regression coe�cients is applied to the matrix of polynomial basis

terms b (θ) that allow e�cient di�erentiability, as shown in Eq. 3.2, as being polynomials.

f̂(T) = f̂(θ|c0 . . . ck) = b (T) c, (3.2)

whereby the number of coe�cients k depends on the dimension s of the parameter space

Θ and the order of the employed polynomials m:

k =
(s+m)!

m!s!
(3.3)

Accordingly, the vectors bi (θ) of which the matrix of polynomial terms is composed, will

have the same length of k elements. In the exemplary case of m = 2, the following matrix

results:

bi = [θ2i,1, θ
2
i,2, ..., θ

2
i,s, θi,1θi,2, θi,1θi,1, ..., θi,s−1θi,s, θi,1, θi,1, ..., θi,s] (3.4)

To �nd the minimum of the objective formulated in Eq. 3.1, a system of linear equations

is generated and solved according to Eq. 3.5

c =

[
N∑
i=1

bib
T
i

]−1 N∑
i=1

biyi (3.5)

Extensions of the least square concept are the Weighted Least Square where an addi-

tional weighting term is introduced to penalise sample points that cause model responses

with large discrepancies and the Moving Least Square (MLS) approach, introduced in

Lancaster and Salkauskas (1981) where the least square approximation is performed in-

dividually for each available sample point.
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3.2.3.2. POD RBF

The other approximation approach employed herein is the Proper Orthogonal Decompos-

ition with Radial Basis Functions (POD RBF). Using the concept introduced by Buljak

(2012), the part of POD starts by the N x n snapshot matrix YPOD of outputs whose

number of rows and columns is corresponding to the number of parameter samples N

and model responses n, respectively. By means of the eigenvalues λ and eigenvectors ν

of its Gramian, both having the length N , the snapshot matrix can be decomposed into

the matrix of proper orthogonal basis vectors ΦPOD = [ϕPOD,1 . . .ϕPOD,n] (3.6) and the

amplitude matrix A, as shown in Eq. 3.7. The basis vectors ϕPOD have a length of n such

that ΦPOD is of dimension N x n.

ϕPOD,i = YPOD,i ·νi ·λ
−1/2
i , i = 1, . . . N (3.6)

YPOD = ΦPODA, YPODA = ΦT
POD (3.7)

The matrix ΦPOD is sorted in decreasing order of the eigenvalues λi. Thereby, it is possible

to de�ne a threshold value from which on all smaller values are neglected, de�ning the

residual part as "truncated POD basis" Φ̂POD. Accordingly, the amplitude matrix A is

reduced to Â.

Subsequently, in the framework of RBF, radial functions are employed to �t the reduced

amplitude matrix Â. To this, several types of radial functions, such as linear, cubic, or

Gaussian can be found in literature, e.g. in Krishnamurthy (2005), that characterise the

discrepancy between two parameter samples. In the present work, the multiquadratic

approach described in Eq. 3.8 is employed.

gi(θ) =
(
||θ − θi||2 + c2

)−0.5
, i = 1, . . . N (3.8)

The smoothness of the functions is controlled by the shape parameter c that should be

adapted by the user to improve the �t of the metamodel. For each of the N parameter

samples, the matrix G is computed:

G =


g1(θ1) g1(θ2) . . . g1(θN)

...

gN(θ1) gN(θ2) . . . gN(θN)

 (3.9)

Next, the matrix of interpolation coe�cientsB with dimensionN x smust be determined,

using Eq. 3.10.

B = Â G−1 (3.10)
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Having �nally these components, any parameter sample θ within the de�ned boundaries

of Θ can be employed to generate the vector of metamodel responses f̂(θ) of length n

using the following formulation:

f̂(θ) = Φ̂POD B g(θ) (3.11)

A possible extension to this method is to use the so-called Extended Radial Basis Func-

tions (POD ERBF) as described in Khaledi et al. (2014). To describe the distance between

a model response and the corresponding response of the metamodel for same input data,

that extension employs, besides the radial basis functions, non-radial functions, too.

3.2.4. Goodness of metamodel

As described above, the most important feature of a metamodel is its agreement with

the original data, or prediction goodness. Based on experience gained by means of several

applications of the techniques described in this chapter, one might become aware of the

correlations between model complexity, sample size, and approximation algorithm, but

it is impossible to know the metamodel's prediction goodness in advance. Therefore,

to ensure this goodness, every metamodel has to be tested before being employed. In

the present work, an independent test sample of input parameters is generated and run

in the numerical model and the metamodel to compare both results. The comparison

is performed using the normalised root mean square error NRMSE (Eq. 3.12) or the

coe�cient of determination R2, shown in Eq. 3.13.

NRMSE =

√ ∑n
i (yi − f̂(θi))2

n · (ymax − ymin)2
(3.12)

R2 = 1−
∑n

i (yi − f̂(θi))
2∑n

i (yi − ȳ)2
(3.13)

Here, f̂(θi) represents the n metamodel responses to the ith sample and ȳ is the mean of

the numerical model responses obtained to each of the N input samples. ymax and ymin

are the maximum and minimum value of all considered responses of the initial value. As

they directly in�uence the value of NRMSE, special attention should be paid to the data

in case of outliers. Such outliers can often indicate problems that require an adjustment
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either of the numerical model or of the de�ned parameter space. Good metamodels will

have an NRMSE and R2 close to 0 and 1, respectively. Which type of error measure

should be used, again depends on the considered situation as shown in the evaluation

of the following Fig. 3.1. In these three plots, the blue continuous line represents the

function of a metamodel that �ts both, the green and the grey dots, that are assumed to

be results y1 and y2 of some numerical model. Those outputs are arti�cially generated to

demonstrate the error measures. To generate the green and the grey dots, Eq. 3.14 and

Eq. 3.15 are employed, respectively.

yi = f̂(xi) + ω · f̂(xi) , i = 1, . . . 100 (3.14)

yi = f̂(xi) + ω · ȳ , i = 1, . . . , 100 (3.15)

Here, the coe�cient ω denotes a random value, generated according to a uniform distri-

bution in the range between -1 and 1. The simple functions that represent the course of

f̂ are given in Tab. 3.1. Below in that table, the values of the NRMSE and R2 error

functions are given that describe how good the model is �tting the random data. Usually,

and especially in those publications referred to in this section, metamodel accuracy is

considered to be good enough in case of R2 ≥ 0.95 and NRMSE ≤ 0.05. Accordingly,

in case (a), for increasing and constant error, a metamodel with such �tting behaviour

would be assumed to be good enough in case of R2 error criterion but not in terms of

NRMSE. In case (b), the result is somehow reversed. For constant and increasing error,
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Figure 3.1.: Demonstration example of di�erent arti�cial error applied to a (a) steep linear

function, (b) shallow linear function, and (c) quadratic function.
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Table 3.1.: Evaluation of error measures.

Plot a b c

Error type f̂ = 0.1 ·x f̂ = 4.5 + 0.01 ·x f̂ = x2

Constant

NRMSE 0.089171 0.156149 0.01892437

R2 0.990738 0.715809 0.99609393

Increase

NRMSE 0.10986 0.149886 0.02337788

R2 0.986761 0.738314 0.99413571

the NRMSE indicates higher accuracy than for R2, whereas it is not good enough in

both cases. This might be unexpected as the same type of function and error is employed

in both cases (a) and (b). The causal di�erence is the deviation σ of the results yi that

is �ve times larger in (a) than in (b) (2.930 to 0.586). In case (c), for both error types a

high accuracy is indicated, whereby it should be mentioned that σ(y) reaches a value of

30.279 in this case.

This simple example shows that a large coe�cient of variation, that relates variation to

mean value (CV = σ(y)/ȳ), indicates a better accuracy of the metamodel, even if the

relative error is the same. As in case (b), this can lead to rejection of the metamodel. It

is therefore recommended to always inspect by error criteria but also by plots of residuals

or else whether the metamodel is providing accurate and reasonable results. Besides, one

should always normalise both, the input and the output data, to have an equal impact of

all types of values on the criteria described in Eqs. 3.12 & 3.13.

In literature, further approaches can be found to investigate the accuracy of the metamodel.

For example, in Most and Will (2008) the coe�cient of prognosis is determined that is

a model-independent measure to assess the model quality. It is employed to create a so-

called metamodel of optimal prognosis, that is an approximation to the model that is not

considering unimportant factors. In turn, Atamturktur et al. (2015) suggest a so-called

coverage metrics, where the coverage of the design space with respect to suitability for

metamodel creation is considered and where additional samples in the parameter space

should be placed to improve the metamodel's accuracy most.
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3.3. Back analysis

3.3.1. Concept

The numerical models employed in this work allow to transfer input parameters, usu-

ally soil properties, to system responses like displacements or stresses. However, in many

situations it might be more interesting to go the opposite way. The whole concept of

the observational methods described in chapter 1 is based on performing back analyses.

Observations or measurements ỹ are compared to model outputs y obtained from initial

assumptions on model parameters θ. To reduce the discrepancy between measurement

and model response, the model parameters are varied. In the end this corresponds to

the formulation of the objective function, described in Sec. 3.3.2. The complexity of this

problem emerges from the circumstance that there are usually several model parameters

that are correlated with each other and that the system behaviour is non-linear, explicitly

in the considered geotechnical applications. Therefore, �nding that optimal parameter

combination θ̂ that causes the minimum discrepancy between measurement and model

response requires so-called optimisation algorithms as described in Sec. 3.3.3.

3.3.2. Objective function

De�ning the distance between two points can be done in di�erent ways. Several possible

approaches to de�ne discrepancy with application to geotechnical problems can be found

in Meier (2008). The aforementioned discrepancy between measurements ỹ and model

responses y(θ) is usually described by the objective function J as follows:

Jmin(θ) = ||ỹ − y(θ)|| (3.16)

If several results are considered simultaneously, it might be favourable to employ a nor-

malised objective function as shown in Eq. 3.17.

Jmin =
N∑
i=1

∣∣∣∣ ỹi − yi(θ)

ỹi

∣∣∣∣ (3.17)

In case some of the measurements are of less relevance for the model or less trustworthy,

the objective function can be modi�ed by including a vector of weighting factors w that

re�ects the relevance of the individual measurements ỹi:

Jmin =
N∑
i=1

wi

∣∣∣∣ ỹi − yi(θ)

ỹi

∣∣∣∣ (3.18)
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The criterion described in Eqs. 3.16 �. uses the Euclidean distance that de�nes the min-

imum distance between two points by the square root of the sum of squares of its co-

ordinates' distances as described by the theorem of Pythagoras in the two-dimensional

case. It is the most commonly employed criteria in optimisation problems, as e.g. in

(Miro, 2016; Zhao et al., 2015; Müthing et al., 2018). Another criterion is the so-called

Haussdorf-distance dH, described e.g. in Rote (1991) and successfully applied in Fidanova

et al. (2013) to the problem of biological fed-batch cultivation process. Hereby, instead of

comparing two individual outputs like in the Euclidean distance, all points of two data

sets are compared in common as described by Eq. 3.19:

dH(A,B) = max

{
max
a∈A

{
min
b∈B
{d(a, b)}

}
,max
b∈B

{
min
a∈A
{d(a, b)}

}}
(3.19)

where A and B are two sets of data, e.g. measurement data and model responses. This

approach makes sense in case these data sets are obtained as series, e.g. measurement at

di�erent time steps or positions.

To demonstrate how the objective function may in�uence simulation results using back-

analysis, an example is studied in which the Haussdorf and Euclidean distance are applied

to the same problem of time-dependent pore water pressure dissipation in an experimental

device introduced in Nishimura et al. (2014). This example is considered more in detail

in Sec. 4.2.1. The outcome is shown in Fig. 3.2. Measurement data from three pore water

pressure transducers (in Points 1, 2, and 3) is displayed here over time by the blue, green,

and grey dots. Using back analysis of this data, it is intended to �t a FE model by adapting

the soil parameters. The back analysis is performed once using the Euclidean distance and

once the Hausdor� metric. The identi�ed soil parameters obtained with both criteria are

run in the model and the model responses are plotted in Fig. 3.2 as straight (Euclidean

distance) and dashed line (Hausdor� metric). At �rst sight, the results are quite similar,

whereby the "Euclidean curve" has in general less discrepancy to the measurement data.

Only close to the peaks of pore water pressure after approximately 60, 80, and 150 minutes,

the "Hausdor� curve" is closer to the measurements (with exception of Point 2). These

results are comprehensible, as the Hausdor� metric becomes relevant when elements of

the two data sets A and B are close to each other (in an Euclidean meaning) even though

they do not correspond to each other (e.g. correspond to di�erent time steps as in the

present example). However, the objective function reaches a slightly smaller value using

the Euclidean distance as criterion (0.300) compared to the Hausdor� metric (0.306).

Therefore, the Euclidean distance is employed in the work described in the following

sections as it additionally demands less computational e�ort.

The special relevance of the topic of objective function for the present thesis comes from
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Figure 3.2.: Measurement data �tted to FE model results using Hausdor� metric and

Euclidean distance.

the aspect that as obviously any model response, and measurement data as well, depend

not only on the model parameters but also on the employed time and space coordinates.

The objective function will be di�erent depending on where and when the disagreement

between model prediction and observation is compared. These additional features are

denominated as experimental design parameters δ in contrast to the model parameters θ

as they are user-de�ned, while the model parameters are supposed to enable a re�ection of

some natural situation. Accordingly, the objective function Eq. 3.16 is changed to Eq. 3.20

Jmin(θ, δ) = ||ỹ(δ)− y(θ, δ)|| (3.20)

Hereby, the OED problem becomes a nested optimisation loop in which in the inner

loop the model parameters are optimised, while in the outer loop the experimental design

parameters are optimised with respect to the reliability of the identi�ed parameters in the

inner loop. To obtain a measure of the reliability of the outer loop's parameters, a Monte-

Carlo analysis is performed that consists of numerous repetitions of the back-analysis and

will be explained in detail in Sec. 3.4.

This method requires large computational cost, therefore, one essential aspect of the OED

approaches presented herein, is to �nd time e�cient solutions to the problem of OED.

Accordingly, the �rst step is to select an e�cient optimisation algorithm that �nds the

minimum of Eq. 3.16, or 3.20, respectively, and that is described in the following.
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3.3.3. Optimisation algorithm

The objecitve function Jmin introduced in the previous subsection describes the discrep-

ancy between measured and calculated data. As in terms of model validation this discrep-

ancy should be as small as possible, one aims to �nd that set of model parameters that

provides the minimum of Eq. 3.20, such that the optimisation problem is formulated as

described in Eqs. 3.21. The optimum set of parameters θ∗ are identi�ed using an experi-

mental design, here the optimal experimental design δ∗. However, as said before, �nding

this optimal design is also an optimisation problem. In that case, Eq. 3.22 is employed,

where the optimal experimental design δ∗ is searched within the design space Π, given

the constitutive parameters θ. One should be aware that for di�erent ranges of Θ, the

obtained optimal experimental design δ∗ will also change.

Jmin(θ
∗) = min

θ∈Θ
J(θ|δ∗) (3.21)

Jmin(δ
∗) = min

δ∈Π
J(δ|θ∗) (3.22)

As Eqs. 3.21 & 3.22 are nested, one fundamental problem of OED becomes clear: the op-

timal experimental design can only be identi�ed, having the exact parameters. However,

in case the parameters are known, there is no need for an experiment to identify them.

Therefore, the approach should be rather understood as an iterative process, than as a

unique matter.

Such objective functions as described in Sec. 3.3.2 are encountered in many scienti�c

�elds as e.g. economy (Lwin et al., 2017), aircraft engineering (Steiner et al., 2014), ma-

terial sciences (Gomes et al., 2011), and wherever one speci�c solution is needed in a

problem that has an in�nite number of potential solutions. Optimisation problems can

be distinguished between linear and non-linear optimisation. For linear optimisation, the

Simplex-algorithm, as described in Dantzig (1987), can be employed where the vertices

that de�ne the space of possible solutions are investigated until the optimal solution is

found. Another linear optimisation algorithm is the Karmarkar's algorithm (Karmarkar,

1984) that does not anymore follow vertices but can �nd solutions by intersecting the

parametric space.

For non-linear models, the optimisation may lead to local and global solutions. A global

solution means that the overal optimum of the objective function is encountered. A local

solution indeed means that there is a zero point of the �rst derivative of the model's

objective function, i.e. all solutions in vicinity of this local solution will provide larger
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values of the objective function. In such cases, more complex optimisation algorithms are

required whereby a distinction can be made between local and global optimisation meth-

ods.

The local optimisation can be used in case it is known that there is only one minimum in

the objective function or if it can be ensured that no local solution is located between the

starting point of the algorithm and the global solution. Hereby, the assigned boundaries

of the optimisation area must be taken into consideration. It is possible that by employ-

ing a model, e.g. a constitutive soil model, the objective function has a global minimum

according to its mathematical formulation, but that it is outside of its physical range of

validity. In such case, one should be aware that the solution of interest is a local min-

imum within the limited search space. Besides, one should ensure that the optimisation

does not converge to the boundaries of the search space that often consist of constrained

local boundaries. Well-known examples of this group of local optimisation algorithms are

among others the Newton method, where the quotient of �rst and second derivative of a

function is used to iteratively �nd the minimum of a function, the Newton-Gauÿ algorithm

that performs a local linearisation of the function in concern to stepwise reach a minimum,

and the Nelder-Mead algorithm (Nelder and Mead, 1965) also known as Downhill-Simplex

method. As its name indicates, it employs a simplex of n + 1 vertices that is iteratively

regenerated based on that point of the simplex with the smallest response values. These

local search algorithms have been further developed like the algorithm of total inversion

introduced by Tarantola and Valette (1982) to conduct complex operations as the full

waveform inversion.

However, these algorithms mentioned above are susceptible to converge possibly to the

nearest minimum that might not be the global minimum of the search space, but a local

one or to face an ill-posed problem if the estimation of the derivatives is not possible.

Besides, these approaches require a continuously di�erentiable equation. In the cases con-

sidered in the present thesis, the so-called "model f(θ)" is an FE-implementation that

is not numerically di�erentiable. Its substitution, the metamodel f̂(θ), could indeed be

di�erentiable. However, it remains the problem of convergence to local minima.

Therefore, the group of nature-inspired algorithms that are mostly population-based al-

gorithms is considered as they can be e�ciently employed to �nd global minima. Numerous

di�erent algorithms of this category have been introduced in the last decades that intend

to �nd optimal solutions by imitation of behaviours that can be observed in nature like

Particle Swarm Optimization (Kennedy and Eberhart, 1995), Ant Colony Optimisation

(Gambardella and Dorigo, 1996), Cuckoo Optimization (Rajabioun, 2011), or Spotted

Hyena Optimizer (Dhiman and Kumar, 2017). Further algorithms might be inspired by
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social behaviour or physical reactions like Simulated Annealing (Kirkpatrick et al., 1983)

or League Championship Algorithm (Kashan, 2014). Overviews on the innumerable meth-

ods can be found in Behera et al. (2015) and Amaran et al. (2016).

In the present work, the Di�erential Evolutionary Algorithm (DE) (Storn and Price,

1997) and the Genetic Algorithm (GA) (Holland, 1975) are employed that both origin

from the aforementioned group of population-based algorithms and are explained in detail

in Secs. 3.3.3.1 and 3.3.3.2.

3.3.3.1. Di�erential Evolutionary Algorithm

The objective of using the DE algorithm, or any other one, is to �nd that optimal para-

meter combination that reduces most the discrepancy between model response and meas-

urement data, i.e. for which the minimum of the objective function is obtained. To this,

the DE algorithm aims to imitate the evolution of a population during several genera-

tions, whereby the di�erent generations 1, 2, 3, ..., G,G+ 1, ... correspond to the iteration

loops of the algorithms. The �rst generation consists of a "population" of NP vectors θi

that are sampled uniform randomly within the parameter space Θ. To generate a new

generation of samples vi, the weighted di�erence of two vectors θi2 and θi3 is added to a

third vector θi1 , what is referred to as "di�erential mutation". As shown in Eq. 3.23, this

weighting is e�ectuated by the parameter F that is usually set between zero and two, or

zero and one (Vincenzi and Savoia, 2015).

θi,G+1 = θr1,G + F · (θr2,G − θr3,G) , F ∈ [0, 2] (3.23)

where the indices ri, i = 1, 2, 3, ..., NP are employed to di�erentiate them from i. Each

of the obtained new "population members" θi,G+1 are applied to the objective function

and its results are compared to those corresponding to the previous generation θi,G what

is usually referred to as "crossover". This process of "evolutionary" generation of new

samples is visualised in Fig. 3.3. In case the new population member yields a smaller

value of the objective function than the old one, it is accepted, i.e. becomes member of

the next generation: f(θi,G+1) < f(θi,G). This is repeated until the number of obtained

di�erential mutations that have crossover probability CR between zero and one corres-

ponds to the dimensions s of the parameter space. In case one population member θi of

the next generation G + 1 is violating the bounds of Θ, it will be rejected. To perform

the statistical operations described in Secs. 5 & 6, the coding language R is employed

(Tippmann, 2015) that is implemented using the integrated development environment

RStudio (RStudio Team, 2015). The employment of DE algorithm in R is enabled using
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Figure 3.3.: An example of a two-dimensional objective function showing its contour lines

and the process for generating θi,G+1, modi�ed after Storn and Price (1997).

the package DEoptim. As the parameter identi�cations are not performed a single or few

times, but numerous times to derive comparable statistical measures, the computational

e�ciency is of high relevance. Beside the e�cient concept described afore, the coding was

performed "using �oating-point instead of bit-string encoding of population members,

and arithmetic operations instead of logical operations in mutation, in contrast to clas-

sic GAs"(Ardia et al., 2011) to allow particular fast results. Within this R-package, the

aforementioned variables of population size, mutation factor or maximum iteration steps

can be selected individually according to the current problem, as will be demonstrated in

following sections.

3.3.3.2. Genetic Algorithm

The genetic algorithm was introduced in Holland (1975). As mentioned above, it is from

the same type of algorithms as the DE algorithms and its fundamental concepts are

quite similar wherefore only a short description should be given here. Again, an initial

set of random samples, called population, is generated. These parent generation samples

are applied to the model of interest to obtain the corresponding responses. Using the

concepts of selection, mutation, and crossover, a new generation of samples is generated

that is supposed to outperform the parents. Selection means that those members of the

parent generation that best ful�l the criteria of the objective function will automatically
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be part of the next generation. For mutation, samples from the parent generation are

randomly varied from their previous generation state, essential to avoid local minima.

Within crossover sampling, two samples from the parent generation are taken and merged

to a new sample like the segments of two chromosomes in genetics. Besides the population

size, crossover and mutation chance can be selected by the user to in�uence the behaviour

of the algorithm. The GA algorithm was applied for problems of geotechnical engineering

in Khaledi et al. (2014), Khaledi et al. (2016), and Meier (2008). The comparisons in the

latter one indicate that the GA algorithm shows high e�ciency, even compared to DE

or particle swarm optimisation but being more time-consuming. Within the framework of

this thesis, the GA is therefore employed for speci�c optimisation when few accurate runs

are required while the DE algorithm is utilised for numerous repetitions in the framework

of statistical evaluations.

3.4. Statistical evaluation of geotechnical problems

Global safety or partial safety factor concepts as described e.g. in DIN EN 1997-1 (2014-

03) follow deterministic approaches. Input parameters are employed as characteristic and

discrete values and resulting e�ects and resistances are modi�ed by partial safety factors

(or the input parameters themselves in case of limit state GEO-3). However, using probab-

ilistic approaches are an upcoming tendency in engineering design called reliability based

design (RBD).

To a certain extent, the concept of OED requires the "probabilistic model thinking": as

described previously, the objective of OED is to reduce uncertainty of model responses

and predictions. Using deterministic models, single values are obtained that do not allow

assessment how reliable such model responses are. The responses of probabilistic models

are rather distributions that can be characterised by mean and variance. Here, using e�-

cient model validation techniques including OED, the uncertainty that is described by the

variance can be reduced, leading to more e�cient experimental designs and predictions.

To further illustrate these concepts, the RBD approach shall be brie�y introduced in the

following.

3.4.1. Types of distributions of input parameters

Up to now, parameter ranges have been mentioned several times in this thesis without

precise details on their appearance. However, one should be aware that in a certain loc-
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ation, soil parameters can vary within such a range, but it is very probable that values

closer to the mean value occur more often than values close the limits of the range. To

express how probable it is that a certain value might occur, probability distributions are

employed. The question which type of distribution to employ is in a certain disagreement

with the aspect of available data to �t the distribution. To be able to di�erentiate whether

a set of data is X 2, Weibull, or lognormally distributed, a lot of test data is required. As

in most practical applications this is not the case, geotechnical engineers mostly refer to

the normal, lognormal, and uniform distribution. This procedure has been shown practic-

able in several applications and for di�erent soil properties. In Fig. 3.4 (a), this is shown

exemplary for the friction angle of a clayey shale described in El-Ramly et al. (2003).

Based on Fig. 3.4 (b), the problem of insu�cient data is demonstrated. 121 vane shear

tests were performed on a clayey-silt layer in the same area, what can be regarded as very

high number. Using the Kolmogorov-Smirnov test, Kanwar and Deng (2019) are able to

prove the entropy distribution to have the best �t, but few tests more or less may have

provided another result as shown by the two other curves (normal and lognormal distri-

bution) plotted in that diagram.

In general, the employed type of parameter distribution function should re�ect the ac-

tual knowledge on the parameters. Therefore, in case only the soil type is known and

no information about the actual parameter values are available, employing the uniform

distribution is recommended as performed among others in this thesis. In case of more

information normal or lognormal PDFs should be applied, assigning the expectancy as

mean value and variance according to the actual state of knowledge. The lognormal dis-

tribution has the advantage that values beyond a certain threshold value can be avoided.

This is of relevance, as most soil parameters for example cannot become negative. Using

Bayesian inference, as in Miro et al. (2015) and in chapter 6 of this thesis, the variance

term is iteratively reduced according to the current state of knowledge. More details on

this topic can be found in Uzielli et al. (2006), where a detailed overview is provided on the

possible ranges and distribution types that can be expected depending on the considered

soil type.

3.4.2. Monte-Carlo sampling method

A direct transfer from the inputs PDFs to output PDFs would require to calculate in-

tegrals what is not possible in case of the FE models that are employed in the present

thesis. To overcome this issue, the so-called Monte-Carlo simulation can be employed to

approximate the output distribution. It was introduced previously in Sec. 3.2.2 in the
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ing construction within the different geologic units with
particular emphasis on the Kca unit. The piezometers are be-
ing monitored regularly and substantial amounts of data are
available.

The construction of cell 23, both dyke and beaches, was
completed to the design elevation in 1993. This is a study of
the final dyke geometry, thus only those pore pressure re-
cords gathered after dyke completion were investigated. The
pore-water pressure varies with time, the highest pore pres-
sure measured after the completion of the dykes was re-
corded in March 1994. It is the only interval considered in
the current assessment. Should the stability of the dyke at a
different date be of interest, the stability analyses could be
repeated using the probability distributions of the pore pres-
sures on that date.

Measurements from 18 piezometric tips along Section
53+000E were evaluated to estimate the pore-water pres-
sures. Figure 4 shows a plot of the pore pressure ratio along

the dyke profile at Section 53+000E in March of 1994. The
measurements are scattered. They range between 0.20 and
0.72 with an average of 0.45. A value of 0.17 was recorded
below the dyke crest, where the pore pressure is presumably
the highest. It was judged unreasonable and was excluded
from the analysis. Figure 4 suggests that the pore pressure
ratio tends to decrease towards the dyke toe. A linear trend
fitted to the data using the method of least squares is shown
on the plot. The computed slope and the intercept of the fit-
ted trend are –0.001 and 0.859, respectively. The scatter of
the data around the fitted trend is substantial indicating that
uncertainty about the pore pressure ratio is high. The stan-
dard deviation of the pore pressure ratio around the mean
trend is calculated to be 0.12.

Because the mean trend of the pore pressure ratio is not
constant, the variability is a nonstationary process. By re-
moving the trend component from all measurements, the
random field representing the residual component of the

© 2003 NRC Canada

196 Can. Geotech. J. Vol. 40, 2003

Fig. 2. Shear box testing results of the residual strength of the Kca clay–shale.

Fig. 3. Probability histogram (left plot) and cumulative distribution function (right plot) of the residual friction angle of the Kca clay–
shale.
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Figure 3.4.: a: Probability histogram of the residual friction angle of the Kca clay�shale

(El-Ramly et al., 2003), b: Histogram for soil undrained shear strength and normal, lognor-

mal, and entropy distributions (Kanwar and Deng, 2019).

context of generating data to set up a metamodel. In the context of probabilistic simu-

lations, the MC-simulation will behave quite similar. Instead of generating the samples

uniformly random within the whole parameter space, they are still generated randomly,

but according to the distribution of each of the input parameters. That means the uni-

form distribution is replaced by e.g. a normal or log normal distribution. In the next step,

all samples are applied to the employed model to obtain the outputs of interest. These

outputs converge to a new distribution whereby it is not necessarily of the same type as

the input distribution. The more samples are generated, the more accurate the output

distribution will be, but the computational cost rises in equivalent. From this distribu-

tion, statistics can be derived that allow to evaluate the system reliability. In case the

probability of speci�c failure event is of interest, this might become quite extensive as in

civil engineering applications required failure probabilities are often very small.

3.4.3. Use in modern engineering design

Based on the scienti�c concepts mentioned above, the probabilistic concepts are trans-

ferred to engineering practice e.g. in DIN EN 1990 (2010-12) where the reliability index

β is found nowadays as design criterion. In Low and Phoon (2015) and Low (2017), ap-

plication examples are given where RBD is applied to typical examples of geotechnical
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engineering. The reliability index β can be calculated using Eq. 3.24 according to Hasofer

and Lind (1974).

β = min
θ∈F

√
(θ − µ)T C−1θ (θ − µ) (3.24)

Here again, θ are the uncertain parameters, µ is the expected mean, and Cθ is the

covariance matrix of these parameters. F is the failure domain of the parameter space

in which a certain threshold, e.g. a maximum settlement or a limit load, is exceeded as

described by function g in Eq. 3.25.

F = g(θ) < 0 (3.25)

This index β is related to failure probability according to Eq. 3.26:

Pf ≈ 1− ΦF(β) = ΦF(−β) (3.26)

Here, ΦF is the cumulative distribution function (CDF) of the uncertain model input

parameters θ. That combination of θ that allows to minimise the square root in Eq. 3.24

for the prescribed value of β should accordingly be employed as design parameter set as

it allows the most reliable design for the required level of safety. This concept of RBD

is illustrated in Fig. 3.5. Within the exemplary parameter space of friction angle ϕ and

cohesion c, as it would be relevant e.g. for a problem of slope stability, the limit state

surface separates safe and unsafe (failure) areas. The parameter means µc and µϕ are
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Figure 3.5.: Illustration of the reliability index β in the plane when c and ϕ are negatively

correlated, modi�ed after Low and Phoon (2015).
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obviously on the safe side and the parameter combination for which the design should be

performed is graphically obtained by expanding the ellipse of standard deviations until it

is tangent to the limit state surface. The thereby obtained ratio of the radii of outer and

inner ellipse corresponds to the reliability index β.

As mentioned above, identifying properly the limit state surface or Pf is often not directly

possible and is usually approximated by using MC simulations. Especially in case of small

failure probabilities, the crude MC can become ine�cient as it covers evenly the whole

parameter space with samples, while only a small area is of interest. In such cases, applying

the so-called subset simulation as described in Mahmoudi et al. (2017) and Mahmoudi

et al. (2020) can be employed that gradually retraces the parameter space to the relevant

areas.

3.4.4. Application example

The employment of probabilistic design and prediction methods is not part of the main

objectives of this thesis. However, it is employed in the context of Bayesian OED that is

described in chapter 6. Besides, the concepts of OED should be considered in the overall

context of system and parameter identi�cation with uncertain soil parameters and their

impact on model validation. This was studied in detail in Müthing et al. (2018) by invest-

igating and predicting the settlement and excess pore water pressure of an embankment

placed on soft clay at several time steps after construction whereby the �nal settlement

was not yet reached. The accordingly generated 2D FE model is shown in Fig. 3.6. The

interpretation of constant rate of strain (CRS) oedometer tests enabled to set up an ini-

tial assessment of the most adequate constitutive model that is the soft soil creep model

and its required parameters for the four soft layers. Under consideration of appropriate

parameter boundaries and correlations, input parameter distributions are de�ned using

normal distributions with exception of friction angle and permeability that are assumed to

be log normal. 10000 MC samples of these input parameters are applied to a metamodel of

the time-consuming 2D FE simulation. In Fig. 3.7, the output distributions of settlement

in the centreline and pore water pressure 2 m below ground surface of the embankment

(point 0 and point VWP1a, respectively in Fig. 3.6) are shown by the green bars. In

Fig. 3.7b, a normal distribution can be observed, while in Fig. 3.7a, a more log normal

distribution appears.

In a second step, in-situ measurement data is employed to perform a back analysis of

the relevant soil parameters that are identi�ed by GSA to be the overconsolidation ratio

OCR, the modi�ed compression index λ∗, the modi�ed swelling index κ∗, the modi�ed
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Figure 3.6.: Geometry and FE discretisation of the 2D model of the considered embank-

ment and its subsoil (Müthing et al., 2018).

creep index µ∗, and the permeability coe�cient k. Using the identi�ed parameters, the

MC simulation is repeated, leading to the blue bars in Fig. 3.7. Within this speci�c ap-

plication, the COV of the parameters is not changed after back calculation. Thereby, it is

intended to consider that the actual uncertainty of the subsoil regarding inhomogeneity

was not reduced. Accordingly, it is comprehensible that the output bandwidths do not

reduce. The actually measured values for the two given locations are indicated by the

blue dashed line. In case of the settlements, initial and �nal prediction are close to each

other and within the margin of standard deviation of the �rst prediction, but still an

improvement can be observed.
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Figure 3.7.: Histograms of probability distribution of a: settlements and b: pore water

pressure.
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Table 3.2.: Values of identi�ed parameters from initial and back calculated parameter sets.

Soil layer OCR [-] λ∗ [-] κ∗ [-] µ∗[-] k[m/day]
+ ∗ + ∗ + ∗ + ∗ + ∗

Silt 2.86 3.99 0.158 0.115 0.053 0.048 6.2 E-3 5.0 E-3 2 E-3 9 E-4

Clay 1 2.71 2.09 0.177 0.170 0.010 0.064 4.3 E-3 4.4 E-3 2 E-4 7 E-4

Clay 2 1.73 1.60 0.277 0.320 0.010 0.048 4.3 E-3 4.0 E-3 6 E-4 1 E-4

Clay 3 1.81 1.58 0.239 0.279 0.012 0.023 4.9 E-3 6.3 E-3 6 E-4 6 E-5

+ parameter values from initial parameter set (blind prediction)
∗ parameter values from optimised parameter set (back calculated)

In Tab. 3.2, the initially determined parameter values and those identi�ed by back cal-

culation are listed for the four controlling layers. In case of the pore water pressure, the

�nal prediction shifted considerably. In both cases, the mean values of the distributions

are now close to the measured data. However, they do not perfectly match and therefore,

this probabilistic prediction is a helpful tool to indicate how realistic the prediction is

in comparison with in-situ data. Besides, it shows how the prediction accuracy improves

with a larger database.

A speci�c failure case is not de�ned in this application as the only objective is to predict

the long-term settlement behaviour. However, such consideration would be simple to add,

once the data shown in Fig. 3.7 is at hand. More details on this application can be found

in Hölter et al. (2016) and Müthing et al. (2018), especially with respect to the initial

test interpretation, the FE model set up and the long-term investigation. Further detailed

applications of RBD to problems of geotechnical engineering can be found in Mahmoudi

et al. (2017) or Miro et al. (2015). There, the convergence behaviour of a rock cavern

and the settlement induced by a tunnel excavation are considered as synthetic examples,

respectively.
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3.5. Bayesian analysis

3.5.1. Concept

The previously described methods are employed to account for the uncertainty of the

model parameters θ. However, the described process of back analysis is still following

a deterministic concept, that means that if a value is back calculated as described in

Sec. 3.3.2, the probability of the available measurement ỹ and of the back calculated

parameter set θ is not considered, i.e. a uniform distribution is assumed. Assuming both

values as probability density functions (PDF) would allow to evaluate how probable a

certain measurement ỹ is with respect to the current knowledge on the input data. As

the measurement data used for back calculation is at the same time an extension of the

current data knowledge, one might be interested to "update" the previous knowledge.

This concept was �rst formulated in Bayes and Price (1763) for probability values while

it is still valid for random variables as described by Eq. 3.27.

p(θ|y) =
p(y|θ) · p(θ)

p(y)
(3.27)

Herein, p(y) describes the PDF of model output that is used to normalise the result.

In the framework of this thesis, this would typically be noisy measurement data ỹ (see

Sec. 2.3.3.2) that is somehow distributed around its mean value ȳ. p(θ) accordingly is

the PDF of the model parameters. These would usually be soil parameters that are often

very uncertain in geotechnical engineering and that are usually approximated by normal

or lognormal distributions as described in Sec. 2.4.1. Within the Bayesian concept, this

distribution p(θ) is called as prior probability function or "prior knowledge", as it de-

scribes the state of information before it has been updated using Eq. 3.27. Accordingly,

p(θ|y) is called the posterior probability function or posterior knowledge as it includes the

new information y. The link between prior and posterior distribution is the conditional

probability p(y|θ) or likelihood that describes how probable the new data y is, given the

known probability distribution of θ.

Following this procedure of Bayesian updating, a parameter identi�cation becomes ini-

tially much more complex than as described in the previous sections, but this probabilistic

manner allows to adapt the parameter space. Hereby, a faster identi�cation is enabled by

the retracing or it allows to expand or shift it in case the model conditions have basically

changed. For a more detailed introduction to the topic, one is referred to Miro (2016) and

the references therein, where the concept of Bayesian statistics is employed considering

an application of mechanised tunnel simulation.
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3.5.2. Review on applications of Bayesian inference

For several decades, applications of Bayesian updating have been applied in various �elds

as e.g. in economics as shown in the publication of Kooiman et al. (1985) where the pro-

ductivity of �oor spaces of shops is investigated. Herein, the human behaviour as large

source of uncertain behaviour is modelled and this uncertainty shall be reduced by us-

ing observations of purchasing value of sales, occupancy costs per square meter, and the

relative share of sales of fresh products. As changing prices cause shifting of supply and

demand of products, the model state is continuously changing in this example. By using

MC simulation to approximate the prior and posterior PDFs, the authors achieve to re-

duce the uncertainty of their prediction of supply and demand to 20% of the initial value.

An example from structural mechanics is given in Alkam and Lahmer (2019). Here, the

vibration behaviour of train track poles exposed to cyclic loading in a 3-point bending

test and dynamic loading in a vibration test is investigated in common. In-situ observa-

tions are considered to validate a model that has uncertain parameters. As di�erent test

set ups are used, di�erent FE models are generated that include the same six uncertain

constitutive parameters to be identi�ed. Each observation is employed for one Bayesian

inference step after which the prior knowledge is updated. By comparing the results with

a deterministic approach, it is shown that in particular the variances of the parameters

can be identi�ed more accurately using the Bayesian approach, but at the cost of larger

computational e�orts.

Miro (2016) and Nguyen (2017) both employed Bayesian inference to update 3D simu-

lation models of tunnel excavations. The uncertainty of the prior estimation of the soil

parameters is therein reduced stepwise using measurement data that is obtained after each

new excavation step of the tunnel, but each time a�ected with arti�cial random noise.

Miro (2016) is using ground surface responses (horizontal and vertical displacements)

induced by the tunnel excavation while in Nguyen (2017) seismic wave propagation is

considered. In both cases indeed, the measurement positions are �xed and not considered

as parameters that could be optimised. Within this thesis, accordingly the objective is to

identify an experimental design by which the prior probability distributions of soil para-

meters can be narrowed most e�ciently.

These examples show how Bayesian inference is widely spread over numerous �elds of

research. Within the present thesis, its ability to adapt the process of parameter iden-

ti�cation in case of changing model conditions is utilised, whereby not the model itself

changes, but the experimental design to obtain data from it.
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3.6. Summary

The methods introduced in this chapter are employed in the further parts of this thesis

without detailed explanation but rather reference to this chapter will be given. The dis-

cussed topics of metamodelling, back analysis, statistical analysis and Bayesian inference

are not originating in the �eld of geotechnics but were applied in various other �elds before

as shown by the cited literature. However, due to the large uncertainties encountered in

geotechnical engineering, these methods are considered here in a special focus. Working

with uncertain data instead of deterministic values is undeniably a trend that will gain

relevance in future engineering practice as it already has in research. For this reason,

the given overview provides the relevant "tools" to understand and handle the methods

encountered in this thesis. They are described more in detail and more fundamental in

the cited references, while they are here described with special focus on the intended

applications.





4. Global sensitivity analysis in the

framework of OED

4.1. Method

4.1.1. Fundamental approaches in sensitivity analysis

The description given in Sec. 2.3.2 on model validation clari�es that it is not su�cient

to prove that a model generates correct results y for a certain situation, represented

by a speci�c set of input parameters θ. A reliable model validation implies to obtain a

holistic understanding of the model behaviour. In case of mathematical models, either

analytical or numerical, this means essentially understanding how the di�erent input

parameters θi in�uence the model responses yi and which correlation e�ects in between

the model parameters might occur. This type of investigation is nowadays known as

sensitivity analysis and got rising attention in the last decades. In case of linear analytical

models, this task corresponds to the partial derivatives of the model variables, but for

more complex models, especially in case of FE-models like those considered in this thesis,

more advanced techniques are necessary that are explained in the following.

4.1.1.1. Local sensitivity analysis

The main classi�cation of sensitivity analysis methods is the di�erentiation into local and

global methods. Hereby, the terms of local and global do not refer to geometric coordinates,

but to the investigated area in the parameter space. While the global sensitivity analysis

(GSA) is supposed to investigate the whole de�ned parameter space and any correlation

e�ects of combinations therein, the local sensitivity analysis (LSA) only investigates vari-

ations of individual parameters in an area close to a de�ned point in the parameter space.

As aforementioned, in case the model of interest is represented by a function that is linear

with respect to the employed variables, the sensitivity of a parameter corresponds to the

57
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derivative of the model equation. However, if the model is not linear, a certain knowledge

on acceptable ranges of parameter values is necessary. In case of FE models that consider

initial boundary value problems and do not have a functional relationship between input

and output parameters, not an analytical but a numerical solution is obtained, and this

procedure of determining derivatives is not possible. Therefore, the approach described

by Eq. 4.1 is employed to calculated the so-called scaled sensitivity SSij where i refers to

the di�erent parameters and j to the output of interest as introduced by Hill (1998) and

employed in Zhang et al. (2003):

SSij =

(
∆yj
∆θi

)
θi =

(
yj (θi +∆θi)− yj (θi)

∆θi

)
θi (4.1)

∆θi describes the increment of the ith input parameter that is deviated from its so-called

base point. Finding the optimal increment size is a complex procedure which strongly

in�uences the reliability and signi�cance of the obtained values of SSij. If the increment

is too large, non-linearities may falsify the result, but if it is too small, response variation

might be smaller than the inevitable numerical error and provide also misleading results. In

Zarev (2014), the procedure of �nding optimal values for ∆θi is described in detail, taking

into consideration truncation and condition error. As this procedure is time-consuming

and the LSA is sometimes employed as "preliminary sensitivity analysis" as in Zhao et al.

(2014), empirical values such as 5 % or 10 % of θi are often employed as ∆θi. In Zhao et al.

(2014) it is intended to identify those soil parameters that in�uence most the settlement

behaviour induced by a mechanised tunnel construction. As several soil layers are involved,

a total number of more than 100 parameters would be required to be investigated. In this

publication, LSA is applied to those numerous parameters as a kind of �lter to �nd out

which of them could be excluded from the model calibration procedure in the particular

case study. On the ten parameters identi�ed to be relevant, the investigation is focused

in Zhao et al. (2015) performing a parameter identi�cation using �eld observations.

To combine the information of model outputs from di�erent locations or time steps of

the simulation history, counted by the index j in Eq. 4.1, the composite scaled sensitivity

CSS can be employed:

CSSi =

√√√√ 1

N

N∑
j=0

(SSij)
2 (4.2)

This formulation can be found in Hill and Tiedeman (2005) and is employed in the pub-

lications mentioned above to obtain a more reliable sensitivity measure that is based

on more information than just that of one single observation point. However, as in the
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framework of OED it is explicitly intended to di�erentiate between individual points to

decide which of them will provide more reliable information, this measure seems not to

be suitable for the purpose of interest. All in all, the concept of LSA persuades by its

simplicity and e�ciency and is therefore often applied and considered adequate for types

of models in which the aforementioned limitations do not restrain its application. Even in

case of non-linear models, an LSA may be appropriate if the considered parameter space

is that narrow that the model behaviour can be assumed to be linear. However, these

aspects should be well-considered before employment.

4.1.1.2. Global sensitivity analysis

Several di�erent approaches of GSA have been developed in the last decades that all

have their varying advantages, such as the Elementary E�ect method (Morris, 1991), the

random balance design method (Cukier et al., 1973; Schaibly and Shuler, 1973) or the

Variance Based (VB) method (Saltelli et al., 2008). Their general concept is to "study

how the uncertainty in the output of a model can be apportioned to di�erent sources of

uncertainty in the model input factors", Saltelli et al. (2010). The term of "uncertainty"

plays a major role in this formulation. It indicates that the sensitivity of a parameter will

not only depend on the model itself but also on the assumed bandwidth and distribution

type of the considered parameter. As the GSA considers parameter samples from the

whole de�ned parameter space, expanding this space might cause very di�erent model

responses, especially when the model is non linear. Therefore, the selection of parameter

bandwidth must be well-considered and accurate. When considering e.g. the friction angle

of sand as an input parameter, assuming a range from 30 to 45◦ should be reasonable if

there is no additional information. The typical reaction of an engineer might be: "Let

us increase the range to 25 to 50◦ to be on the safe side". In case of GSA this is not

recommended as such a large bandwidth would not describe the same material any more

and the legitimate question arises whether the employed model is still valid. Additionally,

the relevance of other parameters would be decreased, leading to a misinterpretation of

the model behaviour.

A detailed overview on the di�erent methods in context of geotechnical engineering, with

recommendations which one to use in case of speci�c applications, mostly depending

on the number of parameters and complexity of the model, can be found in Mahmoudi

(2017) and Mahmoudi et al. (2019). For the requirements that are encountered in the

present thesis, it makes sense to employ one single method to not make the procedure

more complicated. Therefore, the VB method is employed that is regarded as most robust
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considering di�erent possible circumstances like parameter number or model complexity.

The drawback of growing computational costs by using VB-GSA is overcome by the use

of adequate metamodels (see Sec. 3.2) that enable to considerably reduce the time of in-

dividual model runs as described in Sec. 3.2. Accordingly, this method is described more

in detail in the following.

The VB method was inspired by Cukier et al. (1973) and found its �rst formulation in

Sobol' (1993), wherefore this method is also known as Sobol' method, and the obtained

sensitivity measures as Sobol' indices. In the following decades, several publications sum-

marised in Saltelli et al. (2008) improved and extended that approach to the state that is

considered in the present work. Further general works on this topic can be found e.g. in

Ferretti et al. (2016) and Lo Piano et al. (2021).

The aforementioned sensitivity indices refer to the di�erent orders of e�ects among the

parameters. The variance Vj of a certain model response yj due to a parameter θi, called

the "e�ect", can be described as:

Vj = Vθi (Eθ∼i (y|θi)) , (4.3)

where E describes the expectation and θ∼i is the vector of all input parameters with

exception of θi. Accordingly, Eθ∼i (y|θi) corresponds to the expected value of y that is

obtained when all parameters except θi are varied. If now this individual variance Vi is

normalised by the overall variance V (y) of the outputs of y(θ), the so-called �rst order

index Si is obtained:

Si =
Vθi (Eθ∼i (y|θi))

V (y)
(4.4)

Because the indices Si are normalised by V (y), that includes all contributions to the

model response variance, the sum of all Si equals one.

However, as the sensitivity index in Eq. 4.7 refers to the impact of each parameter variation

Vθi individually, variations that occur due to correlated e�ects of two parameters will not

be captured. Therefore, it is often recommended to consider the second or higher order

e�ect terms expressed by Eq. 4.5:

Vij = Vθiθj
(
Eθ∼ij (y|θi, θj)

)
− Vθi (Eθ∼i (y|θi))− Vθj

(
Eθ∼j (y|θj)

)
, (4.5)

such that the sum of variance terms equals to:

V (y) =
∑
i

Vi +
∑
i

∑
i>j

Vij + · · ·+ V12...d, (4.6)
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where d corresponds to the length of the parameter vector θ. Accordingly, the total

sensitivity index STi is obtained:

ST i =
Eθ∼i (Vθi (y|θ∼i))

V (y)
= 1− Vθ∼i (Eθi (y|θ∼i))

V (y)
(4.7)

As the higher order sensitivity measures are included in the ST i-indices, their sum can

become larger than one, indicating stronger correlation among the parameters the higher∑
i ST i becomes. In case the parameters are not correlated, i.e. independent, ST i becomes

equal to Si. As in the present work constitutive models are employed that actually include

correlation e�ects to adequately reproduce the natural soil behaviour, the total e�ect sens-

itivity index ST i is mostly employed.

The VB method allows an accurate estimation of all parameter contributions on the model

responses, but has the major drawback of causing higher computational costs due to cal-

culating the di�erent variance terms. Decisive for an employment of the VB sensitivity

method is an e�cient method of sampling and using the model responses to estimate the

sensitivity indices. In the present thesis, the approach introduced in Jansen (1999) that is

described in Miro et al. (2014) for the employment in geotechnical applications is applied,

using Latin Hypercube Sampling (LHS) to generate the required parameter samples. In

Dimov and Georgieva (2010) a comparison is provided on di�erent methods to calculate

the herein employed Sobol' indices. However, as it is shown in Saltelli et al. (2010) and

speci�cally for geotechnical applications in Mahmoudi et al. (2019), the required number

of samples easily reaches several thousands. In case calculations of little complexity are

executed, such as element tests, also in geotechnical engineering, GSA can be applied

directly to a numerical model as shown in Barciaga (2022). However, in case of full-scale

FE-simulations that often require several hours of calculation time, this would be infeas-

ible. In particular, it can not be known in advance how many samples will be necessary to

reach convergence in the estimation of the variance terms. Therefore, the VB-GSA is not

applied to the results of a numerical model, but to a metamodel as described in Sec. 3.2.

Doing so, many thousands of parameter samples can be considered to calculate the dif-

ferent variance terms, probably more than necessary, but ensuring reliable results. This

procedure is introduced in Miro et al. (2014) and further employed in Miro (2016) and

Zhao et al. (2015) for the purpose of simulation of mechanised tunnelling, but was also

successfully applied to further geotechnical problems as embankments or rock caverns,

respectively (Müthing et al., 2018; Mahmoudi et al., 2017).
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4.1.1.3. GSA under the point of view of OED

The limitations of LSA mentioned in Sec. 4.1.1.1 regarding parameter space exploration

and correlation e�ects are still relevant when considering the purposes of OED. In this

regard, it is to be noted that the FIM includes, besides the covariance matrix of output

variation, the matrix of derivatives of the di�erent model responses with respect to all

considered model parameters. Therefore, the FIM as employed e.g. in (Uci«ski, 2005; Pa-

tan, 2012) is very closely related to calculating the LSA index SSij. The numerous former

applications that employed LSA should not be disparaged and are de�nitely valid in case

of linear models. Besides, the extensive computational e�orts required when performing

GSA might have prevented its employment for OED.

The application examples considered in this thesis consist of FE models where a di�er-

entiation of the solution is unkown. Besides, the employed constitutive models describe

non linear behaviour with correlation e�ects among their parameters. Therefore, the em-

ployment of GSA instead of LSA is considered to be preferred for the model validation

process in general and explicitly for OED.

With respect to the objectives of this thesis formulated in Sec. 1.2, one can reconsider

which bene�ts the GSA can contribute to the ideas of OED. The pro�t of sensitivity

analyses with respect to the topic of OED is initially to know which parameters are most

relevant at all. The experimental design should focus on these parameters as identifying

a parameter that has no in�uence would be thriftless with respect to the usually lim-

ited resources. In certain publications as e.g. in Rodriguez-Fernandez et al. (2007) and

Schenkendorf et al. (2018) from the �eld of chemical engineering, sensitivity measures are

employed to perform an entire process of OED.

The conceptual link between GSA and OED is that those parameters to which the model

response is most sensitive, consequently cause a larger bandwidth of results if they are

varied. The larger the output variation is, the easier the in�uence of the individual para-

meters can be identi�ed and discriminated from uncertainty related errors, an idea that

is formulated similar previously in Kay (1993). Hence, it is possible to identify the most

sensitive parameters most accurately by means of a back analysis as described before in

Sec. 3.3. To know which parameters are most relevant for the considered system allows

to focus the investigations on these parameters and to neglect the less relevant ones by

�xing them to roughly estimated values.

The approach presented in this chapter exclusively employs sensitivity measures for per-

forming OED, using two di�erent steps of GSA described in the following. In chapters

5 and 6, further methods for OED are applied. However, GSA is still performed as �rst
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essential step to identify the most relevant model parameters on which the speci�c OED

approach is applied afterwards.

4.1.2. Concept of modi�ed sensitivity index S∗Ti

First ideas to the concept of sensitivity analysis in a spatially distributed manner for

geotechnical purposes can be found in Schanz and Meier (2008) where indeed the com-

posite scaled sensitivity index CSS (Eq. 4.2) is employed with the drawbacks described

in Sec. 4.1.1.1. In that work, the interpretation of results was performed more conceptu-

ally and qualitatively compared to the systematic manner of description in the following

sections. Using the variance-based GSA that is described in Sec 4.1.1.2 allows to identify

in a more reliable manner how much the di�erent constitutive parameters in�uence a

certain model response. In the context of this thesis, the �rst order sensitivity index STi

is employed that also considers the impact of correlation e�ects which play larger roles in

constitutive models of soils. As described in the previous section, this implies also that

those parameters with high sensitivity can be identi�ed most accurately. Knowing on

which parameters the experimental design should focus at all is already an essential part

of the OED.

However, one should consider that a FE model response depends not only on the values of

the employed constitutive parameters θ. Indeed, also the time step and position at which

responses are obtained, summarised in the experimental design parameter vector δ, in-

�uence these responses. Besides, one should consider that one single model can provide

di�erent types of model responses. This seems to be very obvious, but under the point

of view of OED it is of relevance to mention. One could consider the common case of

a retaining wall for which initial model assumption should be validated to ensure small

wall de�ection at the end of construction. Which model data y should be used for model

validation, i.e. which �eld measurements ỹ should be gathered? Displacements at the top

of the wall, or better horizontal earth pressure in greater depth? No generally valid an-

swer is possible as measurement uncertainty, and hence the potential model uncertainty

reduction, of both will be di�erent. However, to �nd the best measurement arrangement,

these circumstances should be considered and be incorporated in the decision making.

The next point that is crucial in context of validation of FE models in civil and espe-

cially geotechnical engineering applications is the position of a measurement to collect the

required information. Modern FE applications allow to provide model responses for any

positions of the FE model geometry. For each of these positions, a GSA can be performed

and each time it will show di�erent results, depending on properties of the current speci�c
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position in the context of the model. Like in the consideration regarding time or model

response, here again the approach is to use that position with highest sensitivity to a cer-

tain parameter to place a sensor to identify this speci�c parameter. However, one should

be aware that the sensitivity index STi , that is obtained when using the variance-based

method, provides normalised values. This means that positions in which almost no model

response is obtained, like on the outer boundaries of the model, can still exhibit a high

sensitivity to a certain input parameter. This problem can be solved by including the

relevance of an output by means of its variance. To consider in combination the di�erent

aforementioned aspects, the modi�ed sensitivity index S∗Ti is proposed:

S∗Ti,j,k =
Si ·σj,k

maxk σj,k
(4.8)

In Eq. 4.8, S∗Ti,j,k denotes the well-known sensitivity index as it was introduced in Sec. 4.1.1.2

for a certain parameter θi, but speci�cally for the jth model response obtained at the kth

position. σj,k denotes the standard deviation of the jth model response obtained at the

kth position and maxk σj,k corresponds to the maximum of the standard deviation of the

jth model response obtained from all of the considered positions. It must be clearly di�er-

entiated between di�erent types of model responses like pore water pressure and vertical

displacement and same type of model responses obtained at di�erent positions of the

model, even though they are all merged in the vector of model responses y.

Multiplying STi , obtained at the kth position and for the jth model response, with the

corresponding σj,k allows to consider the relevance of a certain model response. In case

in-situ measurement data is available, it can be included in this value to account e.g. for

less reliable devices. Placing σj,max into the denominator allows to normalise the term and

to compare thereby sensitivity indices that refer to di�erent output types regarding their

relevance to identify a certain input parameter.

The modi�ed sensitivity index S∗Ti,j,k should be calculated for any output and position

that is considered as candidate for a sensor in an experimental design, i.e. for any con-

sidered combination of δ. In case no speci�c candidate points are de�ned in advance, it is

recommended to generate a grid of points in the candidate area as will be demonstrated

in the following sections. After obtaining S∗Ti,j,k in each of the grid points, contour plots

can be generated by interpolation that allow a better visualisation and interpretation of

the results. These contour plots should be used �rst of all for consistency to ensure that

the preceding calculations were correct. Beside, these plots provide new insights into the

model behaviour such that, even without using them for OED, they can contribute to the

validation of the model.

With regards to questions of designing an experimental set-up, those areas of the contour
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plots with highest values of S∗Ti,j,k are the best locations to place sensors of the corres-

ponding response type j. The di�erent values of S∗Ti,j,k should be used as weighting factors

wi of the objective function (see Eq. 3.17) in a subsequent parameter identi�cation.

In case di�erent time steps should be considered, the approach is analogue to having

di�erent model response types. For each time step, S∗Ti,j,k values are calculated consider-

ing now model parameters, type of model response, position, and time. This procedure

is presented exemplary in Sec. 4.2.2 for the case of tunnel construction, where the tun-

nel advancement changes with the considered time step and accordingly the suggested

measurement arrangement, and also in Sec. 4.2.1 where the progression of a laboratory

experiment is investigated accordingly. Having that many di�erent dimensions for which

S∗Ti,j,k must be calculated individually shows how bene�cial it is to perform a general GSA

in advance that considers all (or at least all uncertain) model parameters and their in�u-

ence on the model response of interest. Afterwards, the calculation of S∗Ti,j,k and generating

the contour plots is e�ectuated only for the relevant parameters, saving a lot of time and

computational power.

The advantage of this method is that it is quite time e�cient (at least compared to those

methods introduced in Chapters 5 & 6) and that it delivers good additional insights to

the model structure. However, as this method does not test speci�c sensor arrangements,

it might be quite inaccurate. It does not allow to quantitatively compare the utility of two

speci�c experimental designs with di�erent locations and types of sensors without addi-

tional calculations. To do so, these experimental designs must be tested, using arti�cial

measurement data as real data would be usually not a�ordable (or not available, as the

experimental design should be identi�ed before its installation). As an in�nite number of

feasible experimental designs is possible, �nding the best experimental design in this way

is impossible.

However, in many practical applications, the task of OED is not that much sophisticated,

but more of the kind of "Three sensors should be placed. In which area will they be

most meaningful?" For such cases, the introduced method is a powerful instrument that

provides comprehensible results.

In case one of the more sophisticated methods that are presented in the subsequent

chapters are employed, the introduced approach of using spatial GSA can indeed strongly

contribute as preliminary step. Doing so, relevant areas in time and space are identi�ed

in advance and the experimental design parameter space of the detailed investigation can

be retraced accordingly.
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4.2. Application examples

4.2.1. Geotechnical testing device

To demonstrate the applicability of the method of spatial GSA introduced in Sec. 4.1.2, an

example is required that should be very simple to understand at �rst view. The set-up of

the testing apparatus introduced in Shuku et al. (2012) seemed to match this requirement.

It was developed to investigate the behaviour of soft clay under anisotropic loading and

to validate constitutive models.

4.2.1.1. Experimental design and numerical model

A rectangular shaped reconstituted soil sample is placed in the device that is displayed

in Fig. 4.1a and uniformly loaded by a constraining pressure applied by air pressure on

a water surface. Besides, it is eccentrically loaded with a loading plate on the border of

the device to obtain anisotropic loading conditions. Drainage of the sample is possible at

the bottom of the device by a �lter plate, while the top of the sample is sealed with an

impermeable membrane avoiding contact between the sample and the water loading. The

sides consist of an impermeable and in�exible frame. Besides, at the boundaries at the

top (between soil and membrane) and on the left side (between soil and rigid device wall),

a sheet of �lter paper is placed whose in�uence on the test results is not fully interpreted.

Measurements are performed in several spots shown in Fig. 4.1b. Herein, the positions

A to L refer to positions where horizontal and vertical displacements are recorded using

particle image velocimetry, while at positions P1 to P3 pore water pressures were meas-

ured. Besides the original intention of investigation of soil properties and calibration of

constitutive models as performed in Shuku et al. (2012) and Nishimura et al. (2014), with

respect to the present thesis, the question of OED can be posed to this experimental

set-up. The precisely de�ned experimental set-up allows its accurate reproduction as an

FE model and in case di�erent sets of measurement results are provided by the experi-

menters, these data can be considered with respect to model validation purposes. An FE

model of the experimental device is generated as plain strain model as shown in Fig. 4.2

with �xed side and bottom boundaries and drainage allowed at the bottom. On top, a

distributed load is applied across the entire width of the sample to consider the water

load of 49 kN/m² on the membrane that is employed to consolidate the sample. On the

right-hand side of the sample, an additional distributed load is applied to simulate the

impact of the loading plate and that is, in contrast to the water load, modelled using a sti�
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Figure 4.1.: Testing device (Shuku et al., 2012) a: Set-up of model test equipment b: Block

sample size and placement of measurement instruments.

loading plate. During the six hours lasting experiment, three load increments of 30 kPa

are applied via the load plate to reach a total load of 90 kPa additionally to the water

load. To account for the circumstance that the load is not immediately transferred from

the load piston to the soil body, the load is applied as a ramp function over short time in

the FE model as displayed in Fig. 4.2b. The impact of this ramping is shown in Fig.4.2c

where instead of a sudden jump with unrealistically high values, the pore water pressure

in the three considered points increases slightly time shifted with lower amplitude and

qualitatively closer to the measured values.

The caused displacements are strongly time dependent due to the low permeability of

the Kasaoka clay (liquid limit wL = 102 %, plastic limit wP = 30.6 %, particle density

ρs = 2.694 g/cm3, clay fraction = 55 %, silt fraction = 45 % ). To simulate the constitutive

behaviour of the clay, the Modi�ed Cam-Clay model is employed (Roscoe and Burland,

1968), that is one of the �rst models that implemented the concept of critical state soil

mechanics and that is often seen as one of the ancestors of the Cam-Clay family of con-

stitutive models. Herein, the stress dependent sti�ness is described by the parameters λ

for virgin compression and κ for swelling (un- and reloading). These two parameters can

be obtained from oedometer test results plotted in a σ-e diagram where the two sti�ness

parameters are tangent to the experimental data that are assumed to follow a linear trend

when the stress is plotted in logarithmic scale. This is approximately the case for normally

consolidated soils as encountered in the considered experiment. Further aspects that are

often encountered in natural soils as anisotropy, structure, or creep are not considered in

this model but have been subject of several later improvements of the model as described

in Hölter et al. (2016). The hydro-mechanical coupling of the model is e�ectuated by

considering that the soil's permeability coe�cient k decreases with decreasing void ratio
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as described by Eq. 4.9

k = k0 · 10
e0−e
ck , (4.9)

where k0 denotes the initial permeability of the soil and e0 is the initial void ratio. ck is the

correlation coe�cient that de�nes how strong the permeability is depending on changes

in the void ratio and that should be de�ned between 0 and 1.
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Figure 4.2.: Numerical implementation a: FE-model of considered experiment b: Visual-

isation of experimental (red) and numerical (green) loading pattern c: Pore water pressure

over time in simulations with sudden (red) and ramp-like (green) loading and the three

curves corresponding to the sensor spots P1, P2, and P3.

4.2.1.2. Parameter identi�cation

Before applying the introduced OED techniques to the considered application, an initial

parameter optimisation is performed using the available measurement data but no further

information about the soil properties. The parameters of the model that are assumed to

be unknown are κ, λ, the inclination of the critical state line M , the Poisson's ratio ν,
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Table 4.1.: Considered MCC parameter bandwidths

Parameter lower bound upper bound identi�ed value unit

λ 0.07 0.300 0.300 [-]

κ 0.0158 0.122 0.089 [-]

M 0.772 1.420 1.25 [-]

ν 0.025 0.49 0.36 [-]

ck 0.2 1.0 0.23 [-]

k0 1 · 10−10 1 · 10−8 5 · 10−9 [m/s]

the correlation coe�cient ck, and the initial permeability coe�cient k0. Hereby, it is as-

sumed that the permeability is the same in horizontal and vertical direction (kx = ky).

The bandwidths of the parameters that must be de�ned as candidate search space to

which the optimisation algorithm is applied is obtained from accepted reference literat-

ure (Mitchell and Soga, 2005; Taylor, 1948) and given in Tab. 4.1. Within the ranges of

Tab. 4.1, two sets of parameter samples are pseudo-randomly generated using LHS and

run in the model. With the results of the �rst set of 100 samples, a metamodel using

the POD RBF approach is generated as described in Sec. 3.2.3, while the second set of

25 samples is employed to test its accuracy. As results of the FE-model, the vertical and

horizontal displacements of the points A to L and the excess pore water pressure in the

points P1 to P3 are recorded.

Using the genetic algorithm, that set of parameters is searched that allows to reduce most

the discrepancy between the response of the metamodel and the measured data, whereby

the cost function is formulated according to Eq. 3.18 to consider the vertical displace-

ments in the points A, B, and C and the pore water pressure in the points P1, P2, and

P3. The non-employed measurement data can be employed afterwards for veri�cation.

For these six measurement sets, the outputs are considered at the beginning and at the

end of each loading stage and for that moment when all measurements converged to a

�nal value, corresponding to 42 values. As all measurements are considered equivalent,

the weighting factor wi in Eq. 3.18 is set to the same value for all 42 values. The identi�ed

parameter set is displayed in Tab. 4.1. The value of 0.3 for λ is located on the edge of

the de�ned boundaries what should be avoided as it might indicate an arti�cial minimum

of the objective function, avoidable with wider boundaries. Therefore, an extension of

the parameter space was manually performed by testing further parameter samples with

larger values of λ, but the identi�ed set turned out to still provide the best results.
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For a visual comparison, the results are displayed in Figs. 4.3a & 4.3b. Herein, it can

be seen that the �nal settlements correspond in model and simulation. The pore water

pressure is fully dissipated at the time of �nal settlements, indicating that no further

settlements can be expected. However, the displacement behaviour over time does not �t

well, as in the simulation larger settlements take place earlier than in the experiment.

Correspondingly, one could expect a decrease of the pore water pressure in the simulation

that takes place earlier than in the experiment, but this is not the case. The curves in

Fig. 4.3b show a high quantitative conformity between experiment and simulation, but

exhibit the qualitative discrepancy that in the simulation the pore water pressure in point

1 is larger than in point 2 while the experimental results are vice versa.

To verify if the process was successful, it is recommended to consider not only data in-

cluded in the process of inverse analysis, but also independent data. Therefore, the vertical

displacements over time in the proximate points D to F are considered in Fig. 4.4a.
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Figure 4.3.: Comparison of measurement data and FE outputs obtained for identi�ed

optimal parameter set in case of a: settlements and b: pore water pressure.
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It can be seen that the simulation results match the experimental data well, even better in

case of the results at intermediate time values. A comparison of horizontal displacements

is shown in Fig. 4.4b. Here, neither the qualitative nor the quantitative agreement are

satisfying as the displacements in Point A are supposed to be smaller than in Point B and

overall, the displacements are overestimated by approximately 100 %.

The qualitative mis�t in the Figs. 4.3b & 4.4b discussed above, can most probably not

be solved by an improved adaptation of the soil parameters. Especially the circumstance

that in Fig. 4.3b the measured pore water pressure is higher in Point 2 than in Point 1 can

only be explained by systematic measurement errors or, more probable, by an additional

drainage path induced by the �lter paper that is wrapped around the soil sample.

To proceed the validation process, a global sensitivity analysis is performed to understand

which of the employed parameters are most in�uencing the model responses. To do so, the

procedure of VB-GSA as described in Sec. 4.1.1.2 is employed using the same metamodel

and the same parameter bandwidth as for the parameter identi�cation. Hereby, di�erent

times are considered: after 60 and 120 minutes, immediately after the second and third

loading are fully applied, and after 6000 minutes, when the consolidation process seems

to have converged.

The sensitivity results for the vertical and the horizontal displacement in point A as

well as the pore water pressure in point 1 are displayed in Fig. 4.5. In case of vertical

settlements, yy becomes increasingly sensitive to the primary sti�ness parameter λ while

the opposite happens with the permeability coe�cient k0 and the remaining parameters

are of low relevance. Such behaviour coincides with expectations as λ governs the �nal

settlements in the MCC-model. However, the settlement does not take place immediately

but is delayed by the consolidation process as can be seen in Fig. 4.3a. As the consolidation

is mostly governed by the permeability coe�cient k, this parameter has initially a high

in�uence on the settlements that decreases as the excess pore water pressure dissipates as

displayed in Fig. 4.3b. The in�uence of the parameters on the pore water pressure yw is

quite constant over time, whereby one should consider that the yw value is close to zero

at the third evaluation stage after 6000 min.

The results obtained in case of the horizontal displacements in Fig. 4.5b are more irregular

and complex to interpret. At the �nal stage, the in�uence of λ and M is comprehensible

as horizontal displacements will probably be induced by shear stresses. The decrease of

relevance of the Poisson's ratio ν might be explained by the pore water pressure that

avoids high e�ective stresses in the soil and therefore plastic deformations. The elastic

deformation again is related to ν, wherefore this parameter is only relevant in the early
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Figure 4.4.: Comparison of model and measurement data not employed in inverse analysis

in case of a: vertical displacements in Points D to F and b: horizontal displacements in

Points A to C.
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Figure 4.5.: Global sensitivity analysis of model outputs for a: vertical displacements yy

and b: horizontal displacements yx in Point A, and c: pore water pressure yw in Point 1.
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phases of the simulation. Together with the outcome of Fig. 4.4a, the impression arises

that an investigation of horizontal displacements is not reliable when using the MCC

model for this problem.

The dependency of the results on the considered time step in the case of displacements

(Fig. 4.5b) indicates how relevant a well-considered selection of the time step is. One

should be aware that the decision from which time step data should be employed for

GSA is already part of OED considerations. If the question was which parameter is most

in�uencing settlement of the soil, using data obtained after 60 minutes would be totally

misleading as almost no settlements occurred up to that point.

4.2.1.3. Application of spatial global sensitivity analysis

Besides the question when to obtain meaningful data, also the consideration where to

measure is relevant in this example. Therefore, the concept of spatial GSA, as introduced

in Sec. 4.1.2, is applied to the considered experiment. The name is selected as the GSA

that is often applied pointwise or for global model behaviour is now adopted to a whole

model geometry (or at least a part of it). To do so, the parameter space is reduced to

those parameters that are identi�ed as most relevant according to the results of the GSA

shown in Fig. 4.5, i.e. the sti�ness λ and the initial permeability coe�cient k0. Addi-

tionally, the considered ranges of these two parameters are reduced to k = 1.3 · 10−9 to

1.3 · 10−8 m/s and λ = 0.251 to 0.361. While the values given in Tab. 4.1 are supposed to

represent possible ranges according to the considered type of soil, these new ranges should

correspond to a possible identi�cation accuracy while having the identi�ed value in its

middle. Following the approach described in Sec. 4.1.2, a grid of 152 points is generated

over the whole model domain in which the outputs of interest are obtained, namely yy

and yw while yx is considered to be less reliable. The grid is shown in Fig. 4.6 where each

x marks one spot in which model responses are obtained. It can be seen that the arrange-

ment is densi�ed in the upper right corner below the loading plate as it is expected that

more relevant di�erences are obtained in the results in that area. Again, 100 parameter

samples are generated to set up the metamodel as well as a second set of 25 samples for

the veri�cation of the metamodel. It is noteworthy that the approach to employ the same

metamodel as described above in Sec. 4.2.1.2, i.e. POD RBF with same shape coe�cient

c, was not successful. Even if c is varied over its whole reasonable range, no satisfying

agreement between metamodel results and FE results can be achieved. The demanded ac-

curacy higher than 95 % can indeed be obtained using an LSM metamodel that is based

on less sophisticated quadratic polynomials. This shows the aforementioned re�ections
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Figure 4.6.: Arrangement of points on side of experimental device in which model responses

are obtained to perform spatial GSA.

that a more complex metamodel does not necessarily provide more accurate results, and

that any new situation requires an individually assigned metamodel.

Using this metamodel, Eq. 4.8 is employed to calculate the modi�ed sensitivity indices

S∗Ti,j,k,l , whereby i refers to the two parameters of interest k0 and λ and j to the outputs yy

and yw, respectively. By k, the 152 locations are considered. As mentioned in Sec. 4.1.2,

the application range of the modi�ed sensitivity index S∗T can be extended to further di-

mensions what is performed here by means of time. As shown by the �gures in Sec. 4.2.1.2

before, the model behaviour and responses considerably change during the course of the

experiment. Therefore, the modi�ed sensitivity indices are obtained at l = 1, . . . , 7 time

steps, namely the same as employed for the previous back-analysis and at mid-term of the

�nal consolidation phase (20, 60, 80, 120, 140, 420, 6000 minutes). For a better compre-

hension, the S∗T results are smoothed using quadratic interpolation and visualised using

contour plots that are displayed in Fig. 4.7 for the �rst considered phase, while the results

of all phases are shown in Figs. A.1 to A.7 of Appendix A. In each contour plot the scaling

ranges from dark blue, corresponding to zero to dark red for values close to one. Above

the contour plots, two diagrams with the course of yy and yw over time are displayed

showing which time step is currently considered. In each time step, the two contour plots

on the left-hand side display S∗T of pore water pressure towards k0 (middle �gure) and λ

(bottom), while the plots on the right-hand side contain analogous presentations for the

settlements.

In the �rst considered time step (Fig. A.1), the plots are well de�ned: displacement data

is most sensitive in the upper right corner, close to the loading plate, whereby it is more

sensitive to λ than to k0. Pore water pressure indeed is most sensitive to areas at the

bottom of the device, here, k0 being more relevant than λ. Initially, it might be confusing
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Figure 4.7.: Vertical bar pointing out the considered time step after 20 minutes with

respect to a pore water pressure yw and b settlement yy evolution; sensitivity distribution

for yw towards c: k and e: λ, and for yy towards d: k and f: λ

why the soil properties in the area at the device's bottom should be relevant for the pore

water pressure, but if remembering the essentials of chapter 2 on OED, it is clear that not

the maximum value is decisive, but the maximum gradient. At the top of the model, close

to the loading plate, there is no possibility for the excessive water to drain easily. Accord-

ingly, almost no dissipation of pore water pressure can take place up to the considered

time step, so that the pore water pressure will stay the same, independently of the soil

parameters. At the bottom indeed, due to the drain board installed at the bottom of the

model container, drainage paths are short and pore water pressure dissipation can take

place, the faster the larger the value of k0 is. As this direct relationship exists between

soil property and measurement outcome, it makes sense to perform measurements of the

pore water pressure at this location of the device in this early phase of the experiment.

In the next phase e.g. Fig. A.2, consolidation has been ongoing for 40 minutes and ex-

cess pore water pressure seems to be mostly dissipated in the area close to the bottom.

Therefore, the areas of high sensitivities of yw are "moving" upwards in direction to the

loading plate. After 80 minutes (Fig. A.3), the second loading occurred and sensitivity

patterns overlap to a certain extend, leading to the contours shown in Figs. A.3c & A.3e.

With ongoing time of the experiment, where loading and consolidation phases alternate

but also overlap, the results' interpretation becomes more complex. As the S∗T -values are
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Figure 4.8.: Weighting factors obtained according to GSA for each of the existing meas-

urement positions for time step t = 140 min.

normalised by the maximum deviation value of the speci�c phase, the contours indicate

most relevant areas in each time step individually, but do not rank among the di�erent

time steps.

The next step in sense of OED is to employ this information to suggest an improved ar-

rangement of the sensor con�guration. As this is obviously not possible in the considered

steps as the experiment is completed, the gained data can be employed to suggest an

improved weighting of the measurement data for parameter identi�cation. To do so, the

values of S∗T are calculated in the points A to L for the displacements and in the points P1

to P3 for the pore water pressure, separately for each considered time step. These values

can by employed as weighting factors in the objective function to be employed as shown

in Eq. 3.18. This allows to consider some of the measurement data as more important

than others. The measurement data with higher weighting is obtained in positions where

the parameter to be identi�ed is more sensitive to the speci�c output.

The outcome is displayed in Fig. 4.8 where on the right-hand side of each sensor position

the modi�ed sensitivity index with respect to λ is displayed while the corresponding value

for k0 is provided on the left-hand side. Exemplary, the results are displayed for time step

t = 140 min, but the procedure is performed for all considered time steps. Doing so, 42

weighting factors wk,l for the speci�c time step and position are obtained and included

in the subsequent parameter identi�cation, where only the two relevant parameters are
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considered while the remaining four are �xed to the values determined in the initial para-

meter identi�cation.

As result again a value 0.3 is obtained for λ while 5.53 · 10−9 m/s is identi�ed as optimal

solution for k0. The model responses with this parameter set are shown in Fig. 4.9. In

comparison to Fig. 4.3, it can be seen that the �nal settlement of Point A is matched bet-

ter, but besides, no fundamental improvement can be observed, especially with respect to

the qualitative mis�ts discussed above. Further modi�cations of the objective function are

considered by additional weighting factors proportional to the time between the reference

points or logarithmic scaling of these time spans, by formulating independent objective

functions for yw and yy, or, as introduced in Sec. 3.3.2, by employing the Hausdor� metric

as an alternative de�nition of distance in the objective function. However, none of these

methods provides substantial improvement in reducing the discrepancy between measured
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Figure 4.9.: Comparison of measurements and simulation data after optimisation for a:

vertical displacements yy and b: pore water pressure yw.
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and simulated data. Nevertheless, employing these contour plots signi�cantly contributes

to the validation of the model. The inaccurate simulation of the drainage paths could be

identi�ed and deeper understanding of the model parameters' interaction is obtained. In

context of improving the experimental setup, it could be shown that the same quality of

model validation could be obtained using much less measurement data. This would allow

to perform and validate future experiments using the same device more time and cost

e�cient.

A reduced part of the results shown in the present Sec. 4.2.1 were published previously

in Hölter et al. (2015). There, the focus is set on generating the contour plots shown in

Appdenix A by calculating the modi�ed sensitivity index S∗T for the whole geometry of the

model test in one exemplary time step. Thereby, it could be identi�ed how the following

parameter identi�cation could be e�ectuated most e�ciently.

4.2.2. Mechanised tunnel construction

The application example shown in the previous section is easily understandable, because

of the simplicity of the problem, but might be of low relevance for engineering practice

due to its speci�c hydraulic and mechanical boundary conditions and its measurement

instrumentation. Therefore, the two following sections consider the topics of mechanised

tunneling and water-retaining dikes where extensive monitoring programs are common

and o�er a large optimisation potential.

Mechanised tunnel constructions are in terms of size, cost, construction time, risk poten-

tial, and con�ict potential among the involved stakeholders, some of the largest and most

di�cult projects encountered in civil engineering. Especially urban tunnel construction

projects must be planned and executed very carefully as the advancement of the tun-

nel may cause settlements at the ground surface and thereby induce damage to adjacent

buildings. The complex processes of mechanised tunnel construction and approaches to

implement them in FE-models are described in the following. Subsequently, it is described

how the concept of OED can be considered in this context.

4.2.2.1. FE-simulation of mechanised tunnel construction

The construction of tunnels inevitably leads to a redistribution of stresses around the

tunnel, as a consequence of excavating material and accordingly reducing soil weight, but

also due to the forces applied to the soil by the tunnel boring machine (TBM) during the

construction. Depending on the host material of the tunnel this often leads to strains and
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displacements that propagate in form of settlements (or upheave) to the ground surface.

In case of urban tunnels with small overburden depth, this can cause costly damages to

the surface infrastructure. Compared to conventional tunnel excavation with shotcrete

stabilisation, mechanised tunneling induces less disturbance as the stress level can be

maintained to a certain extend by the TBM. The set-up of a modern TBM is displayed

in Fig. 4.10 for the case of a slurry- or mixshield. The complexity of this machine can

hardly be captured entirely in a FEM simulation that is primarily focused on soil beha-

viour. Therefore, certain simpli�cations are undertaken in the simulations considered in

this thesis: the advancement of the TBM and hence the progress of the tunnel excava-

tion is accompanied by the installation of ring segments consisting of usually six to ten

concrete lining elements, placed one by one by the errector (Fig. 4.10-9). The installation

of these elements might be simulated individually as performed in Gall et al. (2018) or

using a continuous plate element as in the present work. This simpli�cation introduced

in Blom (2002) is valid in case that the focus is not laid on the lining forces and stresses,

but on the behaviour of the surrounding soil. To account for the reduced bending sti�ness

due to the joints of the elements, the sti�ness of the plate elements is hereby reduced

accordingly. The interaction between the tunnel and the surrounding soil is ensured by

the grout that is injected at the tailskin of the TBM (Fig. 4.10-10) all around the lining

ring. The simulation of the grout and its pressure is a complex hydromechanical process

and content of numerous publications (e.g. Masini et al. (2014), Meschke et al. (1996),

Lavasan et al. (2018)). The approach employed in the models considered here consists of

applying a radial surface pressure between the lining elements and the shield elements

which amount should equal the applied grout pressure. As in each excavation phase, the

TBM advances by the width of one segment, the "grouting pressure segment" follows,

assuming that in the previous segment the �nal sti�ness of the grout is reached.

The technical need for the grout back�ll results from the overcut of the cutting wheel and

the TBM conicity, necessary for the TBM to advance, and the thickness of the shield itself.

These details are re�ected in the FE simulation by applying a contraction factor to the

lining elements, corresponding to a volumetric strain. The second pressure transferred by

the TBM to the soil during excavation is the so-called face pressure that is usually applied

either by bentonite suspension or by foam injected earth, depending on the surrounding

ground conditions, whereby Fig. 4.10 illustrates a Mixshield or Slurryshield TBM, em-

ployed in coarse grained soils. The face pressure is necessary to enable the rotation of

the cutting wheel (Fig. 4.10-1) and to prevent a collapse of the soil as described e.g. in

Mollon et al. (2013). As on the other hand a blow-out is possible in case of a too high face

pressure, the steering of this value needs to be well considered and continuously adjusted
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Figure 4.10.: Usual set-up of mixshield TBM: 1) cutting wheel, 2) submerged wall, 3) jaw

crusher, 4) air cushion, 5) bulkhead, 6) air lock, 7) thrust cylinders, 8) slurry circuit,

9) erector, 10) tailskin, 11) back�lling, modi�ed after Herrenknecht AG (2020).

just like the grout pressure. In the employed models, the face pressure is simulated by

a distributed load that linearly increases with depth and that corresponds to the local

horizontal earth pressure. Detailed descriptions on FE simulations of tunnels, especially

with respect to the model validation techniques employed herein can be found in Zhao

(2018). The accurate simulation of the tunnelling process can play a major role in the

early prediction of the ground reaction, what allows to adapt the steering parameters

of the TBM or to initiate external counter-measures. However, this requires a careful

model validation based on in-situ data. As the TBM continuously advances, it would also

be necessary to repeat the model validation, depending on the current location of the

TBM. These circumstances show the relevance and potential of employing OED in the

framework of mechanised tunnel constructions.

4.2.2.2. Considered example of tunnel excavation

To apply the method of spatial sensitivity analysis, a model is generated of a synthetic

example of a tunnel construction in vicinity of a building at the ground surface. The

employed material and process parameters as well as the geometries correspond to usually

encountered properties in such applications. The diameter D of the tunnel is 8.5 m with

a width of the lining segment of 1.5 m that corresponds to the advancement within each

simulation step. The length of the TBM is assumed to be 9.0 m, equal to the width of 6

lining segments and advancement steps, respectively. The overburden depth is 1D and the
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contraction factor applied to the plate elements of the TBM is 1 %. To consider the tunnel-

building interaction, at the ground surface a quadratic building is placed with an o�set

from the building centreline to the tunnel centreline of 1.75 D and a width of 1.5 D. Only

the foundation slab is simulated, but according to Franzius et al. (2004) with properties

that correspond to the weight and sti�ness of a 10-storey building. The �rst simulation

steps of the model are as follows. First, the soil material in the geometry model is activated

by the method of K0-procedure to generate an initial stress distribution, de�ned only by

the weight of the employed soil. Herein, according to Jaky K0 is assumed to be 1− sinϕ.

In the next phase, the building foundation is applied with its assigned load. To consider

only the incremental impact of the tunnel, the displacements caused by the self-weight

and the building are reset to zero. After this reset, the actual tunnel excavation starts

by removing the �rst soil cluster in the tunnel course and activating the plate elements

of the TBM-shield. By repeating this process, the whole width of the model geometry is

crossed within 48 consecutive calculation phases whereby the plate elements of the shield

are replaced after six phases �rst by the "grout segment" and then by the elements of the

lining.

To the foundation, the lining, and the TBM shield, linear-elastic material properties are

assigned that are provided in Tab. 4.2. The contact between the soil and the structural

elements, that are the foundation as well as the lining segments and the TBM-shield,

is simulated using interface elements that allow relative displacement of adjacent mesh

elements along the interface. The interface friction can be controlled by means of the

reduction factor Rint that is set to 0.6 in the current application. This value can vary

between zero and one, whereby one corresponds to a full frictional contact (= 1 · tanϕ′).

The excavation length of the tunnel, corresponding to the model length accounts to 72 m.

The further model dimensions are as shown in Fig. 4.11: 40 m depth and 102 m width

to ensure that boundary e�ects are avoided. However, the model bottom boundary is

geometrically �xed while the surface is free.

Table 4.2.: Considered parameters of linear elastic constitutive model for tunnel lining,

TBM shield and building.

Parameter Lining TBM-shield Building Unit

Bending sti�ness (EI) 2.18 · 105 7.50 · 105 4.39 · 109 [kNm2/m]

Axial sti�ness (EA) 1.05 · 107 7.35 · 107 3.80 · 107 [kN/m]

Weight 25 90 - [kN/m3]

Load - - 100 [kN/m2]
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102m

72m

40m

Figure 4.11.: Employed FE model discretisation and model dimensions of 3D tunnel sim-

ulation (yellow: TBM shield, blue: lining segments, green: building foundation).

On the four sides, the model boundaries are �xed in horizontal direction but free in

vertical direction. The whole soil domain is simulated using the Hardening Soil (HS)

constitutive model. This model, introduced in Schanz (1998) and further described in

Schanz et al. (1999) employs the same failure criterion as the Mohr-Coulomb model,

but extends it with stress-depending hardening formulations for isotropic and deviatoric

loading. Thereby, the simulated stress-strain behaviour is closer to that of real soils as in

case of the Mohr-Coulomb (MC) model. The HS model is of the same model hierarchy as

the MC model and became quite popular in the geotechnical community. It was extended

in Benz (2007) to account for the increased sti�ness at small strains. Depending on the

type of loading, di�erent sti�ness moduli are considered as illustrated in Fig. 4.12a. In

case of con�ned boundary conditions, the sti�ness modulus Eref
oed is considered while for

deviatoric loading the secant sti�ness Eref
50 is employed. Hereby, the index 50 refers to the

50% of maximum shear stress qf that is used to construct the secant in the ε1−q diagram.

In case of un- and reloading, the deformation behaviour is de�ned by the sti�ness Eref
ur .

The stress dependency of these three moduli is de�ned as displayed in Eq. 4.10 for E50,

while it is analogue for the two other sti�nesses.

E50 = Eref
50

(
c′ cosϕ′ − σ′3 sinϕ′

c′ cosϕ′ + pref sinϕ′

)m
(4.10)

Herein, c′ and ϕ′ are the well known e�ective shear strength parameters cohesion and

friction angle. pref re�ects the reference e�ective stress at which the reference sti�ness Eref
50

was identi�ed, i.e. usually the constant e�ective lateral stress in a triaxial test, and σ′3 is
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Figure 4.12.: Hardening Soil (HS) model considered for the FE model a: Deviatoric strain

- axial strain relationship with de�nition of di�erent sti�nesses, b: yield surface in the

principal stress space, modi�ed after Schanz (1998).

the ambient minor principal stress. The exponentm is a parameter without direct physical

meaning that must be identi�ed on appropriate test data. It de�nes how strong the stress

dependency of the respective sti�ness is. In case of m = 0 the sti�ness remains constant

like in the Mohr-Coulomb model. Usually, for sands values of 0.5 to 0.8 are recommended

while for soft clays the value should be around 1.0.

The yield surface of the HS model is displayed in Fig. 4.12b, whereby one should di�er-

entiate the deviatoric yield function fdev:

fdev =
qa
E50

(σ′1 − σ′3)
qa − (σ′1 − σ′3)

− 2(σ′1 − σ′2)
Eur

− γp, (4.11)

where qa is the equivalent stress at failure and γ
p is the plastic shear strain, and the cap

yield surface for isotropic loading fcap:

fcap =
3J2
α2

+ p′2 − p′2p . (4.12)

Here, J2 is the second principal invariant of the stress deviator, α is a model parameter, p′

is the e�ective mean stress and p′p is the e�ective preconsolidation pressure. The parameter

values employed in the current model are displayed in Tab. 4.3, corresponding to a quite

soft normally consolidated soil. As shown in Zhao et al. (2015) and Miro et al. (2014),

the parameters with highest impact on ground settlements induced by mechanised tunnel

advancements are the friction angle ϕ′ and the sti�ness parameters Eref
oed, E

ref
50 , and E

ref
ur .

All parameters are assumed to be approximately known, but as these four parameters
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are assumed to be of high relevance, it is of interest to identify them accurately and

continuously to possibly react in the construction process. Accordingly, it is assumed that

the other parameters are known su�ciently well and do not require a further validation

as long as the initial general assumptions on soil type etc. are valid. However, according

to Schanz (1998) and the experiences made in Zhao et al. (2015), Eref
50 is de�ned as being

equal to Eref
oed, reducing the amount of independent constitutive parameters of interest to

be identi�ed to three.

Table 4.3.: Employed HS parameters of the soil in the simulation model of TBM advance-

ment.

Parameter Description Value / Range Unit

ϕ′ Friction angle [20; 25] [◦]

ψ′ Dilatancy angle 0 [◦]

c′ Cohesion 0 [kN/m2]

Eref
50 Secant sti�ness in triaxial test [5,000 ; 15,000] [kN/m2]

Eref
oed Tangent sti�ness in oedometer test [5,000 ; 15,000] [kN/m2]

Eref
ur Unloading-reloading sti�ness [15,000 ; 45,000] [kN/m2]

pref Reference stress 100 [kN/m2]

m Exponent 1 [-]

νur Poisson's ratio 0.2 [-]

γ Soil unit weight 17 [kN/m3]

K0 Coe�cient of lateral earth pressure 0.57 [-]

4.2.2.3. Spatial sensitivity analysis application

In the considered case of a tunnel that is excavated, any measurable value that could

provide information about the soil properties will be caused by the excavation itself. In

case no building at the ground surface is considered (�green �eld� conditions), but only

the TBM and its continuous advancement, the optimal experimental design would be

constant by its relative position to the TBM. Therefore, the impact of the building and

its interaction with the TBM is of high interest in this application example. In Zhao et al.

(2015) and Miro (2016) for example, constitutive model parameters were identi�ed based

on measurement data of vertical displacements obtained in �eld and arti�cially generated,

respectively. However, the location of the measurements was not subject of a preliminary

OED investigation. The same accounts for the time-dependency of the results as they
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were all weighted the same in the objective function to determine the parameters' values.

In the present case, this is explicitly intended: �nding optimal locations for measuring

vertical displacements during the advancement and bypassing of the tunnel.

The concept of spatial GSA, introduced in Sec. 4.1.2 is employed therefore. To do so,

some initial assumptions on the parameters of the experimental design should be made.

As the considered FE model has a 3D geometry, some simpli�cation is done by not per-

forming a consecutive three-dimensional GSA, but in �ve vertical cross sections that are

passed centrally by the tunnel. The performed measurement, i.e. the FE model response

employed in the GSA is the vertical displacement. Measurements shall be performed once

in each of the sections each time the TBM reaches one of them (excavation steps 13, 16,

25, 31, and 37), leading to a total of 25 measurement informations to be obtained. It is

assumed that the location of the sensors can be changed within the sections in between

the excavation steps. The locations of the �ve sections are shown in Fig. 4.13a. The ho-

rizontal distance between the sections accounts to 9 m, what is exactly the length of the

TBM. One can see that the �rst section is located 20.5 m in front of the footing edge and

18 m behind the geometrical model boundary. Thereby it is intended to obtain "green

�eld" conditions for this section without the possibly falsifying boundary e�ects. Having

the equal distance of 9 m between the sections, the fourth section is exactly below the

centreline of the building and the �fth is 2.25 behind it.

For each of the sections, a grid of points is generated similar to that shown in Fig. 4.6 in

which S∗T should be obtained. The distribution of the 99 points is shown in Fig. 4.13b.

To enable performing GSA, the FE simulation is run 150 times using di�erent input para-
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Figure 4.13.: a: Position of the considered vertical monitoring sections within the FE

model and b: position of GSA points in each of these sections.
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meter samples that are generated using LHS within the boundaries given in Tab. 4.3.

As results, the vertical displacements in the 99 positions shown in Fig. 4.13b of the �ve

sections shown in Fig. 4.13a in the �ve considered excavation steps are calculated. For

each of these 2475 outputs, the modi�ed sensitivity index S∗Ti is calculated, whereby i

refers to the three parameters of interest: ϕ′, Eref
ur , and E

ref
oed (that equals E

ref
50 ). The visu-

alisation of the results is performed again by means of contour plots displaying S∗Ti,k that

are shown in Appendix B. As showing all 75 contour plots would be beyond the scope,

exemplary the plots obtained in the third (green �eld close to the building) and fourth

(below the building, s. Fig. 4.13a) section are shown for the three considered parameters.

In Figs. B.1 to B.3, the third section is considered. That means in the �rst two considered

excavation steps 13 and 19 (e.g. B.1a and B.1b in case of parameter E50) the TBM has

not yet reached the considered section. In excavation step 25 (i.e. Figs. B.1c, B.2c, and

B.3c) the TBM face reached the considered section and in the last two excavation steps 31

and 37, the TBM face has passed the section. Therefore, no model response is obtained in

position marked in Fig. 4.13b in the middle of the tunnel, causing gap in the interpolated

contour plot.

In Figs. B.4 to B.6 the same plots are obtained but, 9 m ahead in section four. Accord-

ingly, the "tunnel gap" appears only in the last plot (Figs. B.4e, B.5e, and B.6e). The

contents of the plots are not simply shifted by one slide, as the TBM-building interaction

is di�erent as discussed in the following

A holistic description of the obtained results is complex due to the vast amount of in-

formation. It can be observed that depending on the current position of the TBM and the

position of the di�erent sections, large di�erences in the patterns of S∗T are on hand, but

also the absolute values strongly di�er, as they are all normalised by the maximum stand-

ard deviation of the current phase (not section!). For a better visualisation of the results,

Fig. 4.14 exemplary displays the maximum value of S∗Ti in the third section (highlighted

in red in the �gure) over the whole trajectory of the tunnel. The three curves in the �gure

show the maximum values in each of the �ve considered excavation steps for the di�erent

considered parameters, irrespective in which of the 99 points they occur. In this �gure,

it can be seen that in the early phases of the model evaluation the unloading-reloading

sti�ness is the most relevant parameter, while its relevance decreases as the TBM passes

the considered section. Conversely, the friction angle becomes more and more relevant,

while Eref
50 is of average relevance. By generating such a plot for each of the �ve considered

measurement sections indicated in Fig. 4.13b, an optimal experimental design is derived.

Therefore, the maximum S∗Ti values are summed up in Tabs. 4.4 - 4.6, for each meas-

urement section and the corresponding excavation phase. The �ve considered excavation
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Figure 4.14.: Variation of maximum sensitivity index S∗Ti,k in considered third monitoring

section with tunnel advancement.

phases, i.e. 13, 19, 25, 31, 37 correspond to a TBM advancement of 19.5 m, 28.5 m,

37.5 m, 46.5 m, 55.5 m. As mentioned above, it is assumed that in each excavation step

one measurement can be taken in each of the �ve sections, resulting in 25 measurements.

The colours of the values in Tabs. 4.4 - 4.6 indicate the ranking among the three di�erent

parameters for each individual measurement value: green (most sensitive), blue (second),

and black (least sensitive). It can be seen, that in none of the considered cases Eref
50 and

accordingly Eref
oed is the most relevant parameter while Eref

ur shows the tendency to be most

relevant in early phases and sections reached later by the TBM and hence, ϕ′ is more

relevant in the late phases and sections reached earlier by the TBM.

The established experimental design is based on the S∗Ti values obtained in each of the �ve

sections at the �ve considered excavation steps. Those locations within the grid of points

shown in Fig. 4.13b that exhibit the highest S∗Ti values are selected as sensor locations.

The obtained optimised experimental design is visualised exemplary for the �rst con-

sidered measurement time step that is excavation phase 13 in Fig. 4.15a, whereby the

blue dots show the arrangement of measurement points after optimisation. The red dots

correspond to an assumed "custom" experimental design where the sensors are all placed

in the centreline over the tunnel at the ground surface and that is considered to compare

the e�ciency of the optimised experimental design. It is selected without any optimisation

procedure, but just by assumption that measuring at the ground surface above the tunnel

might be a reasonable and comprehensible approach. The positions in the custom experi-
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Table 4.4.: Maximum S∗Ti values for E
ref
50 .

Excav. Phase

Meas.Section 13 19 25 31 37

1st 0.17439 0.22959 0.45879 0.36235 0.44176

2nd 0.25779 0.19577 0.35357 0.32885 0.44189

3rd 0.21516 0.27069 0.23645 0.34069 0.40560

4th 0.20122 0.22714 0.28131 0.34455 0.33319

5th 0.20452 0.22690 0.24550 0.34436 0.30386

Table 4.5.: Maximum S∗Ti values for E
ref
ur .

Excav. Phase

Meas.Section 13 19 25 31 37

1st 0.57539 0.45610 0.27651 0.14093 0.19115

2nd 0.58753 0.59081 0.40197 0.13623 0.19667

3rd 0.65780 0.60872 0.69859 0.14006 0.21458

4th 0.67594 0.67491 0.58747 0.15788 0.44992

5th 0.72834 0.69258 0.67221 0.26799 0.64527

Table 4.6.: Maximum S∗Ti values for ϕ
′.

Excavation Phase

Meas.Section 13 19 25 31 37

1st 0.24363 0.45795 0.58568 0.61499 0.59550

2nd 0.18577 0.24424 0.55092 0.60325 0.59387

3rd 0.19232 0.15625 0.44970 0.59017 0.57459

4th 0.18999 0.16974 0.17257 0.53811 0.45593

5th 0.19039 0.16216 0.16283 0.47334 0.22820
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mental design are the same among all �ve considered excavation steps, while they change

in each step in the optimised experimental design. In the �rst excavation step shown in

Fig. 4.15a, the location of the sensor in the �rst section coincides with the custom ex-

perimental design, i.e. it is located at the ground surface in the tunnel centreline. In the

second section, the optimal sensor location is still at the ground surface, but located with

an o�set of 8.5 m to the right-hand side (in direction of tunnel excavation). In the third

section, the sensor should be located 17 m on right-hand side and 4.25 m below ground

surface. The fourth sensor is in the same location as the second one with an o�set of

8.5 m to the right-hand side, on the building's boundary. In the �fth section the sensor is

located again at the ground surface, but this time 17.5 m right of the tunnel centreline.

As relevant as the position of the measurements are the weighting factors that are related

to the data obtained in these points. In case of the blue optimised experimental design,

the weighting factors wi that are employed in Eq. 3.18, are assigned according to the val-

ues from Tabs. 4.4 to 4.6. Within the custom experimental design, as no more knowledge

is available, each measurement information is weighted equally with 0.04 (= 1/25).

To evaluate the e�ciency of the chosen experimental design, parameter identi�cation

is performed using both experimental designs. Hereby, arti�cial noisy data is generated

that is supposed to reproduce in situ measurements that are a�ected with measurement

noise, a procedure that is successfully employed in Lahmer (2011) and Schenkendorf et al.

(2009) to test the e�ciency of an experimental design. Doing so, the model results that

are obtained using the mean values θ̄ of the constitutive parameters given in Tab. 4.3 are

employed. Once, the results are obtained for the custom experimental design, yc = f(θ̄, δ̄)

and once for the optimised experimental design yo = f(θ̄, δ∗). Both result vectors con-

sisting of 25 elements are then falsi�ed with arti�cial Gauÿian white noise. As various

types of noise can be considered, as discussed in Reichert et al. (2019), several of them are

employed within this thesis. In the present case the noise is added according to Eq. 4.13.

ỹ = y + y ·ω · e, ω ∼ N (0, 1) (4.13)

Herein, ω is a normally distributed zero-mean random number with standard deviation

of one. e is a user-de�ned value that re�ects the accuracy of the employed sensors. In the

current example, values of e = 0.01, 0.02, 0.03, 0.05, 0.10, and 0.15 are selected. For each

value of e, matrices of 100 x 25 elements of ω are generated and employed in Eq. 4.13

to obtain a reliable amount of back-calculation results. In the next step, each of the vec-

tors of ỹ with its 25 elements is back-calculated using the genetic algorithm described in

Sec. 3.3.3.2. The algorithm is selected because of its generally accepted good convergence

results. The higher calculation costs are accepted, as much less optimisation runs are re-
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quired, compared to the applications considered in the following chapters.

Within each run of the optimisation algorithm, the de�ned objective is to minimise the

discrepancy between model results yc(θ) and yo(θ), respectively, and the corresponding

falsi�ed values ỹ, by exploring the constitutive parameter space Θ, de�ned by the ranges

given in Tab. 4.3. The parameter values are normalised by the boundary values of the

given ranges to avoid undesired weighting of the optimisation results by having strongly

di�erent absolute values of the parameters. The hereby employed objective function is the

one given in Eq. 3.18, using the weighting factors wi as described above. By repeating

this 100 times, two covariance matrices Cθ can be generated according to Sec. 2.4.2 that

re�ect the uncertainty by which the parameters are identi�ed using the two di�erent ex-

perimental designs. To evaluate Cθ, the optimality criterion ΦA is employed, i.e. the trace

of each matrix is obtained. The results of this investigation are shown in Fig. 4.15b, where

ΦA is plotted over the applied noise ratio e for both experimental designs. It can be seen

that over all considered values of e, the optimised experimental design produces much

smaller values of ΦA what indicates that employing the OED concept is highly bene�cial

to validate the constitutive parameters of the model. The non-consistent course, especially

in case of the custom experimental design, is probably related to the small number of 100

samples of ỹ: using the custom experimental design, the response surface of the objective

function is expected to be much �atter than in case of the optimised experimental design,

wherefore outliers are more likely to happen and distorting the value of ΦA.

When considering the presented results, one should be aware that the approach has its

drawbacks. First, the suggested experimental design is technically feasible, but much more

costly than the custom experimental design as its sensors are changing in positions and

even go underground. Second, the suggested experimental design seems to be better than

the custom one, but it should be tested by applying to some measurement data (real or

arti�cial) to prove its e�ciency compared to the custom experimental design or any other

experimental design. Therefore, the interaction among the sensors and the impact of the

measurement error should be considered what is done in the following. Nevertheless, when

using the optimal experimental design and the corresponding weighting factors identi�ed

with this method, it is anyway bene�cial to know where to place sensors, when to perform

measurements, and to which objectives. A reduced review on this example can also be

found in Hölter et al. (2018a). Finally, one should consider that in this academic example

only vertical displacements in discrete points are considered for the sake of simplicity.

As in the other examples shown in this thesis, considering displacement �elds, lateral dis-

placements or pore water pressure would probably allow much more e�cient experimental

designs, especially in case of combining the di�erent type of measurement data.
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Figure 4.15.: a: Location of sensors in custom (red) and optimised (blue) experimental

design at �rst considered excavation step and b: reliability of parameter identi�cation for

di�erent designs and noise scenarios.

In Zhao et al. (2018), the concept of spatial GSA is employed in a similar manner to

a 2D case of mechanised tunnelling. The employed model is based on data of a centri-

fuge test, introduced in Shahin et al. (2011, 2016) where a tunnel excavation close to a

shallow foundation at the ground surface is simulated. The two considered experimental

designs in this investigation are derived like those presented in this section: one based on

GSA-plots and one without investigation by distribution of sensors at the ground surface

as shown in Fig. 4.16. The comparison of the two experimental designs is done without

adding further noise but by repeated back-calculation of the same data. Accordingly, only

the uncertainty of the optimisation algorithms and the metamodel are in�uencing the

variation of the identi�ed parameters. Still, it could be shown that using the GSA-based

experimental design, a more reliable identi�cation of parameters is provided than using

the intuitive sensor arrangement.

4.2.3. Dike under rapid water drawdown

Another common problem in geotechnical engineering is the safety of dams that are em-

ployed for water maintenance or as �ood barriers in emergency cases. Failure of such

structures can have dramatic impacts wherefore they are in focus of several research

works (Alonso and Pinyol, 2016; Viratjandr and Michalowski, 2006). In these works it is
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Figure 4.16.: Custom and optimised experimental designs for a centrifuge model test

simulating a shallow tunnel excavation with a strip footing at the ground surface, in

comparison to recorded �eld of vertical displacement (Zhao et al., 2018).

explained that the most critical state is not when the water level has reached its maximum,

but when it rapidly decreases. This is due to the excess pore water pressure distribution

within the soil body that will lead to an additional driving force on the water side and

can lead to a slope failure as shown in Fig. 4.17a. To early predict a possible failure and to

detect weak dike areas, extensive monitoring is often performed to ensure the stability of

these structures. As discussed in chapter 1, considering just threshold values might not be

as e�cient as performing model validation using frequently updated measurement data.

Here, the aspect of OED becomes relevant as many di�erent options are possible w.r.t.

position, type, and amount of sensors. Therefore, the problem of a dike or dam exposed

to a rapid drawdown of the water level is selected as application example in this thesis.

4.2.3.1. Numerical simulation

To reproduce the behaviour induced by the decrease of the water level in a FE-model,

a hydro-mechanically coupled analysis is required. Therefore, hydraulic boundary condi-

tions must be provided additionally to the mechanical ones. The geometry of the generated

2D model is shown in Fig. 4.17b. The ground water head on the right-hand side of the

model is assumed below ground surface. On the left-hand side, the water head is initially

set to the height of the dam at 30 m, but is decreased in the following calculation steps

to provoke the e�ects encountered in reality when the water level in rivers or reservoirs
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rapidly decreases.

The geometry of the dam is given by a clay core with a width of 20 m at the ground level

that narrows to 5 m at the dike crown. This clay body is surrounded by two inclined sand

shoulders of 70 m length at the ground surface. As often encountered in dam constructions

the clay core serves as hydraulic barrier, while the sand ensures stability of the construc-

tion. For both materials, the HS constitutive model is employed, using typical material

properties. Among the parameters of this constitutive model that have been previously

described in Sec. 4.2.2.2, the permeability coe�cient k, the friction angle ϕ′, the sti�ness

Eref
50 , and the cohesion c′ are assumed to be most relevant in the intended simulation.

Hereby, the cohesion is only applied to the clay and the sti�ness Eref
50 is correlated to the

other sti�nesses of the HS model Eref
oed and E

ref
ur . For these seven parameters, reference val-

ues and bandwidths for the investigations performed in the following are given in Tab. 4.7,

whereby the indices 1 and 2 refer to the sand and the clay properties, respectively. The

bandwidths are selected quite narrow to re�ect that in arti�cial structures the uncertainty

should be lower than in case of natural soils. The underlying bedrock is modelled using a

linear elastic constitutive model in manner that it has low in�uence on the behaviour of

the dam, i.e. with low permeability and high sti�ness. In the initial phase of the simula-

tion with this model, the stress distribution induced by the own weight of the dam and

the underlying soil is calculated, using the gravity loading method suggested by Plaxis2D

in case of non-horizontal soil layers (the construction of the dam is not simulated). Next,

the hydraulic boundary conditions are applied as mentioned before such that a constant

seepage line of the water level is obtained. As third phase, drawdown of the water level is

initiated. Therefore, the hydraulic boundary condition on the left-hand side is changed,

corresponding to a reduction of the water level by a certain height, e.g. 5 m within �ve

(a)

70 m

30 m
260 m

70 m

Bedrock
Clay
Sand30 m

5 m
20 m

(b)

Figure 4.17.: Water retention structure a: structural failure after water drawdown (MEC

International, LLC, 2020) and b: dimensions of generated model.
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days. Starting from phase two, the simulation of water drawdown is repeated for 10, 15,

20, 25, and 30 m, each within 5 days. This phase is de�ned as "fully-coupled �ow deform-

ation analysis", i.e. a simultaneous calculation of deformations and pore water pressures

is performed. Subsequent to the phases of water drawdown, a so-called safety analysis

is performed. Hereby, the friction parameters ϕ′ and c′ (and dilatancy angle ψ′ in case

it would become larger than ϕ′) of the soil are reduced proportionally until a failure of

the structure is obtained. This method, also known as ϕ′-c reduction is available as own

calculation type in the employed software. One should be aware that within the safety

analysis, any constitutive model is reduced to the MC-model and the stress distribution

is maintained constant. That means that the hydro-mechanical coupling is suspended

wherefore employing safety analysis in combination with water �ow is only recommended

to a certain extend, but should be acceptable for this academic example. The obtained

values of FSF are plotted in Fig. 4.18 over the applied water drawdown. It can be seen

that the more the water level is decreased, the smaller the safety factor becomes. It drops

below one at approximately 20 m water drawdown, i.e. the failure occurs. From zero to

�ve meter water drawdown, one can observe an increase in FSF. An explanation can be

given based on the �eld plots of deviatoric strain in Fig. 4.19. In the upper Fig. (4.19a),

the water level is decreased by 5 m and the resulting failure mechnism results from the

pressure of the free water of the reservoir pushing against the dike, causing failure to the

"air" side. In case the water level decreases more, like in the case shown in Fig. (4.19b),

the water pressure of the reservoir becomes less relevant and the seepage forces that cause

a failure towards the "water" side, i.e. a landslide like the one shown in Fig. 4.17a, are

decisive for the type of failure mechanism. The ratio between input parameter values and

Table 4.7.: Reference values and assumed ranges of variation of the uncertain HS�model

parameters. The indices 1 and 2 refer to the sand and clay parts of the dike, respectively.

Parameter Initial Value Range Unit

k1 7.06 e -6 [7.06e -7, 7.06 e -5] [m/s]

k2 1.16 e -9 [1.16 e -10, 1.16 e -8] [m/s]

ϕ′1 35 [30, 40] [◦]

ϕ′2 20 [16, 24] [◦]

Eref
50,1 20000 [16000, 24000] [kPa]

Eref
50,2 15000 [12000, 18000] [kPa]

c′2 10 [8, 12] [kPa]
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their values at failure de�nes the so-called factor of safety FSF:

FSF =
tanϕ′input
tanϕ′failure

=
c′input
c′failure

(4.14)

This means that two di�erent failure mechanisms take place depending on the amount of

water drawdown. However, the mechanism shown in Fig. 4.19a only becomes controlling

in case of 0 or 5 m water drawdown leading to a FSF much higher than one and therefore

being less relevant for the current study.
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Figure 4.18.: Safety factor FSF of dike, versus drawdown of water level.

4.2.3.2. Application of GSA-based OED

According to Fig. 4.18, it could be concluded that the dike is stable until the water level

does not decrease more than 20 m within 5 days (In case the timespan is reduced, the

allowable water drawdown height would accordingly decrease). However, these results rely

on the deterministic model parameter values given in the second column of Tab. 4.7. As

described in Sec. 2.3.3, one should be aware that the soil properties encountered in �eld

might deviate from these values. Therefore, a measurement based model validation helps

to assess the current state of the structure. To identify which type of measurement data

would be most suitable for such validation and where it should be recorded, the OED

concept of spatial GSA introduced in this chapter is applied to this example. It is de�ned

to use sensors that record displacements in vertical and horizontal directions and also

sensors to monitor pore water pressure that can be placed independently of each other.

As �rst step, a global sensitivity analysis is performed to identify which parameters are

most relevant for the stability ot the dam under the considered impact. To do so, the
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Initial water level

Water level after drawdown of 5 m

(a)
Initial water level

Water level after drawdown of 10 m

(b)

Figure 4.19.: Obtained failure mechanism visualised by the deviatoric strains in case of a:

a 5 m water drawdown and b: a 10 m water drawdown.

procedure described in the previous sections of generating a metamodel and testing its

accuracy is followed. The set of model parameter samples T is generated within the ranges

given in Tab. 4.7 and consists of 100 samples, complemented by a second set of 50 samples

for testing the accuracy, whereby the considered model response is the safety factor of the

dike. As was shown in Fig. 4.18, water drawdowns of 20 m or more are most critical for

the stability of the dike, wherefore 20 m, 25 m and 30 m water drawdown are considered

in the GSA. The GSA results are plotted in Fig. 4.20.

It can be seen that in general the permeability coe�cient k1 and the friction angle ϕ′1 of

the sand are most relevant, whereby the relevance is varying for di�erent water drawdown

values. The larger the water drawdown values get, the more the friction angles ϕ′1 and

ϕ′2 gain in relevance. At the same time the permeabilities k1 and k2 decrease in relevance

while sti�ness and cohesion are generally of low relevance. Due to their comparably high

impact, the two parameters ϕ′1 and k1 are placed in focus of the ongoing investigation.

One crucial aspect in this example is that the decisive model response, the factor of safety

FSF, is not a quantity that is measurable in-situ. It can only be obtained by running the

numerical model. In contrast, the aforementioned displacements and the pore water pres-

sure can be measured in both: simulation and in-situ. One should be aware about this



4.2. Application examples 97

k1 k2 c′2 ϕ′1 ϕ′2 Eref
50,1 Eref

50,2

0

0.2

0.4

0.6

0.8

Parameter

S
T
i

20 m 25 m 30 m

Figure 4.20.: Results of GSA that indicate the impact of the considered parameters on

the safety factor of the dike in case of di�erent water drawdown scenarios.

change in the considered model response for the further considerations. The model is run

again in total 150 times to obtain a database to generate and test a metamodel, but this

time the constitutive parameter space is limited to the two relevant ones, while the ob-

tained model responses are now the horizontal displacement yx, the vertical displacement

yy and the pore water pressure yw instead of the safety factor. As a water drawdown of

30 m can be considered as the worst case, the corresponding model phase is selected as

the one in which the data is extracted. However, if one would evaluate the data after the

end of the water drawdown this would be too late, as failure would already have occurred.

Therefore, the data is extracted after 2.5 days. That means half of the water drawdown

has taken place, and possible countermeasures could be initiated in case a critical situ-

ation is identi�ed based on the measurements.

To perform the spatial sensitivity analysis and calculate the modi�ed sensitivity index

S∗Ti , these model responses are obtained in 263 locations of the model geometry shown in

Fig. 4.21. The marked points are distributed over the whole model domain, but densi�ed

on the left lower area as it is expected that this area might be most relevant. The results

of S∗Ti for the three considered types of model outputs for the two parameters ϕ′1 and k1

are displayed as six contour plots in Tab. 4.8. As in the previous sections, dark blue areas

correspond to a value of zero while the dark red zones corresponds to the highest relative

value of one, whereby the relevant areas are encircled by a thin white line to indicate

them. At �rst sight, one can conclude that the displacements have very little sensitivity

to the permeability coe�cient. The same applies to the pore water pressure's sensitivity

to the friction angle. While this could have been expected, the locations of the sensitive

areas are interesting. In case of the displacements, they are both located close to the left



98 4. Global sensitivity analysis in the framework of OED

x xx x x xx
x xx x x xxx x x x x x x xx x x x x xx xx x x x x x x x
x xx x x xxx x x x x x x xx x x x x xx xx x x x x x
x xx x x xxx x x x x x x xx x x x x xx xx x x x
x xx x x xxx x x x x x x xx x x x xx x x x x
x xx x x xxx x x x x x x xx x xx x x x
x xx x x xxx x x x x x x xx xx x x x
x xx x x xxx x x x x x x xx x x x
x xx x x xxx x x x x x xx x
x xx x x xx x x x x x x x
x xx x xx x x x x x x

x x x x x x x

x x x

x x x x x x x xx x x x x xx xx x x x x x x x x x x

Figure 4.21.: Reference points for GSA distributed over the geometry of the dike model.

surface of the dike, in that area where the gradient of possible displacements is largest,

but not the absolute displacement. In case of the pore water pressure measurements, the

highest sensitivity is indicated on the left-hand side of the core of the dam. This might

be surprising, as the preceding GSA has shown that not the permeability coe�cient of

the core but that of the surrounding sand is of interest. As any pore water pressure in

the clay part should dissipate into the sand, the value of yw in the clay will be a more

accurate indicator for the permeability coe�cient of the sand than pore water pressure

measurements in the sand itself. Besides, as the permeability of the sand is very high, it

might not be possible to perform accurate pore water pressure measurements there for

practical reasons.

To sum up, it can be recommended to perform displacement measurements in the upper

left side of the dike to identify ϕ′1 and to combine this with the measurement of pore

water pressures in the left part of the clay core to identify k1.

Combining both information provides the most reliable data for model validation. This

exemplary application can be found in Hölter et al. (2019a), where the approach is em-

ployed for a preliminary experimental design that helps to identify areas where to place

sensors to measure displacements and pore water pressures.

4.3. Summary

The variety of the three examples given in this chapter shows that the introduced approach

of spatial global sensitivity analysis is not restricted to a single type of application. In

the �rst example of an experimental device, the individual mathematical steps of the

procedure are explained in detail, that is followed over the whole chapter. It is shown how

the two most relevant parameters are identi�ed and how both types of measurements are

employed to identify these parameters most accurately. The limitations of the method are

indeed reached when model error becomes larger than the parametric error as seems to be

the case in that application. In the second example of 3D tunnel construction, only one
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Table 4.8.: S∗Ti distributions for parameters ϕ′1 and k1 w.r.t yx, yy, and yw.

Considered Sensitivity w.r.t. Sensitivity w.r.t.

output ϕ′1 k1

yx

yy

yw

type of measurements is considered, wherefore the speci�c location and timestep are of

relevance in that application. The complexity of OED investigations that arises from the

three dimensions of the problem and the �ve di�erent considered time steps is pointed out.

Here, an approach to validate the identi�ed experimental design is applied using arti�cial

noisy data and the optimality criterion ΦA applied to the individual covariance matrix.

The third example considers a dam subjected to a rapid drawdown of the water level.

It shows how in-situ measurable model responses are in�uenced by di�erent constitutive

parameters that are most relevant for the stability of the structure what is the focus of

interest. However, no knowledge is obtained regarding which sensor type provides more

valuable information or how many sensors might be useful. To investigate these aspects,

the following chapter provides a possible approach in which the number of sensors and

their accuracy can be included.





5. The Bootstrap method in the

concept of OED

5.1. Methodology

The approach to OED in geotechnical engineering presented in the previous sections

reaches its limits when it comes to evaluation and comparison of speci�c experimental

design scenarios and the aspect of including measurement error. In the present chapter,

the concept of Bootstrapping is explained that is initially introduced as sampling method

and that was applied to OED purposes in Schenkendorf et al. (2009). The method is

applied exemplary to the case of the dike that was introduced in the previous chapter.

As computational requirements are increasing when using this approach, the sigma-point

method is applied to improve the calculation e�ciency.

5.1.1. Introduction

The concept of Bootstrap is initially introduced in Efron (1979), where it is employed to

allow performing statistical evaluations on data that would originally not be su�ciently

large. Its denomination originates from the phrase "To pull yourself up by your boot-

straps" that means to cope with a di�cult situation without any external help as was

demonstrated by Baron Munchausen who pulled himself and his horse out of the mud by

his hair (Raspe, 1785). To a certain extend the same is done here: A sample of model

responses y = (y1, y2, . . . , yN) is assumed to follow the random distribution F̂ . From this

distribution, a Bootstrap sample Y∗ = (Y ∗1 , Y
∗
2 , . . . , Y

∗
N) is drawn with replacement with

N indicating the size of the sample. The Bootstrap concept now consists of �rst generat-

ing a large number B of such samples Y∗1,Y∗2, . . . ,Y∗B. From each of the B samples any

statistics like the standard deviation σ, mean Ȳ or median M(Y) can be obtained, but

which might not re�ect the correct properties of F̂ due to the insu�cient size of N . The

101
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Figure 5.1.: Schematic of the bootstrap process for estimating the standard deviation of

a statistic σ(y), after Efron and Tibshirani (1993).

procedure is illustrated in Fig. 5.1. To obtain the standard deviation, Eq. 5.1 considers

the median value of the B Bootstrap samples M
(
Y∗b
)
.

σboot =

{
B∑
b=1

[
M
(
Y∗b
)
− Ȳ∗

]2
/(B − 1)

} 1
2

(5.1)

Herein, Ȳ∗ =
∑B

b=1 Y
∗b/B is the mean value of median values. In case B is su�ciently

large, Eq. 5.1 will converge to the generally accepted formulation of the standard deviation

σ de�ned by Eq. 5.2.

σ =

{
n∑
i=1

[M (yi)− ȳ]2 /(N − 1)

} 1
2

(5.2)

whereby N has to be adequately large to ensure the representativeness of the sample for

the given population.

By reusing initially sparse datasets, it is �nally possible to let the statistics of the Boot-

strap samples converge to the statistics of the unknown distribution F̂ and to obtain

meaningful and reliable results. Geotechnical engineering seems to be predestined for the

employment of the Bootstrap method as here large uncertainties are encountered (see
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Sec. 2.3.3) and coincidentally few measurement or sampling data is available due to high

costs. However, in Bourdeau and Amundaray (2005) the authors had a large database of

soil properties originating from standard penetration (SPT) and cone penetration tests

(CPT) available and employed the Bootstrap method on parts of the data to prove its op-

erability. Necessary sample size N and number of resamples B are investigated to identify

which values are required for convergence of the results, but also the possible falsifying

impact of outliers is illustrated. An application of the approach to a speci�c geotech-

nical problem is given in Most and Knabe (2010) where a reliability analysis of a shallow

foundation is performed considering homogeneous and inhomogeneous model parameter

uncertainties. A similar problem can be found in Li et al. (2015) where the problem

of slope stability is considered. The Bootstrap approach is employed therein to identify

which type of probability distribution function is able to best �t the available data. The

large database allows to investigate the in�uence of both, uncertain constitutive para-

meters and uncertain distribution parameters, on the factor of safety Fsf. In Luo et al.

(2013), a further typical problem from geotechnical engineering is considered, i.e. the wall

de�ection and surface settlements in case of a braced excavation. As performed in the

present thesis, from the numerous existing parameters, the attention is concentrated on

those few that are identi�ed as being most relevant for the model responses of interest.

The authors intend to provide a con�dence interval of the probability of exceedance of

one of the model responses. As typical in geotechnical engineering, they indicate that the

amount of available measurement data is too small to derive accurate statistics. In the

considered case of the Taipei National Enterprise Center Excavation, the tangent modulus

and undrained shear strength obtained from triaxial tests on ten disturbed and 7 undis-

turbed clay samples are employed as dataset. According to Eq. 5.1, the mean and standard

deviation of the assumed normal distribution are obtained using B = 10000 Bootstrap

samples. With these statistical characteristics, the reliability index of the possible failure

is calculated using a semi-empirical analytical model for estimation of displacements in

braced excavations named KJHH model.

Of course, the Bootstrap approach can also be applied in other types of research as shown

in Joshi et al. (2006) for a problem from the �eld of system biology. Here, kinetic para-

meters of ordinary di�erential equations that describe processes of metabolisms are in

focus. As only few measurements are available in the described research, the Bootstrap

resampling enabled to obtain su�ciently large datasets to precisely de�ne the con�dence

intervals of the identi�ed parameters. The question of con�dence intervals of parameters

identi�ed from measured data now inevitably leads to the aspect of OED and how these

intervals can be narrowed as will be considered in the following.
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5.1.2. Bootstrap in the context of OED

The problem of parameter identi�cation in biological systems discussed in Joshi et al.

(2006) is reconsidered again in Schenkendorf et al. (2009), but with the focus on OED

applications. The Bootstrap approach is employed therein in particular to determine the

covariance matrix Cθ that is introduced in Sec. 2.4.2 and to which one of the cost func-

tions or optimality criteria Φi (Cθ) is applied that are introduced in Sec. 2.4.3. The authors

generate at �rst arti�cial noisy measurement data. The measurable experimental result

and therefore, the considered model response is the concentration of biomass in a growth

reactor that will depend on the two uncertain parameters of maximum growth rate and

the substrate a�nity. In the next step, these two parameters are back calculated using

the falsi�ed values of the biomass concentration. The experimental design parameter of

the experiment that is supposed to be optimised is the time dependent inlet �ow of the

reactor. Therefore, the three variables that de�ne the linear equation of the inlet �ow are

varied to �nd the minimum of ΦE∗ (Cθ). As performing the repeated runs of the Bootstrap

method would be too time consuming, the authors settle to describe it conceptually and

show the result of applying the FIM (s. Sec. 2.2.1) and the Sigma Point Method that will

be introduced later on in this chapter.

5.2. Application to geotechnical engineering problem

In the following, the concept of Bootstrap is applied to a problem of geotechnical engin-

eering. As described in Schenkendorf et al. (2009), the computational requirements are

a limiting factor of this method as a large number of parameter identi�cation runs are

needed. Therefore, it is conceivable that this method should not be employed as a single

option, but probably as re�nement tool in an already restricted design parameter space.

This approach is followed herein where the results of Sec. 4.2.3 are employed as starting

point for applying the Bootstrap method. In case the design space is smaller, fewer can-

didates points must be considered in the possible experimental design set ups.

The number of sensors and of candidate points signi�cantly in�uences the computational

requirements as shown by Eq. 5.3

t =

(
P

K

)J

, (5.3)
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where t is the number of possible sensor combinations, P is the number of sensors em-

ployed to measure each of the J types of measurement in the corresponding K candidate

locations. To each of the selected candidate points, a set of N output values is required.

This leads to a matrix Ỹ of dimensions N x J ·K. The elements of this matrix can be ar-

ti�cially generated by adding random noise to model results as performed in the example

to be presented, but for real case application, the Bootstrap concept should be employed

to enrich measurement data that will most probably be quite sparse and not available

for all positions of interest. In the next step, back calculation of the model parameters

of interest is undertaken. To include the aspect of sensor position interaction, always two

sensors, one of each kind of measurements (one for displacement and one for pore water

pressure), are employed to back calculate one of the parameters of interest. This laborious

procedure allows a reduction of computational e�ort in the following steps. Its outcome

is the matrix of back calculated parameters T̃ given in Eq. 5.4.

T̃ =


θ̃1,1,1 · · · θ̃1,KJ ,1 θ̃2,1,1 · · · θ̃s,KJ ,1

...
. . .

...
...

. . .
...

θ̃1,1,N · · · θ̃1,KJ ,N θ̃2,1,N · · · θ̃s,KJ ,N

 (5.4)

Calculating all the N ·KJ elements of this matrix is the crucial because most time con-

suming part of the evaluation. However, afterwards no more back calculation runs are

necessary. From the matrix T̃, the two column matrix θ̃r of identi�ed parameters is ex-

tracted for each possible experimental design. Hereby, the N ·P J elements of each column

of θ̃r are constituted of the columns of T̃ that correspond to the current rth sensor ar-

rangements.

θ̃r =


θ̃r,1
...

θ̃r,B

 , r ∈ {1, ..., t} (5.5)

As the error terms that were added to Ỹ are randomly generated, calculating the mean

values θ of the parameters of interest according to Eq. 5.6 provides a reliable estimate of

this value.

θ =
1

B

B∑
i=1

θ̃r,i (5.6)

Knowing the parameter values θ̃r that correspond to the back calculation of the di�erent

experimental designs and their means θ, the covariance matrices originating from Boot-

strap dataCθi,Boot can be calculated for every considered experimental design as described
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in Eq. 5.7.

Cθi,Boot =
1

B − 1

B∑
i=1

(θ̃r,i − θ)(θ̃r,i − θ)T (5.7)

To these matrices, an optimality criterion Φi is applied and �nally, all experimental designs

are ranked according to this criteria, indicating the optimal experimental design by the

smallest value.

5.2.1. Example introduction

The same example of a dam under rapid water drawdown as in Sec. 4.2.3 shall be em-

ployed to illustrate the application of the Bootstrap method. Using a GSA, it was iden-

ti�ed that the friction angle ϕ′1 and the permeability coe�cient k1 of the sand parts are

most in�uencing the stability of the considered dam, wherefore these are in focus of the

OED application. The objective is now to �nd a solution for the problem where to place

sensors for measuring displacement and pore water pressure. This was also investigated

in Sec. 4.2.3 and the distributions of S∗Ti obtained from the spatially distributed GSAs

indicate two relevant areas. Tab. 4.8 shows that displacements should be measured on

the left side of the dam close to the ground surface, while pore water pressures should be

measured on the left side of the clay core. These results shall be employed in the current

investigation to reduce the required calculation runs. Accordingly, the design space Π

that would have been the whole model geometry is restricted to those areas with highest

value of S∗Ti. Here, three sensors of each type shall be placed in a manner to reduce as

much as possible the constitutive parameter uncertainty. The sensors can be placed in

discrete positions what de�nes the number of possible experimental designs and prevents

a possible clustering of the sensors. This problem might occur in case one single area is

identi�ed as most promising for a certain measurement. An unconstraint search algorithm

might then converge to a solution where all sensors should be placed at the same position

as observed and discussed in Lahmer (2011). Such clustering should be avoided as it is

hardly applicable in praxis and could overrate impacts from local inhomogeneities.

5.2.2. Application

Within each of the high sensitivity areas, eleven positions are de�ned as displayed in

Fig. 5.2. Here, the points 1 to 11 are candidate points for the displacement sensors and
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12 to 22 are possible positions for the pore water pressure sensors. It is assumed that

horizontal and vertical displacements are recorded by one sensor at a time. The sensor

positions 11 and 17 are control points to test whether the obtained results are reasonable.

As these points are outside the indicated sensitivity areas, they should not be identi�ed

as candidates of an experimental design. In a �rst investigation, it is assumed that three

sensors are employed for each type of measurements. Within the nomenclature introduced

in Sec. 5.2, there is in the present exampleK = 11, P = 3, and J = 2. According to Eq. 5.3,

this implies that there are t = 27225 possible combinations to arrange the alltogether six

scheduled sensors. The OED task is accordingly to �nd out which combination of the

sensors allows the most reliable identi�cation of the constitutive parameters of interest

ϕ′1 and k1.

As the considered candidate points shown in Fig. 5.2 are among those shown in Fig. 4.21,

the data generated in Sec. 4.2.3.2 can be reused and no additional forward calculations of

the FE model are necessary. However, immediate reuse of the output data is not possible

for the simple reason that by adding noise to the model response, one might obtain values

of ỹjk that can not be back calculated within the given boundaries of the parameter space

Θ. Instead, the parameter identi�cation would converge to values on the edge of this

space, leading to unusable data.

The overall concept introduced in the previous section, that is illustrated in Fig. 5.3,

consists of �rst generating arti�cial noisy data for each of the K candidate points. Like

in Schenkendorf et al. (2009), the employed data is arti�cially generated as a synthetic

example is considered. 150 new random input samples are generated within a restrained

input space that are transferred to output samples for each of the 22 positions using the

previously generated metamodel. These results are falsi�ed using Gauÿian white noise as

described by Eq. 5.8

ỹjk = yjk + yjk · e ·ω , ω ∼ N (0, 1), (5.8)

whereby j refers to the two di�erent considered output types and k to the eleven di�erent

positions. The amount of noise is de�ned by e that is set to 0.1. To visualise the impact of

adding this noise, Fig. 5.4 displays exemplary FE model results and noisy data of di�erent

exemplary positions and output types. The green dots correspond to the 150 model results

that are obtained for randomly generated input parameters, while the blue dots were

generated by applying Eq. 5.8. These blue dots shown in Figs. 5.4a & 5.4b represent four

out of the 33 columns of the matrix Ỹ. To obtain the 242-column matrix T̃, the noisy data

is back calculated as described above using one displacement and one pore water pressure
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Figure 5.2.: Location of the 22 points considered in OED process using the Bootstrap

approach (Squares for displacements & circles for pore water pressure).
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Figure 5.4.: Output values from simulation compared with systematically falsi�ed values

a: horizontal and vertical displacement of same position (yx,9 & yy,9) and (ỹx,9 & ỹy,9) b:

pore water pressure of two di�erent positions (yw,12 & yw,20) and (ỹw,12 & ỹw,20).

sensor at a time. As hereby 18150 (= N ·KJ) processes of back calculation are necessary

to identify each entry of T̃, time e�ciency is of high relevance. To account for this aspect,

the DE-algorithm is employed that is implemented in the package DEoptim Mullen

et al. (2011) for the statistical computing language R (e.g. Tippmann, 2015) and that is

described in Sec. 3.3.3.1. As optimisation parameters, the population of one generation is

assigned to 1000, a maximum of 200 iteration steps is de�ned, and a crossover probability

of 0.5 is selected. Performing all parameter identi�cations took around �ve days using a

PC with Intel i7-4790 3.6 GHz processor.

To each experimental design, starting with the positions (1, 2, 3, 12, 13, 14) and ending

with (9, 10, 11, 20, 21, 22), the corresponding 18 (=P J
· s) columns of T̃ are merged to

build the vector θ̃r. Using Eq. 5.6 and Eq. 5.7 to identify the statistics of interest that are

mean and covariance matrix of the parameters is e�ectuated as next step. As B equals

to 1350 for each experimental design, a reliable estimation of both statistics of interest

is obtained. To visualise the convergence behaviour, Figs. 5.5a & 5.5b are displayed. It

can be seen that in case of the 1350 parameter values, a result is obtained that is quite

close to the model mean values of ϕ′ = 35◦ and k = 7.06 · 10−6 m/s given in Tab. 4.7.

Besides, in the employed logarithmic scale it is clari�ed that using only 150 runs of back

calculation per individual sensor data would not have been su�cient.

Doing so, for each of the t possible combinations one covariance matrixCθi,Boot is obtained

to which the optimality criteria ΦA and ΦD are both applied that are the trace and
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Figure 5.5.: Convergence behaviour of the identi�ed parameters ϕ′ (a) and k (b) towards

the actual values over the 1350 back-calculated values.

the determinant, respectively. As now for each combination of sensors (i.e. experimental

design) one speci�c value is available, a ranking can be performed that is shown for the

best and worst two experimental designs in Tabs. 5.1 & 5.2. As discussed in Sec. 2.4.3 it

is di�cult to de�ne in advance which optimality criterion is most suitable, but comparing

both tables brings additional insights. First, one can see that the experimental design

ranked best is in both cases the same, using the positions 4, 5, 6, 19, 21, and 22 what

con�rms that the method leads to consistent results. That �ts to the circumstance that

the second best experimental design is not a totally di�erent one, but di�ers only by one

position. However, the second best experimental design is not the same using both criteria:

compared to the best-ranked experimental design, sensor position 6 is replaced by 7 in

case of A and by 9 in case of D. More interesting might be a view on the opposite end

of the ranking. Here, quite di�erent sensor arrangements are suggested by both criteria.

However, the two "control points" 11 and 17 can be considered here, as they are expected

to be part of the worst experimental designs. In contrast to criterion A, in case of criterion

D both points can be found in the worst experimental designs. This would indicate that

overall the ΦD-criterion is the better choice in case of this application.

5.2.3. Variation on sensor types

Unlike the concept of spatial sensitivity distribution introduced in Chapter 4, using the

Bootstrap based approach allows to explicitly compare speci�c experimental designs and
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Table 5.1.: Ranking the individual sensor positions � optimality criterion ΦA.

Sens. Pos. yy/yx Sens. Pos. yw ΦA Rank

[4 5 6] [19 21 22] 2.404 e -2 1

[4 5 7] [19 21 22] 2.406 e -2 2

[2 3 6] [12 13 15] 4.607 e -2 27224

[1 2 3] [12 13 15] 4.608 e -2 27225

Table 5.2.: Ranking the individual sensor positions � optimality criterion ΦD.

Sens. Pos. yy/yx Sens. Pos. yw ΦD Rank

[4 5 6] [19 21 22] 2.493 e -5 1

[4 5 9] [19 21 22] 2.535 e -5 2

[1 2 11] [14 17 20] 1.4192 e -4 27224

[1 9 11] [14 16 17] 1.4286 e -4 27225

thereby �nd the optimum one. To do so, the experimental design parameters like amount,

accuracy, or type of sensors can be varied to see what the impact would be. As con-

sequently, in�nite possibilities of variation exist, in the following, the case of varying the

amount of sensors is exemplary presented. In the previous section, it is stated that three

sensors should be employed for each output type, the pore water pressure and the displace-

ments. However, the number of three is actually an arbitrary value. One should consider

that every sensor causes costs, in monetary way but also in the sense that it will generate

data causing additional computational costs in their evaluation. Therefore, the evaluation

performed in the previous section is repeated by changing the number of sensors, starting

by using only one of each kind and then stepwise increasing to three. The obtained results

are displayed in Fig. 5.6 by means of box plots, for each of the nine considered sensor

combinations. To visualise the complexity of the OED task, the number of the corres-

ponding possible arrangements t is shown by the green line. The box plot visualisation is

selected to provide an impression on the reliability of the di�erent scenarios. Therefore,

the whiskers of each box plot represent the bandwidth of the 50 best results. The value

of 50 is arbitrary chosen, but allows to comprehend what happens in case not the best

scenario is selected, but a close by one, what could happen e.g. if the installation process

is not carefully performed or the model has some inaccuracies. As could be expected,

using only one of each sensor type results in the highest value of the optimality criterion
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and in the widest spread of the box plot, i.e. the least reliable parameter set is obtained,

while the opposite is the case for using three sensors of each type. The combinations in

between provide more interesting information. It can be seen that adding one pore water

sensor or one displacements sensor (scenarios 2 & 3) results in the almost same optimal

(minimum) value of ΦD, but adding one more pore water pressure sensor results in much

larger box plot bandwidth, wherefore adding one displacement sensor would be preferable.

This e�ect is even more pronounced in the two next scenarios (i.e. having 1-3 and 3-1

sensors). Here, it can be seen that having three displacement and one pore water pressure

sensor results into a smaller box plot bandwidth but also a smaller value of ΦD, even

compared to the following scenario 2-2. Subsequently, the more sensors are employed, the

more ΦD and its bandwidth are reduced. However, as between the eighth and the ninth

scenario (3-2 and 3-3), only marginal improvement is obtained, no further scenarios are

investigated. This demonstrates that adding more and more sensors cannot continuously

improve the process of model validation. Finding out how extensive a monitoring program

needs to be at maximum could accordingly save a lot of costs by reducing the number of

devices.

In Hölter et al. (2019a), a reduced description of this example is given. There, it is presen-

ted in combination with the method that was described in Sec. 4.2.3 where a preliminary

investigation was performed. One should be aware that to identify a unique solution as

optimal sensor arrangement, the method employed here required extensive computational

1-1 2-1 1-2 1-3 3-1 2-2 2-3 3-2 3-3
0.2

0.4

0.6

0.8

1

1.2

1.4

· 10−4

Sensor combination [Displacements - Pore water pressure]

O
p
ti
m
a
li
ty

cr
it
er
io
n
Φ
D
[-
]

0

0.5

1

1.5

2

2.5

3
· 104

t
[-
]

Figure 5.6.: Comparison of the number of sensors (boxplots), using D-optimality criterion

compared to possible number t of arrangement combinations (blue dots with green line).
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e�ort. In case the design space would have included the whole model domain and the

candidate points would have been distributed with the same density as in the performed

evaluation, it would not have been possible to perform the evaluation as the computa-

tional requirements would not have been bearable.

This is the case even though the presented method simpli�es the process of back analysis

by obtaining the results θ̃r of the current experimental design from the matrix T̃ instead

of repeating the calculation each time. Using this approach as re�nement of the previous

GSA results makes this approach practical. To further reduce the computational costs,

in the following section an approach is presented to substitute the numerous metamodel

calls caused by MC sampling.

5.3. Extension with sigma points

5.3.1. Concept

The previously introduced Bootstrap approach obtains precise results by extensive res-

ampling of data until an accurate distribution of that data is reached from which the

statistics of interest can be derived. This is not a problem in the references given in

Sec. 5.1.1 as generating new samples can be performed almost instantly. In the context

of OED indeed, the advantage of obtaining a large database becomes also the drawback,

because the more output data is generated, the more time-intensive back analysis runs

should be performed. The sigma point method introduced in Julier and Uhlmann (1996)

provides an approach to solve this problem. The general idea of transferring the input

distribution by performing the model processes to an output distribution is maintained

similar, but instead of approximating the inputs by a random MC process, deterministic

samples are generated. The intention of the authors is to provide an advanced �ltering

algorithm, especially more suitable for non-linear problems than the Kalman �lter, as in-

stead of linearising the transformation process, i.e. the simulation model, a limited number

of model runs is required.

In the original publication, it is employed to predict the future state of a system based

on current observations under consideration of both, uncertain model inputs and outputs.

The method can be employed in case the distribution of inputs is known, the transforma-

tion is known, but the distribution of the model outputs is unknown, what is exactly the

case in the problems described in this thesis. The terminology must be employed carefully

in this context, as the "transformation" as called in Julier and Uhlmann (1996) is in the
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present application the back calculation of model parameters. That means the terms of

input and output are employed here opposite to the initial publication.

The data contained in the vector of noisy measurement data ỹ, or matrix Ỹ, can be

described by its mean and standard deviation ȳ and σy, or ȳ and σy, respectively and

the minimum required number of information to describe a normal distribution in an

J-dimensional output space accounts to 2J + 1.

Accordingly, the simple concept of the sigma point method is to employ exactly 2J + 1

deterministic values to describe the variance of the considered distribution instead of ap-

proximating the distribution by random sampling. These values are the so called sigma

points for which the vector of disturbances σ is de�ned according to Eq. 5.9 and that are

added to the mean value to obtain the distribution of interest.

σ = ±
√

(J + κs)Cy (5.9)

Herein, Cy is the covariance matrix of the J di�erent considered output types and κs is

a factor to enhance the accuracy of the approach. The higher the value of κs, the higher

the order of the error terms that can be considered using the sigma points approach, but

also the more sigma points are required. As in the present work only Gauÿian white noise

is considered, the value of κs is set to zero. In Schenkendorf (2014) indeed, application

examples are given using sigma points with several di�erent types of noises and distri-

butions, including increasing values of κs and according weighting factors. Within the

framework of sigma points, any of the possibilities to extract a square root of the matrix

in Eq. 5.9 is permitted. Afterwards, the matrix of σ is added to the vector of mean val-

ues. To obtain the unknown statistics of the distribution of interest, the "transformation

process" (i.e. in the present application the parameter identi�cation) is performed and as

many response values are obtained as sigma point samples were generated. In Julier and

Uhlmann (1996), several theoretical application examples are given in which it is proven

that the obtained mean values using sigma points are equal to the correct means and that

the results are independent of κs. This process is schematically illustrated in Fig. 5.7.

From the obtained response values, that are symbolised by the ellipse on the left side, the

mean and variance can be calculated according to Eq. 5.10 that are same as from a whole

distribution due to the considered selection in the sampling process.

Cθ,SP =
1

2(J + κs)

2J∑
i=1

wi(θ̃i − θ)(θ̃i − θ)T (5.10)

The weighting factor wi depends on J , but essentially also on the type of error and should

be adjusted depending on the current application as explained in Julier and Uhlmann
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(1996).

Using the sigma points approach, several applications were performed in recent years

that show the utility of this method. In Azam et al. (2012), the sigma point method is

employed for updating a dynamic system of layered composites using uncertainty a�ected

observations. Also in Nguyen and Nestorovi¢ (2016), it is used for an iterative identi�cation

of soil parameters in the context of tunnel excavation and its performance is compared to

the extended Kalman �lter. As no metamodel is employed, the computational e�ciency

than can be improved using this method is of high interest in both publications.

However, instead of using the sigma points method for updating a changing system, one

could also employ it to compare distributions of di�erent responses obtained from the same

system. This approach to OED is introduced in Schenkendorf et al. (2009) with application

to the same system of bioreactor growth to which is referred to in Sec. 5.1.2. For the one-

time process of parameter identi�cation, it is shown that using seven sigma points leads

to almost same results as using the 10000 Bootstrap samples. In contrast to employing

the Bootstrap approach, using the sigma point approach for OED was computationally

feasible at all and the identi�ed experimental design exhibits smaller variation of the

identi�ed parameters compared to the optimal experimental design identi�ed using the

FIM.

Transformation
Nonlinear 

Fig.5: Sigma points capturing the mean and covariance of the distribution are transformed

independently. The mean and covariance of the transformed sigma points de�ne the predicted state.

This formulation can be generalised by exploiting our freedom to choose which of the in�nite

number of possible square roots we use1 (including non-square matrix roots) and by our freedom

to include any multiple of the mean, �x, in the set �i. Our freedom to choose an arbitrary matrix

square root comes from the fact that any square root can be found from any other root by

applying an orthonormal transformation [14]. If our original matrix is A then a matrix square

root
p
A1 has the property that, p

A1

p
A
T

1 = A:

Hoewever, if we de�ne a second matrix square root
p
A2 =

p
A1U where U is an orthonormal

transformation, then

p
A2

p
A
T

2 =
�p
A1U

��p
A1U

�T
=
p
A1UU

T
p
A
T

1

=
p
A1

p
A
T

1 :

We are not restricted to using orthogonal or symmetric matrix square roots which are numerically

sensitive and computationally expensive to �nd. Rather, e�cient and stable methods such as

the Cholesky decomposition can be used, a vital consideration for real-time application.

Using multiple copies of the mean obviously will not a�ect the mean of the set, and will only

a�ect the scaling factor for the calculation of the other points. The implications of this are

discussed below and described in more detail in Appendix A.

To illustrate the di�erence between the new method and linearisation, consider again the example

presented in the last section. The motion of the vehicle is a non-linear transform carried out over

time. Figures 6 and 7 show how the new method projects the position of the rotating vehicle

from the earlier example:

1If the matrix square root A is of the form AT
A, then the sigma points are formed from the columns of A.

However, for a root of the form AAT the rows of A are used.

7

Figure 5.7.: Sigma points capturing the mean and covariance of the distribution are trans-

formed independently. The mean and covariance of the transformed sigma points de�ne

the predicted state, after Julier and Uhlmann (1996).

5.3.2. Reconsidering the Dike example

The application example of the dike subjected to a rapid water drawdown introduced

in Sec. 4.2.3 and investigated using the Bootstrap method in Sec. 5.2 is now considered
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again. In general, the procedure is the same as described for the application of the Boot-

strap approach. The di�erence consists in not generating random samples to obtain the

matrix of identi�ed parameters T̃ and subsequently Cθi,Boot, but to create the matrix of

sigma point disturbances σ.

To do so, the matrix Ỹ is reused that contains 150 normally distributed noisy output values

for each of the 22 considered candidate locations. In the locations 1 to 11 horizontal and

vertical displacement can be measured wherefore the matrix Ỹ contains 150 rows and 33

columns. To make the procedure consistent with the previous Bootstrap approach, three

output columns out of matrix Ỹ, one for each measurement type, are combined to gen-

erate the covariance matrix Cy. As the locations for horizontal and vertical displacement

measurements are coupled, 121 realisations of Cy are obtained according to Eq. 5.11

Cyi,j = COV (yi,yi+11,yj) , i = 1, . . . , 11, j = 1, . . . , 11 (5.11)

As Gauÿian white noise is assumed in T̃, κs can be set to zero. To calculate the square

root of the covariance matrix of outputs Cy the following formulation is employed:√
Cy = γEig ·

√
λEig · γ

−1
Eig , (5.12)

whereby, γEig is the matrix of eigenvectors of Cy and λEig is the matrix obtained by

multiplying the vector of eigenvalues of Cy by the identity matrix. To each model response

yi obtained using the mean values of input parameters, the sigma point disturbances

calculated according to Eq. 5.9 are added to generate the matrix ỸSP (Eq. 5.13).

ỸSP = y + σ (5.13)

As for each model response 2J + 1 sigma points are obtained (including the undisturbed

model response itself), the matrix ỸSP has 7 x 121 elements. As the next steps are

analogue to those described in the Bootstrap approach ỸSP is back-calculated one by

one to obtain the matrix T̃SP that accordingly consists of seven lines instead of 150 in

the previous approach. Using this matrix of identi�ed parameters, Eq. 5.10 is employed

to back calculate the corresponding parameters. The therein employed weighting factors

wi are generated as follows:

wi =
1

2 · (J + 1)
, i = 1, ..., 2J (5.14)

w2n+1 =
1

(J + 1)
, (5.15)

whereby 2J + 1 refers to the unmodi�ed model response y. Assuming again three sensors

for each type of output, t = 27225 possible realisations of Cθ,SP are obtained to which the
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optimality criterion ΦD is applied. According to the value of ΦD, a ranking is generated

that indicates which experimental design is most favourable. The best and worst three

cases are listed in Tab. 5.3.

The comparison of the results with those obtained in Sec. 5.2.2 using the Bootstrap

method shows good agreement in case of the displacement sensors, but quite signi�cant

di�erences for the pore water pressure sensors. With respect to the displacement sensors,

the best experimental designs include in both methods the positions 4 and 6 and in the

worst experimental designs the positions 1 and 11. Within the locations of the pore water

pressure sensors, position 21 is among the best experimental designs in both methods, but

the further positions are di�erent. Indeed, position 19 that is among the best experimental

designs using the Bootstrap approach is now found as part of the worst experimental

designs. Besides, location 17 that was selected as control point is not found in the worst

experimental designs. However, as the 11 candidate points for pore water pressure sensors

are located close to each other, their model responses are quite similar. It would have

been more favourable to select them in larger distance to each other to enable an a priori

qualitative statement and compare it with the obtained results. The obvious di�erences in

the results does not necessarily origin from a too inaccurate representation of the output

distribution by using the sigma points. One should be aware that using the Bootstrap

method, falsi�ed output samples were randomly generated. Even though the input space

was restrained as described in Sec. 5.2.2, it can not be excluded that some of the error

values were strong outliers that did not allow the DE algorithm to �nd the global minimum

within the de�ned parameter boundaries. In such cases, the algorithm converges to the

best possible results, possibly lying on the edge of the parameter space. Therefore, using

the sigma points might even be more reliable, as here the output samples are generated

in a more controlled manner and their back calculation results are sure to be within the

de�ned parameter boundaries.

The decisive di�erence between the Bootstrap and the sigma point approach is illustrated

in Figs. 5.8a & 5.8b. The random samples known from Fig 5.4a are shown again in blue,

but this time with the according green sigma points in contrast. In Fig. 5.8b identi�ed

parameter combinations of ϕ and k are shown. As each dot is representative for one run

of back-calculation, it is clear that the sigma point approach is much more time e�cient.

In the present case, where the previous 150 random samples are substituted by seven

sigma points this corresponds to a reduction of 95%. In Hölter et al. (2018b), some of the

presented �ndings are illustrated in a condensed manner.
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Table 5.3.: Ranking of the individual sensor positions using sigma-points approach �

optimality criterion ΦD.

Sens. Pos. yy/yx Sens. Pos. yw ΦD Rank

[4 5 6] [15 18 21] 3.58 e -6 1

[4 5 7] [13 15 21] 3.76 e -6 2

[4 5 7] [13 18 21] 3.79 e -6 3

[1 10 11] [14 18 19] 4.65 e -2 27223

[1 10 11] [15 18 19] 4.73 e -2 27224

[1 10 11] [14 15 18] 5.16 e -2 27225
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Figure 5.8.: a: Randomly generated output data in comparison to deterministically gener-

ated sigma points in case of displacement output at point 9 b: parameter values obtained

by back calculating both types of noisy data.
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5.4. Summary

The approaches presented in this chapter intend to identify an optimal experimental design

by back-calculating noisy data assigned to all candidate positions in which a possible

measurement is considered. The variance, respectively the covariance, of the identi�ed

constitutive soil parameters indicates which experimental design allows the most reliable

parameter identi�cation. The two presented methods di�er by the approach of obtaining

these parameter statistics. Using the Bootstrap approach, MC simulations are performed

that require numerous samples. The sigma point approach employs only few representative

points which amount is related to the dimension of the output data (number of considered

model responses). The con�guration of the results is the same in both methods: a ranking

in which each possible experimental design is listed according to its optimality criterion

value (value of cost function ΦA or ΦD, respectively). The drawback of using the Bootstrap

approach is the major calculation e�ort that is required to back calculate the noisy data,

even though the number of calculations is reduced by employing the Bootstrap resampling

method. However, the OED results obtained in the considered example correspond to the

expectations made by engineering judgement. The best identi�ed experimental designs

are consistent within both methods. In case of the worst experimental design, the sigma

point method shows partly inconsistent results, especially in case of pore water pressure

measurements. To investigate the origin of this discrepancy, it would be of interest to

perform similar calculations with a wider spread of the locations for pore water pressure

measurements.

Besides, one should be aware that testing any possible combination might be not an

e�cient method. The described method is well suited in case the search area is limited, a

small �nite number of discrete candidate points is considered, or a restriction by previous

investigations is possible as in the present case. In case no previous knowledge is available

and a free search in design space is required or desired, a type of optimisation algorithm-

based search would be more favourable. This idea is taken on in the following chapter

where the concept of Bayesian updating is employed for OED.
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The methods introduced in the previous chapter intend to identify an OED by de�ning

a priori a set of candidate locations in which sensors may be located and by testing

subsequently each possible experimental design combination. This allows a very accurate

identi�cation of the OED, but one might have the impression that this is not an e�cient

method. Point 11 for example in Fig. 5.2 is part of the poorest experimental designs; a

�nding that should rise quite early in testing the di�erent designs. An e�cient approach

would be to use this knowledge and to exclude any experimental design that contains this

point in the further search.

Using knowledge obtained prior to improve the posterior steps is now the idea of the

Bayesian updating or inference that is introduced in Sec. 3.5. The present chapter describes

how this concept can be considered in the framework of OED. After referring to several

applications from other research �elds, an approach for the employment in geotechnical

engineering is introduced as well as an application of this approach to an example of

mechanised tunnelling simulation.

6.1. Concepts

As the objective of OED for parameter identi�cation is in general to reduce parameter

uncertainties based on observed values, the Bayes' theorem introduced in Sec. 3.5 should

be considered to improve this process. Looking at the Bayes' theorem as shown in Eq. 3.27,

the uncertainty of the parameters of interest θ are considered in the form of probability

distributions P (θ) that are introduced in Sec. 3.5. Measurement data ỹ contains the

"true" system responses y, but is subjected to a certain ratio of measurement error e that is

assumed to correspond to a known probability distribution. Therefore, the obtained data is

regarded as an event of probability P (ỹ). The conditional probability P (ỹ|θ) describes the

probability that a certain output results from a parameter combination, what is assumed

to be known, while P (θ|ỹ) is the value of interest that describes the probability of a set

of parameters to be correct given a measured output value as formulated in Eq. 3.27.

121
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As it is demonstrated in the previous chapters, the measurement data depends on the

experimental design δ that is applied to the considered problem. Transferring this idea to

the Bayes' theorem, Eq. 3.27 is extended to Eq. 6.1.

P (θ|ỹ, δ) =
P (ỹ|θ, δ) ·P (θ|δ)

P (ỹ|δ)
(6.1)

Herein, P (θ|ỹ, δ) is the posterior probability of the parameters θ given a set of meas-

urements ỹ that was obtained using the experimental design δ. Within the process of

Bayesian OED, it is investigated which experimental design δ provides measurement data

that has the highest probability of reducing the initial uncertainty of the model paramet-

ers.

6.1.1. Applications in OED

In the last decades, the concept of Bayesian inference was employed in several applic-

ations of OED. Chaloner and Verdinelli (1995) provides a detailed introduction to the

topic. Therein, a number of simple examples from biomedicine demonstrate the concept

of Bayesian OED. Unlike the approaches introduced in the previous chapters where a

cost or optimality function was optimised by minimisation, the scienti�c community has

agreed on maximising the utility U in the framework of Bayesian OED to �nd the optimal

design. Accordingly, the experimental design δ should be selected in a way that its data

increases most the utility U from the prior to the posterior state. In Vanlier et al. (2012),

another example from system biology is presented where the interactions of di�erent pro-

teins in a cell are simulated using a system of ordinary di�erential equations (ODEs). The

objective of the therein performed Bayesian OED investigation is to identify at which loc-

ation in time measurements should be performed. By identifying optimal sampling times,

the authors are able to reduce the necessary size of employed samples that they identify

as time consuming restriction.

In particular Huan and Marzouk (2013) should be named to which the procedure in

this thesis refers. Therein, beside an introductory synthetic example, the problem of

combustion kinetics in a shock tube is investigated. The chemical reactions that take

place in a shock tube after ignition are elementary chemical reactions and assumed to

take place spatially homogeneous (i.e., well-mixed) at constant pressure, called therefore

"zero-dimensional". However, describing which processes take place among the di�erent

hydrocarbons is described by a system of ODE with uncertain kinetic parameters that

depend on temperature and molar or mass fractions as state variables. The intention of
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Huan and Marzouk (2013) is therefore to identify at which temperature and equivalence

ratio the uncertain kinetic parameters can be identi�ed most reliable from the following

observable values: the peak value of the heat release rate, the peak concentrations of vari-

ous intermediate chemical species, and the times at which these peak values occur. These

form accordingly the experimental design δ and the parameter vector θ, respectively. The

vector of model responses y is falsi�ed with Gauÿian white noise with standard deviation

of 10% of the output value.

The general formulation to the utility U in that publication that is also employed within

this thesis is described in Eq. 6.2:

U(δ) =

∫
Ω

∫
Θ

u(δ, ỹ,θ)p (θ, ỹ|δ) dθdy (6.2)

As in the previous chapters of this thesis, δ is the considered experimental design, θ is

the employed set of constitutive parameters from the parameter space Θ and ỹ is the

obtained measurement data that is subjected to measurement errors and Ω is the output

space of dimension n. u (δ, ỹ,θ) is the utility function to which the integral U(δ) is the

expected utility. Using the Kullback�Leibler divergence, the utility function is de�ned as

follows:

u(δ, ỹ,θ) =

∫
Θ

p (θ|ỹ, δ) ln

[
p (θ|ỹ, δ)

p(θ)

]
dθ = u(δ, ỹ) (6.3)

As the system parameters are independent of the employed design, the utility does also

not depend on them. In Huan and Marzouk (2013), Eqs. 6.2 and 6.3 are merged to the

formulation of Eq. 6.4.

U(δ) =

∫
Ω

∫
Θ

p (θ|ỹ, δ) ln

[
p (θ|ỹ, δ)

p(θ)

]
dθ p(ỹ|δ)dy (6.4)

The optimal experimental design δ∗ is accordingly de�ned as follows:

δ∗ = arg max
δ∈Π

U(δ) (6.5)

However, solving the integral in Eq. 6.4 is hardly possible if the output data y is obtained

from FE models as it is the case in the present thesis. Also in the referred application

of Huan and Marzouk (2013), these integrals are numerically approximated. In that pub-

lication, the approach of using polynomial chaos surrogate is employed to generate noisy

output samples and two di�erent optimisation algorithms are employed to approximate

Eq. 6.4. The authors perform the design optimisation for a single experiment as well as

for a series of experiments, demonstrating thereby, which impact this repetition can have

on the reliability of obtained results as well as on the experimental designs themselves. As
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an application, the advancement of a tunnel excavation is considered in this thesis, which

is described in detail in Sec. 6.3.1. As such "experiment" can obviously not be repeated,

this corresponds to the case of a single experiment.

6.1.2. Aproximate coordinate exchange algorithm

The aforementioned problem that the integral in Eq. 6.4 can hardly be solved arises,

beside the aspect of employing FE-models, from the aspect of high dimensionality of δ.

In combination with the number s of constitutive input parameters θ of the model, the

curse of dimensionality rapidly obstructs solving this optimisation problem.

Therefore, in the present work the Approximate Coordinate Exchange (ACE) algorithm

is employed that is introduced in Meyer and Nachtsheim (1995) and adapted for Bayesian

OED in Overstall and Woods (2017). The basic idea of this optimisation algorithm is to

investigate each of the d elements of the design vector δ one by one and to repeat this

operation iteratively until convergence of the utility is obtained. To accurately capture

the utility U of a certain design, a series of one-dimensional metamodels Ũ , or emulators

as called in Overstall and Woods (2017), are generated to perform the single-parameter

optimisations:

Ũ = Ũ(δi|δ(i)) , i = 1, . . . , d (6.6)

The utility U of each individual design is evaluated using a Monte-Carlo Simulation:

U(δ) ≈ Ũ(δ) = Ũ(δi|δ(i)) =
B∑
l=1

u (δ, ỹl,θl) /B (6.7)

where B corresponds to the number of Monte-Carlo samples that are employed to approx-

imate the utility of the ith design and that are drawn from the probability distribution

p (θ, ỹ|δ). To start the optimisation, an initial design δ0 is either randomly sampled in

Π or prescribed according to a possible a priori knowledge of the user. For each of the

d dimensions of the design, the optimisation is run to maximise Ũ and identify the cor-

responding best design δ† that should outperform the current design δc. After identifying

the best design among all dimensions d of δ, the distribution is updated in the sence of

Bayesian inference according to the knowledge obtained in the current iteration step. To

do so, a new probability distribution of parameters θ is calculated as follows:

p†l = 1− T2B−2

(
−
BŨ

(
δc†
)
−BŨ (δc)

√
2Bν̂l

)
(6.8)
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with T2B−2 being a probability distribution function for a Student's t-distribution with

2B − 2 degrees of freedom and the coe�cient ν̃l as follows:

ν̂l =

∑B
l=1

[
u
(
δc†,y†l ,θ

†
l

)
− Ũ(δc†)

]2
+
∑B

l=1

[
u (δc,ycl ,θ

c
l )− Ũ(δc)

]2
2B − 2

(6.9)

Using this PDF, the samples are generated that are employed in the next iteration to

calculate the utility Ũ(δ). The number of iteration steps can be selected by the user and

should allow convergence.

In Overstall and Woods (2017), a second phase to the algorithm is suggested in which it is

tested if the utility of a certain design can even be improved by clustering the individuals

of the identi�ed design. As in applications of geotechnical engineering this phenomenon is

especially undesired, this step is not considered in the present thesis. The authors apply

the algorithms to synthetic examples to make it comprehensible to the reader, but also to

an example of pharmacokinetics where once again the sampling time is decisive to obtain

as much information as possible from an experiment and should therefore be optimised.

The ACE algorithm is implemented in the R package acebayes. The main attributes

of this package are the utility function u(δ, ỹ) that is to be maximised, the initial ex-

perimental design δ, the limits of the design space Π , the size of B, the number Q of

support points to generate the one-dimensional metamodel Ũ , and the maximum number

of iteration runs. Besides, a function to sample from the prior parameter distribution is

required that is called within the utility function.

6.2. Employment in geotechnical engineering

In the framework of this thesis, the introduced Bayesian OED shall be applied to a problem

of geotechnical engineering using the ACE algorithm for optimisation. The objective of the

application would be similar to those in the problems discussed in the previous chapters 4

& 5: it should be identi�ed where to place sensors in a de�ned area in a way to identify

most reliably the relevant parameters of the soil, i.e. to reduce most the uncertainty of the

elements of θ. The uncertainty of the soil parameters must be de�ned initially in terms

of PDFs, whereby the selection of the type of PDF should re�ect the actual knowledge of

the soil properties.

As for the intended application, like for the other examples shown in this thesis, a time

consuming FE-model is employed and not an analytical model, it would not be possible

to call this model repeatedly during the optimisation. Therefore, it is necessary to create
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a su�ciently large database in advance that enables to generate adequate metamodels as

described similarly in Sec. 3.2. These models should be of the following type:

y = (y1, y2, . . . , yn) = f(θ),y ∈ Rn,θ ∈ Rs (6.10)

The n elements of y should enable to cover as dense as possible the experimental design

space in which the optimal experimental design δ∗ is identi�ed afterwards. The complexity

of this identi�cation as well as the required number N of samples θ depends on the number

s of parameters that are considered in the model. Therefore, it is strongly recommended

to perform a preliminary GSA that is introduced in Sec. 4.1.1.2. Doing so, it is possible

to identify and reduce the amount of parameters considered in the model to those that

have a relevant impact on the system response of interest. Hereby, it should be mentioned

that these are not necessarily consistent with those parameters that are most in�uencing

the model responses in y.

After obtaining the corresponding snapshot matrix Y of model outputs, a metamodel is

generated that substitutes the model described by Eq. 6.10. This could be done either as

in Eq. 6.11 or as in Eq. 6.12.

yi = f̂(θ, i), i = 1, . . . , n (6.11)

y = f̂(θ, ux, uz) (6.12)

Eq. 6.11 provides output data in any of the n points considered in Eq. 6.10 and nowhere

else. Using Eq. 6.12, an additional interpolation between these points is performed and

model responses for any coordinate combination (ux, uz) within the de�ned output space

are obtained. This could be extended to additionally obtain uy in case of a 3-dimensional

design space or to any further considered dimension. The �rst option prohibits clustering

due to the distance between the selected output positions. The latter one indeed allows

a more detailed optimisation as one is not restricted to consider points located on the

grid of model output locations (or any other selected arrangement), but this requires a

higher level of abstraction. Along with the generation of such more complex metamodel, a

potentially higher approximation error is obtained, contributing to the model uncertainty

described in Sec. 2.3.3.3. Within this thesis, the grid-free version is employed for the sake

of a larger di�erence to the OED approaches considered in the previous chapters.

As �rst step of performing Bayesian OED, an initial design δ0 is generated within that

part of the model geometry in which the experimental design to be optimised should be

located, corresponding to the design space Π . This can be performed either by generat-

ing a random sample of dimension d within the boundaries of Π or by de�ning a speci�c

one. The latter approach can be useful if the model responses in some areas of the design
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space are uniformly insensitive to the varied parameters of the experimental design. In

such cases, no higher utility can be identi�ed and no update of the parameter distribution

as described in Eq. 6.8 can be obtained.

Similar to the OED concepts described in the previous chapter, arti�cial noisy data is

generated that corresponds to the locations of the experimental design δ0. In this applic-

ation, a Gauÿian white noise is applied that is independent of the speci�c location of the

sensor, and added to a sample of l = 1, . . . , B output values of y as described by Eq. 6.13:

ỹl(θ, δ0) = y(θ, δ0) + e ·ω, ω ∼ N [0, 1] (6.13)

where e is again a user-de�ned value to control the noise level. In the next step, the

parameters of interest θ are back-calculated from each of the noisy samples ỹl:

θ̃l = f−1(ỹl|δc) l = 1, . . . , B , (6.14)

whereby δc refers to the currently investigated experimental design. The corresponding

utility U (Ũ , respectively) of a certain experimental design δc should be highest if the

uncertainty of the identi�ed parameters is smallest, wherefore the following utility function

is proposed:

Ũ(δc) =
B∑
l=1

(
−|θ̃l(δc)− θ̄|

θ̄
+

1

detCθ(δc)

)
/B (6.15)

θ̄ describes the mean value of the identi�ed parameter values using the current exper-

imental design such that the term −|θ̃l − θ̄| maximises when the discrepancy is small.

Doing so allows to capture the spread of the distribution of u while detCθ(δ
c)−1 controls

the mean value of this distribution. The covariance matrix Cθ is obtained as described

in Eq. 2.5. Employing Eq. 6.15 as objective function in the ACE algorithm introduced in

the previous section shall allow to identify the optimal arrangement δ∗ that leads to the

most reliable experimental design. Its application is demonstrated in the following.

6.3. Application

6.3.1. Considered example

The considered example is that of a twin tunnel construction in an urban area, that partly

underpasses a nine-storey building as illustrated in Fig. 6.1a. The position of the building
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and how it is related to the two tunnel tubes is displayed in Fig. 6.1b. Within this example,

the simulation of the construction of line 5 of the Milan Metro in a section between the

stations Lotto and Portello is considered. The soil stratigraphy, tunnel dimensions, and

TBM details are accurately reproduced in the FE model that has been introduced in

Fargnoli et al. (2015a) and Fargnoli et al. (2015b) and that is employed for the present

work, too. A visualisation of the model and its dimensions is provided in Fig. 6.2. The

three soil layers that are two gravelly sand layers with a silty sand layer in between are

simulated using the HSsmall model, introduced by Benz (2007).

(a)

first tunnel

second tunnel

B=12 m

L=30 m

15 m

70 m
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excavation

N

S O

W

(b)

Figure 6.1.: a: Front view and b: top view of the considered building and location of

applied measurement points, modi�ed, after Fargnoli et al. (2015b).

6.3.2. Motivation and objectives of application

The HSsmall model corresponds mostly to the HS model introduced in Sec. 4.2.2.2, but

extends it by two further parameters that allow to consider an increased sti�ness in case

of small strains in the soil. The building that is speci�cally considered in this model is

selected because an extensive monitoring program has been applied to it. This monitor-

ing program consists of 13 sensors with the positions indicated in Fig. 6.1b. The sensors

record the local vertical displacements during the consecutive construction of the two

tunnel tubes. In parallel, the position of the TBM, the applied face pressure and grouting

pressure are recorded. This enables to validate the numerical model and to some extend

the results of an OED process.

Mechanised tunnel constructions are challenging projects not only because of their overall
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d = 16,7 m
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Sandy silt

Figure 6.2.: FE model of considered interaction of twin tunnel bypassing the nine-storey

building, modi�ed, after Schoen (2018a).

size, but also because the structure is installed in a large soil area. Obtaining holistic de-

tailed soil properties that allow an accurate prediction of the tunnelling induced impacts

is hardly possible.

As mentioned above and described in Fargnoli et al. (2015a) and Fargnoli et al. (2015b),

in the present case thirteen measurement sensors have been installed on the edge of the

considered building. The overall objective of performing measurements is to ensure the

safety of the endangered structures. Simply considering measurements as threshold values

that should not be exceeded, as described in chapter 1 as "conventional design" is one

way, but the more sustainable way followed in this thesis is using measurement data for

parameter identi�cation and model validation. If an adequate model is obtained that can

very precisely predict the building behaviour, countermeasures can be more e�ciently

assessed that lead to improve the building's safety. Therefore, the objective becomes to

obtain a reliable model by identifying the relevant soil properties using the method of

back analysis, described in Sec. 3.3, which will bene�t from considering the ideas of OED.

However, considering the current example one may ask 'what is the bene�t of identifying

soil parameters in an area after the tunnel has been constructed there?' and this is of

course a justi�ed question, as this procedure should not end in itself, performing para-

meter identi�cation for the sake of parameter identi�cation.

Several aspects must be considered here. First, the building simulated in this model is one

out of numerous in the city. Any knowledge gained here is valuable for the next building
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on the ongoing path of the tunnel as well, as soil properties do vary over distances, but

they do not jump suddenly. Second, the presented results are obtained for that moment

after the �rst TBM has passed the building. However, the measurement data is avail-

able for each excavation step, i.e. as well for phases where the TBM has not reached the

building. When bringing this approach to application, the optimisation of the measure-

ment arrangement should be performed in a continuous and adaptive manner. Hereby,

the suggested positions will presumably be varying by time and therefore enable earlier

data gathering and processing. Information would be obtained before the TBM reaches

the building. Over time, the closer the TBM approaches the more relevant information

are obtained, but with less options to react by countermeasures.

Third, similar to the second aspect mentioned but probably more apparent, the evaluation

is performed after the �rst tunnel has been constructed. As the second tunnel follows in

parallel and causes the �nal impact on the building, all technical countermeasures or ad-

aptations of the TBM steering can be undertaken based on the current result but with

respect to the �nal situation.

For these reasons, it makes sense to not only take into consideration those sensors located

on the simulated building itself, but also in the far �eld around it. The considered design

space is set in a way that any position in the range of the settlement trough of the tunnel

construction is included. To be able to consider also these areas, arti�cial measurement

data is generated.

6.3.3. Preliminary work

In Fargnoli et al. (2015a) and Fargnoli et al. (2015b) the focus of investigation is set on the

soil-structure interaction behaviour that is induced by the construction of the twin-tunnel.

The measurement data is employed in combination with the numerical results to qualitat-

ively validate the therein introduced analytical approaches to describe this interaction and

not to identify the soil properties. Studies performed preliminary to the topic of Bayesian

OED investigated the aspects of parameter identi�cation, GSA, and GSA-based OED:

In Schoen (2018a), the in-situ measurement data is employed to back-calculate the con-

stitutive parameters of the surrounding soil, following the concept described in Sec. 3.3.

Besides geometry and types of soil layers, any further prior knowledge is explicitly ignored,

only relying on the capacities of the developed mathematical methods. Based on engin-

eering judgement, it was assumed that the parameters that are most relevant for possible

settlements or tilting of the building are the grouting pressure pv and face pressure ps of

the TBM, the site-related volume loss factor VL, the friction angle ϕ1, the small-strain
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sti�ness G0,1, and the secant sti�ness Eref
50,1 of the �rst soil layer and the secant sti�ness

Eref
50,2 of the second soil layer as well as the sti�ness of the concrete-made building founda-

tions EF. It should be mentioned that for both layers the secant sti�ness Eref
50 is assumed

to be correlated with the tangent sti�ness Eref
oed and the unloading-reloading sti�ness Eref

ur

by the factor of three (i.e. Eref
ur = 3 ·Eref

oed = 3 ·Eref
50 ) as performed previously in Sec. 4.2.3.1.

When in the following the term "sti�ness" is employed, it refers to those three parameters

combined.

For model validation, only the measurement data obtained until the �rst tunnel tube is

constructed is employed such that a prediction can be performed for the excavation of the

second tunnel tube and be compared to the corresponding measurement data. Doing so,

the results displayed in Fig. 6.3a are obtained. Here, the measured settlements obtained

after excavation of the �rst tube in the thirteen measurement points shown in Fig. 6.1b

are displayed by the blue triangles. By green circles and grey cubes, the settlements are

displayed that correspond to the identi�ed parameters using the actual FE-model and the

corresponding metamodel, respectively. It can be seen that in some cases the discrepancy

between metamodel and FE-model is larger than between metamodel and measurements.

In such cases, one should consider that a better agreement between metamodel and meas-

urements might not be possible without further model improvement. As still an overall

good agreement is obtained between measurements and simulation, the identi�ed set of

parameters is employed for further investigations and for the prediction of the settlements

caused by the construction of the second tube as shown in Fig. 6.3b. The measurements

after �nalising the second tube are compared with the corresponding results of the FE-

model. Still a good agreement can be observed with exception of the points R4, T1, T2,

and T3. Here, one should consider that as shown in Fig. 6.1a, next to the considered build-

ing, another one is located. This second building (and all further located in the row of

buildings) will induce a pre-stressing of the subsoil and thus a sti�ness increase that causes

the lower settlements observed in reality. Further investigations with continuous buildings

would be meaningful with respect to this point. To obtain a deeper understanding of the

system behaviour, in Schoen (2018b) several GSAs are performed, relating the aforemen-

tioned soil and system parameters to the average settlements and tilting in di�erent axis

of the building at �nal stage of the construction. In Figs. 6.4 & 6.5, the results of the GSAs

performed after excavation of the �rst and the second tunnel tube are displayed, relating

the seven investigated input parameters to the vertical settlements of each of the thirteen

measurement points shown in Fig. 6.1b. Looking a the displayed results, it can be seen

that they vary over time and space, but that generally the parameters Eref
50,1, G0,1, and VL
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Figure 6.3.: Comparison of measured and a: back-calculated data of �rst tunnel excavation

and b: measured and predicted data of second tunnel excavation.

have most in�uence on the investigated results. For this reason, all further investigations,

in the preliminary and the present work, put focus only on these three parameters.

6.3.4. Optimal locations of sensors for vertical displacements

In the following, it is illustrated how the concept of Bayesian OED using the ACE al-

gorithm as introduced in the Secs. 6.1.1 & 6.1.2 is applied to the example described in

the previous section.

At �rst, the experimental design optimisation problem should be de�ned. After complet-

ing the �rst tunnel tube, the vertical settlements should be obtained at any place at the

ground surface within the limits of the employed FE-model shown in Fig. 6.2. Therefore,

a grid of points with a distance of 5 m in between each of them is de�ned over the model

range that is shown in Fig. 6.6a. The position of the building is indicated and in its area

no points are de�ned, leading to a total of 259 points. A sample set of 120 combinations

of the three parameters of interest is generated using LHS and applied to the FE-model.

The bandwidth of these parameters is narrowed and retraced according to the �ndings of

the preliminary performed parameter identi�cation while the remaining four parameters

are �xed to the identi�ed values. These ranges are given in Tab. 6.1 together with the

identi�ed ranges of the other parameters.

To substitute the FE-model, a metamodel using quadratic polynomial regression is em-

ployed that enables to receive the settlement output in the 259 locations for any parameter

combination within the ranges given in Tab. 6.1. To be able to receive settlement data in

between these points, the polynomial interpolation method that is introduced in Akima
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46 4 Auswertung

In Abbildung 4.6 sind analog die Ergebnisse für den Zeitpunkt t3 dargestellt. Auch hier

kann festgestellt werden, dass vor allem der Volumenverlust VL, die Sekantensteifigkeit der

oberen Bodenschicht Eref
50 und das Schubmodul bei sehr kleinen Dehnungen Gref
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Abbildung 4.6: Totaleffekt STi zum Zeitpunkt t3

Figure 6.4.: Results of GSA applied in the thirteen measurement points considering the

impact of the seven parameters of interest on the settlements after excavation of the �rst

tunnel tube.
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impact of the seven parameters of interest on the settlements after excavation of the

second tunnel tube.
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(1978) and implemented in the akima package in R is employed.

The limits of the grid de�ned in Fig. 6.6a with exception of the surface of the building

de�ne the limits of the area in which the sensors might be placed to identify the relevant

parameters. It is de�ned that 6 sensors should be placed in this area. As each sensor can

freely move into both dimensions of the surface, �nding the optimal experimental design

δ∗ becomes a twelve-dimensional optimisation problem. To set-up an initial experimental

design, it is su�cient to generate a random 6 x 2 matrix within the given geometric

boundaries. However, this can lead to severe problems in certain cases. When looking

at Fig. 6.6b where the expected settlement trough obtained for an arbitrary parameter

combination is shown, one can see that some areas on the boundaries of the model are

not in�uenced by the building or the tunnel excavation at all and remain perfectly �at.

If the ACE algorithm starts its search for experimental designs with high utilities in such

an area, the model response will always be the same and the utility of the experimental

design, too. Accordingly, none of the investigated current experimental designs is accepted

as new best experimental design δ† and the initial experimental design δ0 is always kept.

In the present application, it is therefore appropriate to place the initial locations of the

six sensors anywhere in the range of in�uence of the tunnel such that the di�erent back

analysis runs lead to varying responses of the utility function u.

The initial distributions, or prior according to ACE denotation, of the parameters are

generated as normally distributed samples, as described in Sec. 3.4.1, with means equal

to the means of bandwidth de�ned in Tab. 6.1 and a COV of 0.29. Doing so, it is almost

ensured that no samples are generated outside of Θ. These parameter samples are trans-
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Figure 6.6.: a: locations of points in the FE-model where the settlements are recorded for

metamodel generation (Schoen, 2018a) b: 3D view of settlement trough after �rst tunnel

tube underpassing the considered building.
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Table 6.1.: Identi�ed parameter values and assumed parameter ranges for setting up the

metamodel of tunnel simulation.

Parameter Range / Value Unit

Eref
50,1 [25000 - 40000] [kN/m2]

G0,1 [125000 - 180000] [kN/m2]

VL [0.3 - 0.4] [-]

ϕ1 28.31 [◦]

pv 126 [kN/m2]

ps 155 [kN/m2]

EF [23846.28] [kN/m2]

ferred to model responses Y in the six locations of the initial experimental design. In the

current application, the number of samples is set to B = 100 and the model responses

are falsi�ed according to Eq. 6.13 to obtain Ỹ. Within the ACE-algorithm, these B noisy

samples are back-calculated using the DE-algorithm. The obtained parameter values θ̃

are evaluated using Eq. 6.15 to identify the utility Ũ of the current experimental design

δc. This is repeated Q times in each of the d dimensions of the design parameter spaceΠ .

In the current example, Q is kept at its default value of 20, while the maximal number

of iteration runs is set to eight. As shown in Fig 6.7, this number seems to be su�cient

as the obtainted value of Ũ is converging. Limiting the number of iterations becomes a

relevant aspect because of the calculation e�ort. In the present quite simple example, with

B = 100, Q = 20, d = 12, and eight iterations this multiplies to 192,000 runs of back

analysis requiring several days of calculation on a conventional PC or 8 h for one iteration

step. The obtained results are displayed in Fig. 6.8. In red and green, the settlement at

the ground surface in the whole model domain is shown for one exemplary parameter

combination, with the location of the building marked as black block. When comparing

to Fig. 6.2, one can identify the settlement pattern at the ground surface that is caused by

the tunnel excavation after approximately 60 m of TBM advancement. By white cubes,

the locations of the sensors in the initial experimental design δ0 are displayed. One can

see that they are placed in areas where large settlements take place for the reasons men-

tion above. The black crossmarks symbolise the �nal experimental design to which the

algorithm converges, i.e. for which the highest utility could be obtained. It can be seen,

that the black marks move away from the initial experimental design to the edge of the

settlement trough. Here, it should be mentioned that the settlement distribution corres-

ponds to one arbitrary realisation of the input parameters θ. For other combinations, the
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settlement distribution might be wider or narrower. The obtained arrangement of sensors

does not correspond to a certain set of parameters, but is supposed to be most reliable

over the considered range of parameters. The locations closer to the edge of the settle-

ment trough are in accordance with the observations made in the previous chapters that

measurements might be most informative, if they are performed where the gradient of a

model response is largest.

This corresponds also to results of a study performed preliminary to the one presented

here. Thereby, instead of using a FE-model to calculate the surface settlements induced

by tunnel excavation, the commonly known Peck equation, introduced in Peck (1969a) is

employed that approximates the tunnelling induced settlement curve by a Gauÿian curve

given in Eq. 6.16:

Sy(x) =
Vl√
2πi

exp

(
− x

2

2i2x

)
(6.16)

where Vl describes the volume loss and ix is the distance in the transversal direction, called

x-direction herein, to the settlement trough's in�ection point. This equation allows to

relate shape and maximum of settlement with the volume loss. To calculate the settlements

in longitudinal direction, an analogue equation is available, depending accordingly on iz

instead of ix. Combining both equations, a three-dimensional settlement trough is obtained

as displayed in Fig. 6.9c that depends on the location of the tunnel. In these equations,

the width and height of the settlements trough directly correlate with Vl and i and these

two parameters are assumed to be unknown and objective of the OED. The procedure is

exactly the same as described above considering the FE model but using the analytical

model instead. Three sensors are scheduled to provide measurements to identify Vl and

three more sensors are used to identify i, whereby ix is assumed to be equal to iy. The

results of this operation are shown in Fig. 6.10. In this green�eld example the red coloured

area indicates maximum calculated settlement using the Peck equation, while the dark

blue zones correspond to zero settlement. The white dots describe the initial experimental

design provided to avoid non-convergence as described above. The red dots indeed are the

points that are obtained as experimental design with highest utility. The three dots closer

to the zone of largest settlement are those designated to identify Vl, while the three on

the edge of the settlement trough are intended to be used to identify i. This result might

be trivial and agrees with what could be expected. However, it con�rms that the results

obtained for the case employing the FE model and its metamodel are plausible. The

FE model based application of Bayesian OED is described in a quite rudimentary and

non-conceived manner in Hölter et al. (2019).
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(a)

(b)

(c)

Figure 6.9.: Description of Bayesian OED in analytical application, a: transversal settle-

ment curve, b: longitudinal settlement curve, c: resulting settlement trough in relation to

tunnel position.
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Figure 6.10.: Results of Bayesian OED application to analytical problem.

6.4. Summary

The concept of Bayesian OED introduced in this chapter shows to be a valuable alternat-

ive to the previously considered approaches and has been proven to be e�cient in other

scienti�c disciplines. Within this thesis, it is intended to adapt this approach for geotech-

nical applications. As one main aspect of OED in this �eld is the question where to locate

measurement spots, the iterative and adaptive procedure of this method is convenient.

The fundamental concept of Bayesian OED is introduced that consist of maximising the

utility U of a certain experimental design δ to identify uncertain parameters θ by means

of noisy data ỹ. As the conditional probability of the constitutive parameters and the

model responses are in�uenced by the employed experimental design, this experimental

design can be optimised to maximise the utility of the Bayesian inference. As this utility

is described by an integral that can hardly be solved (s.Eq. 6.2), the ACE algorithm is

introduced to approximate this integral.

This concept is adapted for problems of geotechnical engineering by proposing how to

handle the parameter distribution, the arti�cial noisy data, and the formulation of the

utility. It is applied to the simulation of a real world case of a twin tunnel bypassing a

nine-storey building. The objective of the investigation is �nding the optimum position

of sensors that record ground surface settlements in a manner that the parameters that

in�uence most the building behaviour can be back-calculated most reliably. The results

obtained in this example are comprehensible and in accordance with those from other ap-

proaches, especially with respect to the aspect of obtaining locations where the gradient

of model responses is largest instead of such with large absolute values. As the calculation
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time is acceptable, the Bayesian OED seems to be an at least equivalent alternative to

the methods introduced previously.

However, several aspects are identi�ed that might reduce the pro�t of this method: having

an initial experimental design that allows the algorithm to proceed is crucial and might

not always be as obvious to identify as in the present case. The high level of abstrac-

tion that is caused by using several metamodels and the approximation of the utility

integral can induce a considerable model error. Furthermore, the results may depend on

the initial assumptions of the parameter distributions. In the present case, the paramet-

ers are assumed to be normally distributed what is legitimate in case of the sti�nesses.

With respect to the distribution of the volume loss, much less information is available.

Detailed investigations on identifying the correct value of this parameter are performed

as for example in Marshall et al. (2012) and databases are established like in Dimmock

and Mair (2007), but to date by the best of the author's knowledge no recommendations

are available on what probability distribution should be employed. However, the volume

loss is not a conventional soil parameter. It results from the interaction of soil and TBM.

As practitioners aspire to reduce this value as much as possible to avoid surface damage,

this parameter is the objective of many research and development studies and therefore

changing with the improvement of the TBMs. Therefore, the assumption of a bandwidth

from 0.3 to 0.4 might anyway be inappropriate in near future.

The procedure shown in this example refers to the assumptions made, especially the con-

sidered number of and type of sensors, design space, and type of added noise. The obtained

results are therefore only valid for the current application and may strongly vary if these

variables are changed, even though the performed procedure would be the same.



7. Comparison of the employed

methods

Within the three last chapters, di�erent OED approaches are introduced and their applic-

ation to geotechnical problems is demonstrated. The di�erent approaches that are �rst

OED by means of spatial GSA, second, OED using bootstrapping, and third, Bayesian

OED, have been applied to di�erent geotechnical problems, wherefore a qualitative com-

parison should be further undertaken. However, a quantitative comparison using the same

experimental setup is not meaningful as the applicability of the particular OED approach

is case sensitive.

7.1. Role of the measurement data diversity

Using only the vertical displacements as in case of the 3D tunnel simulation in Sec. 4.2.2.3

shows how problematic this can be in case of several parameters that have to be identi-

�ed. The S∗Ti,k-values never indicate the parameter Eref
50 to be most relevant. Therefore, its

identi�cation is performed using data related to S∗Ti,k-values smaller than in case of the

two other parameters Eref
ur and ϕ′ and hence probably less reliable. In case of the dike in

Sec. 4.2.3 this is even more drastic as the relevant parameter k1 has almost no impact on

the displacement data that is employed for parameter identi�cation. On the other hand,

in this example a similarly low sensitivity of the pore water pressure to the parameter ϕ′1

is observed. Therefore, identifying in a reliable manner both parameters k1 and ϕ
′
1 is only

possible using measurements related to di�erent types of physical processes.

How many measurement points and which of these measurement points are necessary can-

not be identi�ed using OED by means of spatial GSA. To this, OED using bootstrapping

provides the necessary additional information when performing the analysis for di�erent

sensor combinations as shown in Fig. 5.6. Here, one can see that the data obtained from

the displacement sensors contribute more to the reliable overall identi�cation of both

141
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constitutive parameters than the data from the pore water pressure sensors. Moreover,

installing more than �ve sensors does not have further positive impact.

Di�erent insight, indeed, is obtained from the application example with the experimental

device discussed in Sec. 4.2.1. Here, preliminary studies showed that it is possible to

identify both parameters of interest, the permeability coe�cient and the sti�ness, by only

one type of measurements. However, this is because both parameters are related to the

same state parameter that is the void ratio e of the soil as indicated by Eq. 4.9. This

shows that in case of coupled �eld problems, depending on the type of application and

of employed constitutive model, using di�erent measurement types might be essential or

"only" an improvement of the reliability.

Independent of the investigated problem, the following statement should be considered

as generally valid regarding where to place sensors: It is not most promising to place

sensors where the model response of interest is the largest, but where its gradient is the

largest. This is most comprehensive in case of the experimental testing device described

in Sec. 4.2.1 when considering the problem where the pore water pressure measurements

should be performed. The measurement data are not most informative directly below

the plate where the pore water pressure has larger but constant values, but in a certain

distance where most of the excess pore water pressure is dissipated and therefore, the

gradient of the pore water pressure is largest. Moreover, similar observations are made in

the dike example (Sec. 4.2.3) and in the application to mechanised tunnelling (Sec. 6.3.4).

Identifying areas (in time as well as in space) where model responses strongly vary over

short distances is therefore of importance in the context of OED.

It can be concluded that based on the results in this thesis, any further general suggestion

would be too speculative and should depend on the speci�c application, wherefore the

examples shown in this thesis are valuable references.

7.2. Computational e�ciency

As mentioned several times, the calculation time strongly in�uences the applicability of

the di�erent approaches to OED. In the approaches to OED considered in this thesis,

three features mainly in�uence the calculation time to complete the OED task: the model

complexity, the dimensions of the parameter space, and the dimensions of the experi-

mental design. However, these three features are not equally important for the di�erent

OED strategies. Therefore, it should be considered how the properties of the parameter
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and design space as well as the model complexity will impact the di�erent available OED

approaches before selecting one of them. In certain cases, as shown in chapter 5, the pre-

liminary evaluation can signi�cantly reduce the computational e�ort. If the experimental

design space only contains one parameter, e.g. time, a more complex OED approach might

be computationally a�ordable than in the case of a complex problem of e.g. locating sev-

eral sensors in a multidimensional design space.

In general, and this has been done in all OED applications presented here, performing

a GSA is an important �rst step as it allows to identify the relevant parameters and

to shrink the constitutive parameter space by excluding the less signi�cant parameters.

For performing afterwards the OED by means of spatial GSA, it is necessary to consider

only the impact of these most relevant parameters on the model responses of interest.

Therefore, a second set of parameter samples, containing only those relevant ones, must

be generated and run in the model. Depending on the type of simulation, running the new

set of samples in the simulation model can be highly time consuming even though the

sample size could be smaller, as the parameter space has less dimensions. However, once

all samples have been applied to the simulation model, only few further computational

e�ort is required. Performing the spatial GSA, even on hundreds of grid points is a task of

a few minutes. In case the grid should be re�ned, in FE-models additional points can be

de�ned, and the output data is extracted in these points (assuming that the model results

are stored) to re-perform the "densi�ed" spatial GSA. In case few candidate experimental

designs are scheduled from results of OED by means of spatial GSA and tested for com-

parison using arti�cial noisy data, this procedure is also operable within reasonable time

limits. Hereby only these scheduled speci�c experimental designs are tested including a

few hundreds runs of back analysis as in the example shown in Fig. 4.15b, instead of

testing hundreds or thousands experimental designs as done in case of OED using boot-

strapping or Bayesian OED.

In contrast, OED using bootstrapping is highly time consuming, but partially independ-

ent of the complexity of the employed FE-model as its computational e�ort mostly results

from the required numerous back analysis runs. This already applies to the quite simple

model considered in Sec. 5. For more complex models, their calculation time will become

proportionally more relevant. In the problem studied by Schenkendorf et al. (2009), this

approach could not be employed at all because of the required computation time, even

though a computationally cheap analytical model was considered as the simulation model.

To enable OED using bootstrapping at all, in this thesis an application of this approach

is conducted whereby the sensor data is evaluated individually instead of cluster-wise.

This simpli�cation reduced considerably the calculation time to several hours instead of
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weeks for the example considered herein. The generated matrix of identi�ed parameters

T̃ (see Eq. 5.4) allows to consider other con�gurations of the number of sensors without a

new parameter identi�cation process. This is performed in Sec. 5.2.3, where the number

of sensors for displacements and pore water pressure is varied from one to three. Accord-

ingly, OED using bootstrapping is well suited if such questions are relevant in a speci�c

OED problem.

However, in the application example of the dike exposed to a rapid drawdown of the water

level studied in this thesis, only eleven candidate points are included in the analysis for

both, displacements and pore water pressure. The computational e�ort would grow expo-

nentially in case the number of these points is increased. Therefore, employing the OED

using bootstrapping is only reasonable in case only few candidate points are to be studied

or if the design space can be reduced in advance. The application example of the dike

shown in chapter 5 follows the latter approach by performing OED by means of spatial

GSA in advance to OED using bootstrapping. Although a preliminary OED by means of

spatial GSA requires a considerable calculation time, it is still more e�cient than having

a Bootstrap design space (number of candidate points) of double or triple size.

In the same chapter 5, the sigma-point method is considered that actually follows a sim-

ilar concept as the OED using bootstrapping, but is way more e�cient in generating

the matrix T̃. Instead of generating a distribution of noisy measurement data that is

back-calculated, this distribution is substituted by a few points whose number increases

linearly with the dimension of the model parameter space. Accordingly, it is necessary

to precisely know the characteristics of this distribution what can be an obstruction in

case in-situ measurement data is employed. The sigma-point method can be seen as an

e�cient improvement of the OED using bootstrapping, but requires probably a deeper

understanding and an even more careful handling.

The employed approach of Bayesian OED requires a reliable metamodel of good quality,

wherefore numerous, possibly highly time consuming FE-model runs are necessary. For

spatial interpolation, as performed in Sec. 6.3.4, no additional model runs are required,

but additional model results data. This can be obtained by data extraction on a �ner

grid of locations in the already executed simulation runs. Like in the OED using boot-

strapping, the actual procedure of identifying the OED by performing numerous runs of

back-analysis causes large computational costs. Depending on the selected parameters of

the employed ACE-algorithm (and of the DE-algorithm in the inner loop), one optimisa-

tion run for the problem investigated in Sec. 6.3.4 needs several days to converge. The

considered design space herein is considerably larger than in the dike example. However,

no spatial GSA is performed in advance to reduce the design space. The non-promising
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parts of the design space that would have been excluded thereby, are though identi�ed

in the iterative process of the ACE-algorithm. Thus, one can conclude that performing

Bayesian OED is more suitable in case large computational capacities are available but

few human capacities for pre-processing data and interpreting results and vice-verse in

case of combining OED with spatial GSA and bootstrapping, as here additional interme-

diate steps are required.

Besides, one should estimate which variation of the experimental design boundary condi-

tions should be performed. Any variation like the number of sensors, the amount of added

noise, or the candidate space requires an entire new optimisation run. In case of varying

the number of sensors, the OED using bootstrapping (and the sigma point method, re-

spectively) is advantageous for the reasons described above.

7.3. Informativity and reliability

An elementary aspect of the comparison of the di�erent approaches is what type of in-

formation or results are provided and how, and for what further use, the obtained output

can be employed.

The results that the OED by means of spatial GSA provides di�er from those obtained

by OED using bootstrapping and the Bayesian OED as employing spatial GSA indicates

which data is most informative, while the latter two tell which speci�c design allows most

accurate parameter identi�cation. This apparently small di�erence should not be ignored.

In case an experimental design is selected based on spatial GSA, only the model parameter

uncertainty is considered and not the experimental design parameter variation. Accord-

ingly, the in�uence of sensor number or accuracy is not part of the experimental design

decision. Still, it is very probable that performing solely OED by means of spatial GSA,

one selects a very good experimental design even though it might not be the best one.

The resulting gain or loss of uncertainty might by smaller than the uncertainty resulting

anyway from soil heterogeneity, model uncertainty, and measurement error that were de-

scribed in Sec. 2.3.3. That means using OED by means of spatial GSA is suitable in case

the experimental design components (e.g. number, type, and accuracy of measurement

devices) are �xed a priori. If one is interested to make a decision on these aspects, this

method is not recommended, while the method is well suitable in case one is interested

in appropriate locations in time or space.

The advantage of OED using bootstrapping (and sigma-points) and of the Bayesian OED
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is that speci�c experimental designs are applied to a considered OED problem and their

results depend on both, the problem and the applied experimental design as well. Both

approaches employ optimality criteria, that were introduced in Sec. 2.4.3, to evaluate

the obtained parameter values with respect to the quality of the considered experimental

design. However, as was demonstrated in Sec. 5.2.2 and according to the literature referred

therein, applying these optimality criteria is not trivial but needs certain experience on

the topic. Beside, one should apply di�erent optimality criteria on the same speci�c ap-

plication to compare the results and consider how they correlate with expectations based

on engineering judgement.

The meticulous investigation and documentation of the considered experimental designs

in case of OED using bootstrapping (and sigma points) method is rather time consuming,

but it is of advantage when it comes to deeper interpretation of the results. The results

for each speci�c experimental design that is tested are documented and can be evaluated

by di�erent optimality criteria, allowing a further detailed evaluation like the box plot

diagrams shown in Fig. 5.6. Using the Bayesian OED and ACE algorithm, only the �nal

experimental design and the utility of the best experimental design of each iteration δ†

are stored, making the results to a kind of black box. As outlined in the previous section,

the Bayesian OED is therefore again more useful for one single evaluation that provides

precise results to be employed without extensive additional interpretation. To perform

detailed scienti�c analysis, the OED using bootstrapping (and sigma points) seems to be

more suitable.

7.4. Summary

The comparisons and evaluations performed in this chapter intend to merge the knowledge

gained in the previous chapters. Considering the aspects of di�erent types of measure-

ments, computational e�ciency, and accuracy and reliability of results, it is demonstrated

that depending on the speci�c problem and application, the introduced approaches to

OED strongly di�er in their performance. Obviously there is no universal optimum ap-

proach to OED and each application will require a preliminary study to make the decision

what OED concept would be most appropriate. In addition, the introduced OED meth-

ods and the approaches to their assessment can be a useful platform to rely on in future

investigations.



8. Conclusion

8.1. Main �ndings of present work

Introducing concepts of optimal experimental design to the �eld of geotechnical engin-

eering is the overall purpose of this thesis. The methods of measurement based model

validation were improved in the last years. However, it is identi�ed that the question

which data to use for such validation is rarely considered and hence the topic of OED

comes up. Within this thesis, a methodology is developed to perform OED fully adapted

to the circumstances encountered in geotechnical engineering.

Previous studies within the research project "System and Parameter Identi�cation Meth-

ods for Ground Models in Mechanized Tunneling" in whose framework this thesis is em-

bedded provide a methodological background to this research. In this thesis, the concepts

of sensitivity analysis, metamodelling, and back analysis are adopted and extended by the

aspect of not considering measurement data as given, but as an arbitrary variable that

can and should be selected in an optimal way to improve the e�ciency of the geotechnical

model identi�cation and validation.

Three approaches, namely the spatial GSA (i.e. to perform GSA in spatially distributed

manner), Bootstrap analysis, and Bayesian OED, are considered to identify an OED,

whereby operating these three methods cause an increasing computational e�ort. Accord-

ingly, reducing the dimension of the parameter space and of the design space is undertaken

as the �rst step of successfully identifying the OED. In connection to this, a detailed ana-

lysis is presented in the thesis on the model parameter sensitivity analysis and especially

how the global sensitivity analysis can be employed to identify the relevant (constitutive)

model parameters on which should be focused. A modi�ed sensitivity index S∗Ti is proposed

that allows to compare the parameter sensitivity independently of the di�erent model out-

put dimensions. By applying the modi�ed sensitivity index S∗Ti to the sensitivity analysis

of three di�erent simulation examples, several key �nding are achieved:
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� The sensitivity index S∗Ti allows to identify in which time intervals and in which

special areas in the considered FE model a certain model parameter can be identi�ed

most reliably.

� By performing an extensive model calibration, obtaining a higher agreement between

experimental and simulation results is enabled. The residual mis�t between model

and measurement data that remains after model calibration is identi�ed to result

from the insu�ciently adequate model. Therefore, the optimal experimental design

cannot compensate for a poor model.

� It is shown that speci�c optimal experimental designs can be determined employing

S∗Ti . By using the experimental design established based on sensitivity plots, more

reliable results of the parameter identi�cation procedure are obtained. However,

it is indicated that such experimental designs may not account su�ciently and

appropriately for the impact of measurement error.

� As the computational e�ort to calculate S∗Ti depends only on the number of simula-

tion runs and not on the number of considered observation points in the geometrical

model, it is also employed as preliminary step to reduce the range of the parameter

space Π in which the optimal experimental design δ∗ has to be identi�ed.

As second approach, the Bootstrap and the sigma-point methods are employed to perform

statistical evaluation, whereby detailed investigation of individual experimental designs

is enabled. Hereby, any possible combination of sensors on a prede�ned set of candidate

locations is considered. The quality of a measurement design program is identi�ed by

applying an optimality criterion to the covariance matrix that re�ects the uncertainty of

the identi�ed parameters. This method is very versatile as the procedure could be repeated

for di�erent types and measures of error and di�erent sensor types. Within this thesis, the

variation of number and types of sensors is undertaken, leading to relevant information

about how additional sensors contribute to a further improvement of the model validation.

Using the Bootstrap concept allows to arti�cially increase this database, what enables to

obtain probability distributions in case of insu�cient in-situ observations. However, the

Bootstrap approach demands large computational e�orts as each time one experimental

design is considered, a whole distribution of back-calculated results needs to be generated.

By the performed studies, the following insights are gained :

� Like in the referred to publications in Sec. 2.4.3, it is observed that di�erent op-

timality criteria may lead to di�erent optimal experimental designs. It is therefore

suggested to actually employ several of them and scrutinise the obtained results.
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� The sigma point method is a valuable approach to boost the e�ciency of the Boot-

strap approach. In the considered application, using the sigma point method or not

leads to identi�ed experimental designs of same quality. However, due to the ne-

cessity to know the actual distribution of the considered measurement data, this

approach is restricted to arti�cial data (or very extensive measurement data sets).

� The Bootstrap approach is presumed to be the most accurate of the considered

OED methods. However, it is highly time consuming, wherefore it is applied to an

example with a small design space. To reduce the computational e�ort, performing

the spatial GSA approach in advance to reduce the design space is successfully

applied.

To consider even large model geometries, i.e. large experimental design spaces, the concept

of Bayesian OED is applied as third approach to OED in this thesis. At �rst glance,

several positive aspects of this approach are identi�ed, as it allows a grid independent

solution, the optimisation is more e�cient as it does not test all over the design space,

and it allows to account for the uncertainty type of the model parameters. However,

the aspect of model uncertainty is identi�ed as potentially a�ecting the optimisation

process: �rst, a metamodel is generated to substitute the time-consuming FE-calculation

and second, an interpolation among the metamodel's support points is done to enable the

�nding of solutions also between the support points. As the accumulation of the potential

model errors resulting from the di�erent regressions is unseizable, the obtained results

are considered as potentially uncertain. Therefore, one should employ this approach very

carefully and keep in mind the following key aspects:

� An experimental design that is comprehensive according to the �ndings of the spatial

GSA and Bootstrap approaches is identi�ed using the suggested Bayesian OED

approach.

� The required computational e�ort is smaller in the considered example than e.g. in

the Bootstrap application while the design space is considerably larger.

� A rough knowledge on suitable experimental designs is necessary to provide an

adequate initial guess for the experimental design. In case this "initial design" is set

up completely random and located in non-sensitive areas, the ACE algorithm is not

converging to an optimal solution.

� The nature of the geotechnical problems requires to take into account a high level of

model uncertainty. For this reason, the employment of Bayesian OED in context of

FE models is critically discussed and the results scrutinised. The combination with
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other methods like GSA, or spatial sensitivity allows an independent comparison of

the results or to limit the boundaries of the optimisation problem.

The insights obtained in this thesis allow to develop concepts for solving the OED problem

in geotechnical projects. Depending on the speci�c application as well as the available time

and budget, di�erent combinations or individual concepts introduced in this thesis might

be most promising. However, even though fundamental ideas are presented herein, further

research should be performed on this topic whose major objectives are formulated in the

following.

8.2. Outlook

Two major aspects should be considered in future works on the considered topic of OED

in geotechnical engineering. First, the extension of the presented methods to further and

more complex applications and second, the practical validation, whereby both aspects

might by considered in same projects. There are further aspects that have played a minor

or negligible role within this thesis such as to be mentioned the soil variability, the higher

order moments of the measurement error, and variation of the amount of error. Deeper

research on each of these topics would be desirable. These could be individual extensions

or continuations of the studies presented herein, where the investigations are repeated

with varying types of error, or by substituting the homogeneous soil layers in one of the

FE models by random �eld clusters as performed in Mahmoudi et al. (2020).

Regarding the two main topics for future work, it should be mentioned that the examples

considered within this thesis, especially those in chapters 4 and 5 are rather simple ones.

The dike simulation e.g. only considered one case of water drawdown wherefore the iden-

ti�ed experimental design is optimal for that case, but not necessarily for other drawdown

scenarios. To consider this aspect, the decrease of the water level could have been con-

sidered as additional random variable in the simulation. However, this would have made

the simulation more complex and, even more problematic, the results less comprehens-

ible. In the current application, the relationships of water drawdown, the resulting failure

mechanism, and the identi�ed positions of sensors make sense and enable the reader to

understand the OED approach.

Considering more complex applications would allow more meaningful results. Within the

considered applications, the discrepancies of the optimality criteria showed only few vari-

ation within the considered experimental design parameter space. Investigating the case

e.g. of a large slope, like the one described in Li et al. (2019), including several soil lay-
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ers and an alternating ground surface that is subjected to �uctuating meteorological and

hydraulic impacts would require extensive modelling e�ort, but di�erences between good

and poor experimental results would become more demonstrative. To perform such invest-

igations, the experiences gained in the framework of this thesis allow the selection of an

adequate methodology to ensure an e�cient handling even of such a complex application.

To transfer the introduced concepts to engineering practice, real case applications are ne-

cessary to prove their functionality and the measurable cost savings that can be achieved

considering them. Project costs will be higher with a detailed planning of an experimental

design than without. Besides, these techniques only make sense if during the construc-

tion phase (or even more the operation phase for e.g. a dike) a continuous validation is

practised. This is only a�ordable in context of large projects. In such applications (like

tunnels, dams, deep excavation pits, etc.) the potential of saving costs would be high and

the expenses for the "numerical assistance" relatively low. However, such applications are

not feasible in context of pure research projects, but require interaction of science and

practice. Therefore, persuading practitioners of the advantages of implementing OED to

their projects is a major next step to take.





A. Sensitivity contour plots of

sample testing experiment

(a) (b)
S* ( k ) T

(c)

S* ( k ) T

(d)
S* ( l ) T

(e)

S* ( l ) T

(f)

Figure A.1.: Vertical bar pointing out the considered time step after 20 minutes with

respect to a pore water pressure yw and b settlement yy evolution; sensitivity distribution

for yw towards c: k and e: λ, and for yy towards d: k and f: λ
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Figure A.2.: Vertical bar pointing out the considered time step after 60 minutes with

respect to a pore water pressure yw and b settlement yy evolution; sensitivity distribution

for yw towards c: k and e: λ, and for yy towards d: k and f: λ
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Figure A.3.: Vertical bar pointing out the considered time step after 80 minutes with

respect to a pore water pressure yw and b settlement yy evolution; sensitivity distribution

for yw towards c: k and e: λ, and for yy towards d: k and f: λ
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Figure A.4.: Vertical bar pointing out the considered time step after 120 minutes with

respect to a pore water pressure yw and b settlement yy evolution; sensitivity distribution

for yw towards c: k and e: λ, and for yy towards d: k and f: λ
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Figure A.5.: Vertical bar pointing out the considered time step after 140 minutes with

respect to a pore water pressure yw and b settlement yy evolution; sensitivity distribution

for yw towards c: k and e: λ, and for yy towards d: k and f: λ
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Figure A.6.: Vertical bar pointing out the considered time step after 420 minutes with

respect to a pore water pressure yw and b settlement yy evolution; sensitivity distribution

for yw towards c: k and e: λ, and for yy towards d: k and f: λ
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Figure A.7.: Vertical bar pointing out the considered time step after 6000 minutes with

respect to a pore water pressure yw and b settlement yy evolution; sensitivity distribution

for yw towards c: k and e: λ, and for yy towards d: k and f: λ



B. Sensitivity contour plots of TBM

advancement
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Figure B.1.: Contourplots of GSA with respect to E50 in section three in excavation phase

(a) 13, (b) 19, (c) 25, (d) 31, and (e) 37 and scale bar of S∗Ti,k (f)
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Figure B.2.: Contourplots of GSA with respect to Eur in section three in excavation phase
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Figure B.3.: Contourplots of GSA with respect to ϕ′ in section three in excavation phase

(a) 13, (b) 19, (c) 25, (d) 31, and (e) 37
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Figure B.4.: Contourplots of GSA with respect to E50 in section four in excavation phase

(a) 13, (b) 19, (c) 25, (d) 31, and (e) 37 and scale bar of S∗Ti,k (f)
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Figure B.5.: Contourplots of GSA with respect to Eur in section four in excavation phase

(a) 13, (b) 19, (c) 25, (d) 31, and (e) 37
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Figure B.6.: Contourplots of GSA with respect to ϕ′ in section four in excavation phase

(a) 13, (b) 19, (c) 25, (d) 31, and (e) 37
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